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Infrared ship detection is of great significance due to its broad applicability in maritime 
surveillance, traffic safety and security. Multiple infrared sensors with different spectral sensitivity 
provide enhanced sensing capabilities, facilitating ship detection in complex environments. 
Nevertheless, current researches lack discussion and exploration of infrared imagers in different 
spectral ranges for marine objects detection. Furthermore, for unmanned marine vehicles (UMVs), 
e.g., unmanned surface vehicles (USVs) and unmanned ship (USs), detection and perception 
are usually performed in embedded devices with limited memory and computation resource, 
which makes traditional convolutional neural network (CNN)-based detection methods struggle 
to leverage their advantages. Aimed at the task of sea surface object detection on USVs, this paper 
provides lightweight CNNs with high inference speed that can be deployed on embedded devices. 
It also discusses the advantages and disadvantages of using different sensors in marine object 
detection, providing a reference for the perception and decision-making modules of USVs. The 
proposed method can detect ships in short-wave infrared (SWIR), long-wave infrared (LWIR) 
and fused images with high-performance and high-inference speed on an embedded device. 
Specifically, the backbone is built from bottleneck depth-separable convolution with residuals. 
Generating redundant feature maps by using cheap linear operation in neck and head networks. 
The learning and representation capacities of the network are promoted by introducing the 
channel and spatial attention, redesigning the sizes of anchor boxes. Comparative experiments 
are conducted on the infrared ship dataset that we have released which contains SWIR, LWIR 
and the fused images. The results indicate that the proposed method can achieve high accuracy 
but with fewer parameters, and the inference speed is nearly 60 frames per second (FPS) on an 
embedded device.

1. Introduction

Global shipping currently exceeds 80 percent of world merchandise trade [1]. Monitoring maritime ships timely and effectively 
is important to guarantee the safety of maritime transportation, trade, fishery and scientific investigation. LWIR imaging has been 
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Fig. 1. Infrared images of different spectral bands captured in a same marine scenario. (a) SWIR image, (b) LWIR image, (c) fused image of SWIR and LWIR.

widely used in ship detection, it has significant advantages in night vision. SWIR imagers are complementary to LWIR imagers when 
it comes to vision enhancement and low visibility in poor weather conditions [2]. Imagery in the SWIR is similar to visible imagery, 
in that it senses reflected light, thus interpretation and scene analysis is improved over LWIR systems which have good detection 
abilities [2]. The combination of LWIR and SWIR imaging is better adjusted to the complex marine environment and facilitates ship 
detection. Fig. 1 presents ship infrared images captured by different infrared sensors in the same marine scenario. Fig. 1(a), Fig. 1(b), 
Fig. 1(c) are SWIR, LWIR and their fused images, respectively.

Unmanned vehicles have become more widely used in marine science, ocean engineering recently due to their ease of deployment, 
mobility and low cost [3]. For object detection tasks with unmanned marine platforms, e.g., USVs and USs, the platforms carried 
embedded devices with insufficient computing power and traditional convolutional neural network (CNN)-based methods hardly 
deployed.

Recently, a multitude of ship detection methods for infrared and visible images have been put forwarded by researchers. For 
infrared ship detection, the common methods are based on segmentation, such as Yang [4] proposing a probability induced intu-

itionistic FCM clustering algorithm for infrared ship segmentation. Bai [5] developed an improved fuzzy C-means (FCM) method 
based on the spatial information for IR ship target segmentation. Liu [6] designed a global background subtraction filter (GBSF) 
and an adaptive row mean subtraction filter (ARMSF) to suppress the background and enhance the target, and then segmented ship 
target using threshold and ship’s geometric prior information. Mumtaz [7] presented a saliency-based ship detection method, at first 
it computes the saliency map of the input image using the Graph-Based Visual Saliency (GBVS) algorithm, then uses fuzzy C-means 
(FCM) to obtain fine ship regions. In addition, detection methods based on hand-crafted features have been extensively studied, 
Li [8] proposed a method for infrared ship detection using time fluctuation feature and space structure feature, the experiments 
were conducted on a computer. Li [9] incorporated morphological reconstruction and multi-feature analysis into infrared ship de-

tection to improve the performance. Zhang [10] presented a ship detection method with visible images including horizon detection, 
background modeling and background subtraction, all of which are on Discrete Cosine Transform (DCT).

