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Abstract

With the development of regenerative medicine, a variety of mesenchymal stem cells (MSCs) are increasingly
considered for the treatment of premature ovarian failure (POF). Reportedly, bone marrow-derived MSCs (BMSCs)
improve the ovarian reserve, which mainly depends on homing and paracrine activities. Furthermore, paracrine
factors secreted by these stem cells play an important role in ovarian recovery. Relevant studies indicate that BMSC
transplantation has some positive effects on the treatment of POF in animals, but BMSCs are not widely applied in
clinical therapy. Clinical trials are ongoing despite the fact that several patients experiencing BMSC transplantation
recover their normal menstrual cycles and even give birth to babies. In this review, we discuss the possible
therapeutic mechanisms of BMSCs for POF, migration, antiapoptosis, antifibrosis, angiogenesis, anti-inflammation,
immunoregulation, and oxidative stress, which provide the theoretical basis for further study and clinical therapy.
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Background
Due to the effects of various factors, especially the wide use
of chemotherapy, there is an increasing trend for women
suffering from premature ovarian failure (POF), leading to
their infertility which is seriously upsetting for the patient.
POF is a common gynecological endocrine disease that oc-
curs in women under the age of 40 years and is character-
ized by amenorrhea, hypergonadotropinemia, and estrogen
deficiency, affecting 0.9–1.2% of women [1] . The etiology
of POF is unknown, but it is classified as genetic, auto-
immune, and iatrogenic, and can present as idiopathic [2].
Estrogen supplementation remains the main treatment,
which improves the symptoms of osteoporosis caused by
the low estrogen levels to some extent [3]. However, thus
far, there is no cure for POF. Of course, estrogen supple-
mentation also increases the risk of cancer, such as mam-
mary cancers and endometrium carcinoma. Recently, with
the emergence of regenerative medicine, many studies
using stem cell therapy for POF have been conducted.

Given their pluripotency and low immunogenicity, bone
marrow-derived mesenchymal stem cells (BMSCs) are be-
lieved to have therapeutic potential for POF. BMSCs play
an important role in restoring injured ovaries in POF in-
duced by cisplatin in rats [4]. Moreover, BMSCs also restore
ovarian hormone production and reactivate folliculogenesis
in a mouse model of POF caused by chemotherapy [5].
Other research suggests that BMSCs reduce granulosa cell
apoptosis induced by cisplatin and perimenopause [6].
These studies show that BMSCs are effective in the treat-
ment of POF models. Autologous BMSCs were applied for
the clinical treatment of patients with idiopathic POF, and
the results showed that two cases (20%) recovered menstru-
ation at 3 months after transplantation and one of them
(10%) became pregnant and delivered a healthy baby [7] .
Another study showed that estrogen and anti-mullerian
hormone (AMH) levels were rising in 86.7% of patients
1 month after autologous BMSC transplantation, and this
change continued throughout the 48-week follow-up
period. In addition, 18 patients (60%) started to ovulate,
with ovum sizes ranging from 12 to 20 mm, which indi-
cated that the autologous BMSCs may improve the condi-
tions in patients with POF [8]. The therapeutic effects of
autologous BMSCs in patients with POF are summarized
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in Table 1. There is no wide application of clinical therapy
for patients with POF due to some of the limitations of
BMSC transplantation and, thus, their clinical availability
still requires further study.

The present situation in POF
Women suffering from POF are severely affected both
physically and mentally, and must face infertility, amenor-
rhea, osteoporosis, some cardiovascular diseases, and more.
POF is mainly associated with low numbers of antral follicle
and granulosa cell activities, which results in low estrogen
levels in the serum. Presently, POF is mainly improved by
hormone replacement therapy, which has some side effects.
Therefore, clinicians are looking for new therapies for POF,
and BMSC transplantation is a promising treatment.

