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LETTER TO EDITOR

Genomic epidemiology study of Klebsiella pneumoniae
causing bloodstream infections in China

Dear Editor,
Klebsiella pneumoniae (K. pneumoniae, Kpn) bloodstream
infection (BSI) has a considerable prevalence and high
mortality worldwide.1–3 The emergence of carbapenem-
resistant BSI-Kpns, especially those with hypervirulence,
poses a challenge for BSI-Kpn control worldwide.4–6 We
conducted a large-scale multicenter epidemiological study
and in-depth genomic analysis of BSI-Kpns in China,
describing a complete molecular epidemiological picture
(clinical features, sequence types (STs)/serotypes, antimi-
crobial resistance/hypervirulence, phenotype/genotype)
of BSI-Kpns. We also revealed the correlations between
clinical characteristics and the genotypes of BSI-Kpns.
A total of 239 Kpns were identified by screening 1219

Gram-negative bacteria causing BSI from 24 representative
hospitals in different regions of China in 2018 (Table 1 and
Figure 1; Table S1 and Figure S1). A total of 67.36% (161/239)
infections were hospital-onset (HO), and the others were
community-onset (CO). A total of 66.11% (158/239) patients
weremales, andmiddle-aged (41–65 years, 118/239, 49.37%)
and aged (>65 years, 81/239, 33.89%) patients accounted
for a significantly higher percentage (p-value < 0.0001)
(Table 1; Table S2). We further sequenced the whole
genomes of 239 BSI-Kpns using Illumina Technology
(Tables S3 and S4). ST analysis indicated that these strains
covered 78 different STs, including seven new STs (Table
S5). The most common STs were ST11, ST23 and ST65,
together accounting for 41% (98/239) of BSI-Kpns (Table 1).
Sixty-six (84.6%) STs were found in≤ three BSI-Kpns each.
Serotypes of capsular (K) and lipopolysaccharide (O) anti-
gens were also predicted (Table 1). We detected 50 different
K-loci, with K64 (53/239, 22.18%) predominating, followed
byK1 (27/239, 11.30%), K2 (27/239, 11.30%), andK47 (11/239,
4.60%). Twelve O-loci were detected, O1 and O2 were the
most common, together accounting for 79.5% (190/239) of
BSI-Kpns (Table 1). The distribution of strains in differ-
ent regions showed different characteristics: the major-
ity of strains in East China are ST11/K64/O2v1, while the
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percentage of ST65/K2/O1v2 strains ranks first in North
China and ST23/K1/O1v2 strains account for the most in
Northeast China, respectively (Figure 1; Figures S2 and
S3). Importantly, most ST11 strains were K64/O2v1 (49/65,
75.38%) and K47/OL101(14/65, 21.54%), all ST23 strains
were K1/O1v2 and all ST65 strains were K2/O1v2 (Fig-
ure 1C,D; Figure S3).Moreover, strains of the same ST clus-
tered in the same evolutionary branch and strains of differ-
ent serotypes clustered in different sub-branches inside of
the same ST (Figure 1D).
Acquired antimicrobial resistance (AMR) gene analysis

showed that all 239 strains acquired AMR genes confer-
ring resistance to more than three drug classes (Table S6;
Figures S4 and S5). The prevalence of aminoglycosides/
chloramphenicol/quinolone/sulph-onamides/tetracycline
/trimethoprim/beta-lactamase resistance genes all
exceeded 30%, with beta-lactamase predominating (100%)
(Table S7; Figure S4). Among beta-lactamase, the preva-
lence of carbapenemase genes was 29.71% (71/239) (Table
S8). All isolates with carbapenemase were predicted to
be resistant to a median of eight drug classes (Figure S6).
The most common carbapenemase was blaKPC-2, varying
widely between different STs/serotypes (93.85% [61/65]
ST11, 100% [14/14] K47, 86.79% [46/53] K64 strains and 0%
of ST23/ST65/K1/K2 strains) (Table S8, Figure S4C). The
prevalence of extended-spectrum beta-lactamase genes
was 63.6% (152/239), with the most common type being
blaSHV and blaCTX-M (Table S8). blaCTX-M with the main
subtypes of blaCTX-M-65 (56.18%, 50/89) and blaCTX-M-3
(16.85%, 15/89) varied between STs/serotypes, >73% in
ST11/K64/K47 and <5% in ST23/ST65/K1/K2 (Table S8;
Figure S4C). AmpC genes were present in only 4.6%
(11/239) of strains with gene types blaCMY and blaDHA
(Table S8). Eleven antibiotics were used for the antimicro-
bial susceptibility testing, and the resistant phenotype was
consistent with the genotype (Table S9; Figure S4A).
Virulence determinant analysis (Table S10; Figure S7)

showed that aerobactin (119/239, 49.79%)- and salmochelin
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TABLE 1 Demographic information and characteristics of the BSI K. pneumoniae isolates