CNN-based methods have been successfully exploited to automatically and intelligently detect ships due to its powerful feature 
extraction and generalization ability of data. Liu [11] developed an enhanced CNN to improve ship detection under different weather 
conditions. Kim [12] proposed a probabilistic ship detection and classification system based on deep learning. Chen [13] proposed 
a deep learning based ship type recognition framework. Nie [14] adopted the synthetically-degraded images to enlarge the training 
datasets, and proposed an advanced YOLOv3 model to detect ships. Liu [15] proposed a global guided lightweight non-local depth 
feature (DG-Light-NLDF) model for detect infrared maritime salient objects. Deep learning combined with hand-crafted features 
further improves the robustness of detection, Shao [16] proposed a saliency-aware CNN framework for ship detection, comprising 
comprehensive ship discriminative features, such as deep feature, saliency map, and coastline prior. Song [17] presented an improved 
dim and small infrared ship detection network based on Haar wavelet. Chen [18] proposed a novel approach for achieving a pixel-

wise ship segmentation and identification task through a novel design of U-Net deep learning architecture (denoted as EU-Net). The 
method has been validated on visible images and experimental results show that the ship segmentation accuracies were larger than 
99 percent.

To summarize, current researches focused on ship detection in LWIR and visible images. Whereas the degradation of visible 
images caused by low-light and harsh conditions, and the lack of texture and structure data in LWIR images, are not conducive to 
ship detection. SWIR imagers penetrate fog, haze much better than detectors sensitive in visible spectral range and can provide wide 
dynamic imaging [2]. SWIR can enhance the perception and scene interpretation capabilities of LWIR imaging systems.

In addition, due to the limited hardware resource, unmanned marine vehicles have weak computational processing ability, which 
makes current methods difficult to deploy on embedded devices or difficult to play their capabilities.

Considering these issues, this paper proposed a lightweight CNN for ship detection with multiple infrared images including 
SWIR, LWIR and fused images. This method has high detection accuracy and fast inference speed on an embedded device, but with 
few parameters and low computation cost, making it suitable to be deployed on unmanned marine vehicles with limited hardware 
resources. In conclusion, given the current achievements, our method significantly differs from previous studies in the following 
aspects.

(1) We propose a lightweight CNN for multi-source infrared ship detection that is easy to deploy in embedded devices. It performs 
ship detection with LWIR, SWIR and fused images, has fast inference speed and high detection accuracy for applications in open-sea 
2

visual maritime surveillance, autonomous ships and navigation.
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Fig. 2. Flowchart of the proposed method in this study. The proposed ship detection method is deployed on an embedded device and verified on SWIR, LWIR and 
fused image datasets.

(2) The proposed method employs bottleneck depth-separable convolution with residuals to build backbone and generates redun-

dant feature maps at the head and neck networks with cheap linear operations, thus making it efficient and lightweight. Spatial and 
channel attention is introduced and anchor box sizes are redesigned to promote the performance and feature extraction capabilities 
of the network for infrared images.

(3) To our best knowledge, this paper is the first one to explore the application of multi-source infrared images in ship detection, 
including SWIR, LWIR, and their fused images, which provides a reference for maritime situational awareness in complicated en-

vironments. We conducted comparative experiments on the infrared ship dataset that we released, and the results demonstrate the 
superior performance of our proposed method.

The remainder of this article is organized as follows. Section 2 introduces the architecture of proposed method in detail. Section 3

presents the experimental results. The conclusion is presented in Section 4.

2. Methodology

2.1. Overview of the framework

The flowchart of the proposed IR ship detection method is shown in Fig. 2. The network architecture is lightweight in design 
and has enhanced feature extraction capabilities. Unmanned marine vehicles have limited hardware resources and typically carry 
embedded devices with limited computational capability. Hence, the proposed model is deployed on an embedded device to verify 
its computational efficiency. Comparative experiments were carried out on our released infrared ship dataset which contains SWIR, 
LWIR, and their fused images to verify its accuracy in ship detection under harsh marine environments. The network architecture 
3

is based on YOLOv3 [19], which considers the balance between accuracy and speed. To reduce the parameters of network and ease 
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Fig. 3. Attention module enhances the extraction and refinement of features, so that the network focuses on meaningful information and important locations in 
infrared images.

deployment in embedded devices, the backbone is built using bottleneck depth-separable convolution with residuals. The head and 
neck network use cheap linear operations to generate redundant feature maps. We introduced spatial and channel attention and 
redesigned the sizes of anchor boxes to promote feature extraction capabilities of the network for infrared images.