Characteristics of BMSCs
BMSCs are a type of adult stem cell with a low immuno-
genicity. They are widely present in the bone marrow
microenvironment and have the potential for renewing
themselves and differentiating into many different tissue
cells, such as bone, cartilage, adipocytes, and so on under
certain conditions [9]. Furthermore, BMSCs are easy to
isolate and amplify in vitro and, due to their paracrine and
immunomodulation functions, they migrate to the site of
injured tissue and also differentiate into specific cell types
in the tissue under the induction of certain factors to re-
construct the local microenvironment. By enhancing the
function of endogenous cells and regulating the immune
response, they are involved in the repair of tissue damage,
which makes BMSCs an ideal seed cell for transplantation.
Despite the low survival rate and limited differentiation
potential after BMSC transplantation, some encouraging
results have been obtained. Autologous stem cell trans-
plantation for the clinical treatment of POF is a great step
[7, 8]. BMSCs improve the ovarian reserve of POF, and
this is associated with the following aspects. BMSCs are
induced by cytokines and migrate to the damaged tissue
but do not differentiate into oocytes, according to the
present study [10]. They secret certain cytokines that are
helpful for antiapoptosis and antifibrosis, including vascu-
lar endothelial growth factor (VEGF), insulin-like growth
factor (IGF), and hepatocyte growth factor (HGF), to help
ovarian restoration. They also protect ovarian function by
inhibiting the inflammatory response and decreasing oxi-
dative stress. They regulate the immune system through

certain cytokines, such as interleukin (IL)-6. These pos-
sible mechanisms are summarized in Fig. 1.

Migration and homing of BMSCs
Simply put, the homing of stem cells means that they can
directly and impulsively migrate to the injured tissue and
survive there under the stimulation of multiple factors,
which facilitates ovarian recovery. Liu et al. demonstrated
that BMSCs home to the ovaries via the blood circulation
to restore ovarian structure and function in POF model
rats, and they found that the BMSCs mainly exist in the
ovarian hilum and medulla and also in the cortex, but
were not in the follicles or corpus lutea [4]. Another study
also suggests that BMSCs localize and survive in the
injured ovary after transplantation, thus promoting the
ovarian recovery of histological structure and endocrine
function [11]. Chemokine and growth factor receptors,
such as the receptors for IL-8 (CXCL8) and HGF, lo-
cated on the surface of BMSCs are involved in the mi-
gration and homing of BMSCs [12, 13]. MicroRNA-21
(miR-21) facilitates BMSC migration by upregulating
matrix metalloproteinase (MMP)-2/MMP-9, potentially
via the phosphatidylinositol-3-OH-kinase/protein kin-
ase B (PI3K/Akt) pathway in vitro [14]. Another study
found that stem cells migrate into the ovary and differ-
entiate into a variety of cells, including theca cells,
granulosa cells, corona radiata cells, and vascular endo-
thelial cells, thus revealing that BMSCs might contrib-
ute to ovarian regeneration by enhancing angiogenesis
and steroidogenesis [10] which is extremely controver-
sial for differentiation. However, whether BMSCs dif-
ferentiate into oocytes after migrating to injured tissue
is still not known. It is widely accepted that the para-
crine effect of BMSCs is the key rather than differenti-
ation. Further studies are needed to explore whether
BMSCs differentiate into ovarian cells, which would
also be valuable for BMSC transplantation applied as a
clinical therapy.

Paracrine effects of BMSCs and conditioned
medium
BMSCs secret chemokines, growth factors, hormones, and
so on, to influence adjacent cells (the paracrine effect).
Paracrine signaling is important in angiogenesis, anti-
inflammation, immunoregulation, antiapoptosis, and antifi-
brosis, thus improving the microenvironment to promote
the recovery of the damaged tissue. Kinnaird et al. suggested

Table 1 The therapeutic effects of autologous BMSCs on patients with premature ovarian failure [8]

Transplantation method Isolated volume,
ml

Transplantation numbers
(million)

Patients,
n

Hormone improvement,
n (%)

Menstruation,
n (%)

Spontaneous pregnancy,
n (%)

Laparoscopy catheter 60 3–5 30 26 (86.7) Unclear 1 (3.3)

Laparoscopy 10 Unclear 10 Unclear 2 (20) 1 (10)

Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the iliac crest of the patients and were transplanted into the ovary by laparoscopy
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that BMSCs express genes relative to arteriogenic cyto-
kines, such as VEGF, fibroblast growth factor-2 (FGF-2),
and IL-6, and promote arteriogenesis by paracrine mecha-
nisms in vitro and in vivo [15].
Given the paracrine effect of BMSCs, a study also used

the conditioned medium from BMSCs, instead of BMSCs
themselves, to examine the therapeutic effect on the dam-
aged ovary, and the results showed that conditioned
medium had a similar effect on the injured ovary [16],
thus suggesting that perhaps conditioned medium from
BMSCs in vitro, induced by the same factors in vivo, could
also be therapeutic for the disease. Consequently, condi-
tioned medium may be an effective therapy applied in the
clinic, and even that artificial cytokines could be a reality
someday. However, there is still a need for relevant studies
on the effect of conditioned medium for POF.

Antiapoptotic effects of BMSCs
Some studies show that BMSCs inhibit the apoptosis of
granulosa cells in an animal model of POF [6], which is
mainly associated with the antiapoptosis growth factors se-
creted by BMSCs. Fu et al. detected certain cytokines, in-
cluding VEGF, HGF, and IGF-1, in the BMSC cultures and
found that BMSCs inhibited the apoptosis of granulosa cells
and upregulated B-cell lymphoma-2 (Bcl-2) in vivo [17].
Another study revealed the protective effect of VEGF in
frozen-thawed granulosa cells by inhibiting apoptosis [18].
Uzumcu et al. found that HGF had an antiapoptotic effect
on granulosa cells in vitro [19]. IGF-1 promotes granulosa

cell proliferation to increase steroid hormone secretion, and
aromatase (Cyp19) stimulation by follicle-stimulating hor-
mone (FSH) in ovarian granulosa cells depends on the acti-
vation of the IGF-1 receptor-signaling pathway [20]. There
is a study showing that BMSCs reverse the increased
cyclin-dependent kinase inhibitor 1A (p21) and Bcl-2-
associated X protein (bax), and decreased proto-oncogene
(c-myc) mRNA expression managed by cisplatin in granu-
losa cells [6]. It is these growth factors that probably play
an important role in the antiapoptosis of granulosa cells by
downregulating p21 and bax and upregulating c-myc.
miR-21 is a microRNA that is associated with apoptotic
regulation and, thus, overexpression of miR-21 in BMSCs
inhibit granulosa cell apoptosis in POF by targeting phos-
phatase and tensin homolog deleted on chromosome ten
(PTEN) and programmed cell death 4 (PDCD4) [21]. The
antiapoptotic effect is also associated with transforming
growth factor (TGF), basic fibroblast growth factor (bFGF),
and granulocyte macrophage colony-stimulating factor
(GMCSF) [22].

Antifibrotic effects of BMSCs
Fibroblasts proliferate excessively and deposit extracellular
matrix in the ovary and, beyond a certain range, this can
form ovarian fibrosis which is related to POF. Researchers
observed ovarian atrophy and fibrosis in the morphology in
animal models of POF, with exhausted functional follicles
[23, 24]. Surprisingly, the collagen fiber content was obvi-
ously reduced after BMSC transplantation [24]. Ovarian

Fig. 1 The possible mechanisms of bone marrow-derived mesenchymal stem cells (BMSCs). The migration of BMSCs is associated with CXCL8
and HGF. HGF, VEGF, IGF-1, TGF, bFGF, and GMCSF, secreted by BMSCs, contribute to inhibiting apoptosis. VEGF and HGF play an important role
in angiogenesis. The mechanism of antioxidation is still unknown. ADM adrenomedullin, bFGF basic fibroblast growth factor, CXCL8 C-X-C
chemokine ligand-8, GMCSF granulocyte macrophage colony-stimulating factor, HGF hepatocyte growth factor, HLAG5 human leukocyte antigen G5, IDO
indoleamine 2,3-dioxygenase, IGF1 insulin-like growth factor-1, IL interleukin, iNOS inducible nitric oxide synthase, MCP1 monocyte chemoattractant
protein 1, PGE2 prostaglandin E2, TGF transforming growth factor, TNF tumor necrosis factor, Treg regulatory T, VEGF vascular endothelial growth factor
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fibrogenesis is associated with certain cytokines, including
MMPs, tissue inhibitors of MMPs (TIMPs), TGF-β1, VEGF,
and endothelin-1 (ET-1) [25]. The antifibrotic effect is asso-
ciated with HGF, bFGF, and adrenomedullin (ADM) [22].
BMSCs inhibit the proliferation of fibroblasts and de-

crease the deposition of some extracellular matrix, thereby
improving ovarian fibrosis. However, the antifibrotic
molecular mechanism of BMSCs needs further study.