HO CO Total
All 161 (67.36%) 78 (32.64%) 239 (100%)
Sex
Male 101 (62.73%) 57 (73.08%) 158 (66.11%)
Female 60 (37.27%) 21 (26.92%) 81 (33.89%)
Age
Children (0–6 years) 14 (8.70%) 1 (1.28%) 15 (6.28%)
Early youth (7–17 years) 1 (.62%) 0 (.00%) 1 (.42%)
Youth (18–40 years) 15 (9.32%) 9 (11.54%) 24 (10.04%)
Middle (41–65 years) 74 (45.96%) 44 (56.41%) 118 (49.37%)
Aged (>65 years) 57 (35.40%) 24 (30.77%) 81 (33.89%)
Districts
East China 74 (45.96%) 35 (44.87%) 109 (45.61%)
South China 27 (16.77%) 18 (23.08%) 45 (18.83%)
Southwest China 25 (15.53%) 6 (7.69%) 31 (12.97%)
Northeast China 23 (14.29%) 6 (7.69%) 29 (12.13%)
North China 7 (4.35%) 6 (7.69%) 13 (5.44%)
Central China 5 (3.11%) 4 (5.13%) 9 (3.77%)
Northwest China 0 (.00%) 3 (3.85%) 3 (1.26%)
Sequence type
ST11 56 (34.78%) 9 (11.54%) 65 (27.20%)
ST23 10 (6.21%) 11 (14.10%) 21 (8.79%)
ST65 9 (5.59%) 3 (3.85%) 12 (5.02%)
ST15 7 (4.35%) 3 (3.85%) 10 (4.18%)
ST29 6 (3.73%) 3 (3.85%) 9 (3.77%)
Other STs 73 (45.34%) 49 (62.82%) 122 (51.05%)
Capsular (K) serotype
K64 44 (27.33%) 9 (11.54%) 53 (22.18%)
K1 12 (7.45%) 15 (19.23%) 27 (11.30%)
K2 18 (11.18%) 9 (11.54%) 27 (11.30%)
K47 12 (7.45%) 2 (2.56%) 14 (5.86%)
K54 7 (4.35%) 4 (5.13%) 11 (4.60%)
Other Ks 68 (42.24%) 39 (50.00%) 107 (44.77%)
Lipopolysaccharide (O) serotype
O1v2 45 (27.95%) 31 (39.74%) 76 (31.80%)
O2v1 44 (27.33%) 9 (11.54%) 53 (22.18%)
O1v1 25 (15.53%) 18 (23.08%) 43 (17.99%)
O2v2 12 (7.45%) 6 (7.69%) 18 (7.53%)
OL101 13 (8.07%) 4 (5.13%) 17 (7.11%)
Other Os 22 (13.66%) 10 (12.82%) 32 (13.39%)

(82/239, 34.31%)-encoding genes, peg344 (113/239, 47.28%),
rmpA (113/239, 47.28%) and rmpA2 (98/238, 41%), which
have been suggested to be the most predictive for
hypervirulence,7 were detected in >30% BSI-Kpns. They
were more prevalent in ST23/ST65/K1/K2 (100% in
ST23/ST65; 96.3% in K1/K2 except for rmpA2). ST23-
K1/ST65-K2 contained almost all types of virulence genes,

while ST11-K64/ST11-K47 strains had fewer (Table S10;
Figure S7A,B). The yersiniabactin locus was present in
60.25% (144/239) of BSI-Kpns, and its prevalence did
not differ significantly among different STs/serotypes.
Although allantoinase, colibactin and microcin genes
were present in <30% of strains, they were more prevalent
in ST23/K1 (p-value < 0.001). Kvg genes, carried by 13.81%
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F IGURE 1 Study design, geographic distribution and phylogenetic analysis of bloodstream infection (BSI) K. pneumoniae isolates
included in this study. (A) Study design and working flow for this systematic epidemiological study. (B) Collection sites for all K. pneumoniae
isolates coloured by chromosomal multilocus sequence types (STs) as in the pie chart. (C) Minimum spanning tree of STs as determined by
multilocus sequence typing coloured by K-loci. The size of the nodes reflects the number of isolates contained within that particular clade. (D)
Phylogenetic tree of core gene SNPs. STs, K-loci, O-types, and different locations are marked with different colours from inside to outside

(33/239) of isolates, were more likely to be enriched in
ST65/K2 (p-value < 0.001) (Table S10; Figure S7A,B). Most
virulence genes of the same type appeared together in
clusters, such as the aerobactin-encoding genes iucABCD
(Figure S7C). Virulence potential tested by the Galleria
mellonella infection model showed that 110 out of 129
strains carrying the predictive hypervirulence genes
and showed a high virulence potential. There was no
significant difference between carbapenem-sensitive
and carbapenem-resistant strains carrying the predictive
hypervirulence genes in virulence potential (Figure S8).