2.2. Attention module

The visually-degraded infrared images under in severe marine environments make it difficult to distinguish ship targets from 
background. Additionally, CNNs can effectively extract high-level feature maps 𝑓𝑑 (𝑑 = 1, ..., 𝐷) from raw infrared images, where 𝐷
is the dimension of feature maps, 𝑑 is the d-th feature map. However, not all high-level features contribute to the discrimination 
of dissimilarity [20]. To enhance the representation power and discrimination ability of CNNs in infrared images, we introduce 
attention modules [21] to make the model more effectively utilize features in different dimensions. The attention module is shown 
in Fig. 3.

In infrared images, attention helps to focus on important features and suppress unnecessary ones. The convolution block attention 
module (CBAM) integrates channel and spatial attention [21], where channel attention focuses across channels of features to tell 
‘what’ is important in images [22], spatial attention focuses ‘where’ is an informative region in images [23].

Channel attention module is detailed in Eq (1), it focuses on ‘what’ is meaningful in input images. The importance of each channel 
is encoded in channel attention maps. Spatial information of feature maps is squeezed by using average-pooling (𝐴𝑣𝑔𝑃𝑜𝑜𝑙) and max-

pooling (𝑀𝑎𝑥𝑃𝑜𝑜𝑙) operations along spatial axis. The average-pooled features and max-pooled features are forwarded to a shared 
multi-layer perception (𝑀𝐿𝑃 ). The output feature vectors are merged using element-wise summation, and then a channel attention 
map is generated by sigmoid function 𝜎.

M𝑐(𝑓 ) = 𝜎(𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑓 )) +𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓 ))) (1)

Spatial attention module is computed as Eq (2). The importance of informative regions in feature maps is encoded in spatial 
4

attention maps. It applies average-pooling and max-pooling operations along to the channel axis. Average-pooled features and max-



Heliyon 10 (2024) e26229L. Wang, Y. Dong, C. Fei et al.

Fig. 4. The structure of Bottleneck block.

Table 1

Architecture of lightweight backbone. 𝑡
is expansion factor; 𝑐 is the number of 
output channels; 𝑛 is repeated times of 
block; 𝑠 is stride.

Operator t c n s

conv2d_3×3 - 32 1 2

bottleneck 1 16 1 1

bottleneck 6 24 2 2

bottleneck 6 32 2 2

attention - 32 1 -

bottleneck 6 32 1 2

bottleneck 6 64 4 2

bottleneck 6 96 2 1

attention - 96 1 -

bottleneck 6 96 1 1

bottleneck 6 160 3 2

attention - 160 1 -

bottleneck 6 320 1 1

pooled features are concatenated and convoluted by a convolution operation (𝑘7×7) with the filter size of 7 × 7.𝜎 is the sigmoid 
function.

M𝑠(𝑓 ) = 𝜎(𝑘7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑓 );𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓 )])) (2)

2.3. Lightweight backbone with enhanced feature extraction

Backbone network is acting as the basic feature extractor for ship detection task, which generates feature maps from input images 
[24]. Deeper and densely connected backbones generally perform better. Nevertheless, considering the limited hardware resources 
and the degradation of infrared images in complicated marine scenarios, we developed a lightweight backbone with enhanced 
feature extraction, with architecture that was modified from MobileNetv2 [25] and that mainly consists of residual bottleneck 
[25] and attention modules in Section 2.2 as shown in Table 1. Bottleneck is lightweight and efficient for feature extraction. To 
enhance the representation power of the backbone, we introduce a lightweight attention module, with an overhead of parameters 
and computation that are negligible compared to other blocks.

The detailed structure of the bottleneck is shown as Fig. 4. Its structure is similar to residual connections [26], which helps 
improve the ability of a gradient to propagate across multiplier layers [25]. In the bottleneck, an efficient depthwise separable 
convolution [27] is used to reduce the amount of computation.