Angiogenesis
Angiogenesis is also of importance in ovarian recovery; this
provides nutrition for the injured ovary. Factors, such as
VEGF, secreted by the BMSCs are associated with angio-
genesis. Research reports that some factors managed by
BMSCs are increased, including VEGF and FGF2 and espe-
cially angiogenin, which increases dramatically, thus stimu-
lating neovascularization and facilitating blood perfusion of
the grafts after cryopreserved ovarian cortex transplan-
tation [26]. It is reported that BMSCs promote angioge-
nesis via the α6β1 integrin receptor [27]. A study shows
that BMSCs differentiate into endotheliocytes and pericytes
for angiogenesis after they are injected into uterine scar
tissue in the rat [28]. Coculturing endothelial progenitor
cells and BMSCs enhances their proliferation and angio-
genesis through platelet-derived growth factor (PDGF) and
translocation-associated (Notch) signaling [29]. In addition,
BMSC-derived angiogenin has a positive effect on regulat-
ing angiogenesis in grafted human ovarian tissue [30]. An-
other study reports that BMSC transplantation, combined
with the HGF gene, may have an obvious effect on angio-
genesis compared with BMSC transplantation alone [31].
LIM-domain only 2 (LMO2), a key transcription factor for
angiogenesis, plays an important role in angiogenesis via
TGF-β1 and HGF [32]. HGF upregulation enhances angio-
genesis in mice [33]. VEGF and HGF synergistically pro-
mote angiogenesis after islet transplantation [34]. VEGF
promotes the length, area, and branch point number of the
induced vessels, while HGF contributes to the vascular area
growth. Moreover, the combination of VEGF and HGF
leads to an increased vascular diameter [35]. MMPs serve a
purpose in regulating capillary diameter and possibly in
stabilizing the nascent vessels. BMSCs contribute to angio-
genesis associated with membrane type 1 (MT1)-MMP
[36]. Angiogenesis is involved in IGF and monocyte
chemoattractant protein 1 (MCP1) [22].

Anti-inflammatory effects and immunoregulatory
effects of BMSCs
Anti-inflammation and immunoregulation may be other
mechanisms by which BMSCs improve the injured ovary.
Research reveals that cryopreserved BMSCs via intraven-
ous administration help in experimental pelvic inflamma-
tory fertility recovery [37]. Yin et al. revealed that ovarian
function in POF mice was recovered by the regulation of

regulatory T (Treg) cells and associated cytokines after
human placenta-derived mesenchymal stem cell (hPMSC)
transplantation [38]. It is reported that ovarian restoration
in mice with POF is involved in Th17/Tc17 and Th17/
Treg cell ratios through the PI3K/Akt signaling pathway,
which shows that hPMSCs regulate the immune system
[23]. Similarly, human amniotic epithelial cells are more
likely to participate in anti-inflammation and immunoreg-
ulation, as a previous study shows that human amniotic
epithelial cell transplantation improves ovarian function in
POF via anti-inflammation and antiapoptosis, which is
mediated by tumor necrosis factor (TNF)-α [39]. Whether,
and how, BMSCs play a key role in the anti-inflammation
and immunoregulation in a model of POF is still unclear.
However, BMSCs play an important role in anti-
inflammation and immunoregulation for other diseases,
such as heart failure [40], sepsis [41], and allergic rhinitis
[42]. A study suggests that BMSC paracrine activity has an
anti-inflammatory effect and an antiapoptotic effect on
intervertebral disc degeneration (IDD) and that this is me-
diated, at least in part, via the relative nuclear factor-κB
(NF-κB) and mitochondrial apoptotic pathways in annulus
fibrosus (AF) cells [43]. A study reports that BMSCs at-
tenuate IL-1 by a paracrine mechanism to inhibit inflam-
mation. The proinflammatory cytokine interferon (IFN)-γ
shows a synergistic effect with BMSCs on immunosup-
pression, possibly by upregulating prostaglandin E2
(PGE2), HGF, and TGF-β1 in BMSCs and inducing BMSC
expression of indoleamine 2,3-dioxygenase (IDO), which
is involved in tryptophan catabolism [44].
Allogeneic transplantation of BMSCs is possible because