Through the above genotype analysis, four types of BSI-
Kpns possessing different incidence rates and ST/serotype
characteristics were identified: carbapenem-sensitive clas-
sical Kpns (organisms carrying no hypervirulence predic-
tive genes7) (CS-cKPs, 78/239, 32.64%) had 49 STs and
38 serotypes; carbapenem-resistant classical Kpns (CR-
cKPs, 32/239, 13.39%) were dominated by ST11/K64 and
ST11/K47; carbapenem-sensitive hypervirulent Kpns (CS-
HvKPs, 89/239, 37.24%) covered 29 STs and were dom-
inated by ST23/K1 and ST65/K2; carbapenem-resistant
hypervirulent Kpns (CR-HvKPs, 40/239, 16.74%) were
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F IGURE 2 Distribution of virulence genes and antimicrobial resistance genes. Evolutionary relationships, virulence genes and
antimicrobial resistance genes are shown from left to right, respectively. The strains not only contained carbapenemases genes (marked in
red) but also the hypervirulence genes (marked in red) are highlighted in orange, and their STs and serotypes were also marked

dominated by ST11/K64 (36/40, 90%), and no ST23-K1
or ST65-K2 CR-HvKPs were discovered (Figure 2, Fig-
ure S9, Table S11). Detail clinical data were further
collated and compared among these four groups (Fig-
ure 3). There was a higher ratio of HvKPs in CO iso-
lates (41/67, 61.2%) (Figure 3A,B), and there were no sig-
nificant differences in the fever peak or procalcitonin
among these four groups (Figure 3C,H). However, the val-
ues of C-reactive protein (CRP), neutrophil percent (NEU)
and total white blood cells in CR/CS-HvKPs, especially
CRP, were significantly higher than those in CR/CS-cKPs
(Figure 3E–G). The average CRP in CR-HvKPs reached
140.92 mg/L. Fever duration, intensive care unit (ICU)
admission and final prognosis were significantly related
to CR-c/HvKP (Figure 3D,I,J). Further correlation analy-
sis between antimicrobial-resistance/virulence genes and
clinical symptoms (Figure S10) indicated that antimicro-
bial resistance genes, especially blaKPC-2 and quinolone
resistance mutations, had a significantly positive corre-
lation with ICU admission and final prognosis but a
significantly negative correlation with the BSI type of
CO (Figure S10A,C). In contrast, virulence genes, espe-
cially rmpA, rmpA2, aerobactin (iucABCD) and peg344,

were negatively related to the ratio of ICU admission
but had a significantly positive correlation with CRP. Vir-
ulence genes microcin (mceABCDEIJ) and allantoinase
(allABCDRS) had a significantly positive correlation with
CO but were negatively related to the ratio of ICU
admission. The yersiniabactin genes (ybtAEPQSTUX) had
a significantly positive correlation with fever duration
(Figure S10B,D).
In conclusion, BSI-Kpns from China showed a high

prevalence of CRKP, HvKP and CR-HvKP, and differ-
ent types of strains possessed different STs/serotypes and
prevalence features. Patients infected with different types
of isolates also showed different clinical symptoms. ST11-
K64 CR-HvKPs might be a general trend, and other types
of CR-HvKPs have also begun to appear sporadically. Our
results provide a complete genomic epidemiological pic-
ture and reveal the correlations between clinical charac-
teristics and the genotypes of BSI-Kpns.
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F IGURE 3 Differences in clinical symptoms and outcomes among patients infected with different types of isolates. (A and B)
bloodstream infection (BSI) type, (C) fever peak, (D) fever duration, (E–H) CRP, NEU, PCT, and WBC distribution, (I) ICU admission, and (J)
final prognosis. Abbreviations: WBC, total white blood cells; NEU, neutrophil percent; CRP, C-reactive protein; PCT, procalcitonin; CO,
community onset; ICU, intensive care unit. **p-value < 0.01; *p-value < 0.05
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