of their low immunogenicity. BMSCs express low levels of
major histocompatibility complex (MHC) class I molecules,
and do not express MHC class II molecules which contrib-
utes to immune exemption or immune tolerance via sup-
pressing T-cell proliferation [45]. It is reported that BMSCs
have immunomodulatory effects on all types of immune
cells in vitro [46, 47] and in vivo [48]. This mainly depends
on the regulation of immune cells directly [49] or the bal-
ance between anti-inflammation and proinflammation by
paracrine cytokines [50]; on one hand, BMSCs inhibit the
function of various immune cells resulting in immune tol-
erance and, on the other hand, they can not only secret
anti-inflammatory factors but they also suppress proinflam-
matory substances, thus restraining further aggravation of
the “inflammatory cascade reaction” from the source. For
example, BMSCs reprogram macrophages by secreting
PGE2 to increase their IL-10 production [41]. BMSCs in-
hibit differentiation and maturation of dendritic cells by
miRNA-23b [51]. BMSCs change the macrophage pheno-
type and inhibit local inflammation via TNF-receptor
(TNF-R)2 [52]. The immunoregulatory effect is associated
with HGF and TGFβ [53]. In conclusion, BMSCs may also
have an important effect on anti-inflammation and
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immunoregulation in POF. However, the mechanism needs
to be further studied.

Oxidative stress effects of BMSCs
The disorder between free radicals and oxidative radicals,
known as oxidative stress, is believed to be a potential eti-
ology of POF [54–56]. Xiang et al. found that hPMSCs
promote the recovery of ovarian function by reducing
superoxide dismutase (SOD) [57]. From this, we can
speculate whether BMSCs influence oxidative stress to re-
store ovarian function. Presently, that fact that BMSCs
regulate oxidative stress to promote ovarian function in
POF has not been reported, but BMSCs do have an effect
on oxidative stress in other diseases, such as colitis [58].

Problems and prospects
The transplantation of BMSCs is bringing hope for patients
with POF, especially autologous BMSCs since they are not
only easily obtained but also avoid graft rejection after
transplantation. However, some problems still need to be
resolved. Autologous BMSC transplantation may have a
positive effect on patients with POF with no hematonosis.
However, allogeneic BMSC transplantation can cause
women with POF have to suffer graft rejection and, more
seriously, they may have to endure sequelae. Clinical re-
search demonstrates that autologous BMSC transplantation
has a better therapeutic ratio (25%) than allogeneic trans-
plantation (7%), and approximately 25% of women are
more likely to face chronic gynecological graft-versus-host
disease [59]. Consequently, an accurate pretreatment
evaluation and frequent monitoring during treatment are
required. Moreover, the counts of BMSCs and the trans-
plantation approaches have not been optimized.

Conclusion
Given their low immunogenicity, and the fact that they
can be obtained easily and amplified in large quantities in
vitro, BMSCs are a good candidate for transplantation in
POF. Moreover, BMSCs migrate to the injured ovary and
secret crucial cytokines that are helpful for antiapoptosis,
antifibrosis, anti-inflammation, and immunoregulation
which improves ovarian function. Despite the obvious
effects in animal models of POF, there are some clinical
problems. The therapeutic ratio of BMSC transplantation
in clinical trials is not high enough to ensure that most pa-
tients with POF will recover their ovarian reserve. The
molecular mechanisms of antioxidant, anti-inflammation,
and immunoregulation are still to be uncovered. Further-
more, in clinical trials, the counts of BMSCs and the trans-
plantation approaches need to be optimized so that BMSC
transplantation has a higher therapeutic ratio in the clinic.
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