The standard convolution operation can be formulated as Eq (3), where * is the convolution operation, b is the bias term, 
𝑓 ∈ ℝℎ×𝑤×𝑐 is the input data, c is the number of input channels, h and w is the height and width of the input data. 𝑓 ′ ∈ ℎ′×𝑤′×𝑐′ is 
the output feature map with 𝑐′ channels, h’ and w’ are the height and width of the output feature map. Standard convolutions have 
the computational cost of Eq (4).
5

𝑓 ′ = 𝑓 ∗ 𝑘+ 𝑏 (3)
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Fig. 5. Multi-scale feature extraction with feature pyramid network (FPN) and lightweight detection head.

Fig. 6. (a) G-Neck and (b) G-Head with cost efficient feature extraction operation, can generate redundant features utilizing linear operations.

ℎ′ ⋅𝑤′ ⋅ 𝑐 ⋅ 𝑐′ ⋅ 𝑘 ⋅ 𝑘 (4)

In the bottleneck, depthwise separable convolution is an efficient convolution operation consisting of two steps. 1) Depthwise 
convolution uses a single convolution kernel for each channel of the input data, the computation cost is Eq (5). 2) The pointwise 
convolution applies a 1 × 1 convolution to number of the channels of the output feature map, its computation cost is Eq (6). So the 
total computation cost of depthwise separable convolution is Eq (7). We get a reduction in computation of Eq (8).

ℎ′ ⋅𝑤′ ⋅ 𝑐 ⋅ 𝑘 ⋅ 𝑘 (5)

ℎ′ ⋅𝑤′ ⋅ 𝑐 ⋅ 𝑐′ (6)

ℎ′ ⋅𝑤′ ⋅ 𝑐 ⋅
(
𝑘2 + 𝑐′

)
(7)

ℎ′⋅𝑤′⋅𝑐⋅
(
𝑘2+𝑐′

)

ℎ′⋅𝑤′⋅𝑐⋅𝑐′⋅𝑘⋅𝑘
= 1
𝑐′
+ 1
𝑘2

(8)

For the bottleneck, the size of the input feature map is ℎ ×𝑤, expansion factor is 𝑡, kernel size is 𝑘, 𝑐 input channels and 𝑐′ output 
channels. The total computation cost of bottleneck is Eq (9).

ℎ ⋅𝑤 ⋅ 𝑐 ⋅ 1 ⋅ 1 ⋅ 𝑡𝑐+
ℎ ⋅𝑤 ⋅ 𝑡𝑐 ⋅ 𝑘 ⋅ 𝑘 ⋅ 1+
ℎ ⋅𝑤 ⋅ 𝑐 ⋅ 1 ⋅ 1 ⋅ 𝑐′
= ℎ ⋅𝑤 ⋅ 𝑐 ⋅ 𝑡(𝑐 + 𝑘2 + 𝑐′)

(9)

2.4. Cost-efficient neck network and detection head

Ships have large variance in scale and aspect ratios. It is challenging to detect ships across large ranges of sizes at a single scale 
feature map. For deep convolution networks, features in shallow layers have high resolution with rich spatial information that is 
suitable to detect small targets [28], while features in deep layers have rich semantic information and large receptive fields, making 
them suitable for detecting large targets [28]. To accurately locate ships of different sizes in images, the neck network adopts feature 
pyramid network (FPN), as shown in Fig. 5, to capture features from different layers in backbone.

The detection head and neck network also adopt a lightweight and efficient architecture. The feature maps generated by deep 
neural networks exist many similar pairs, like a ghost of each other [29]. Redundancy in these feature maps often guarantees a 
comprehensive understanding of the input data, which is beneficial for accurate ships detection. Nevertheless, generating redundant 
6

feature maps consumes large computation resources. In this study, Ghost modules [29] are introduced in the neck network and 
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Table 2

Width and height of different anchor 
sizes.

Anchor Size Width Height

Anchor size 1

197.3 41.6

211.2 48.0

260.3 59.7

Anchor size 2

105.6 48.0

137.6 38.4

164.3 40.5

Anchor size 3

48.0 26.7

80.0 28.8

119.5 35.2

detection head, which can generate ghost feature maps with a cost-efficient operation. Specifically, the G-neck and G-head modules 
are designed to construct the neck network and detection head. The architecture of the G-neck is shown in Fig. 6 (a) and that of 
the G-head is shown in Fig. 6 (b). The Ghost block is used in G-neck and G-head instead of traditional convolutional operation to 
generate redundant feature maps with low computation.

Ghost block uses cheap linear operations to generate ghost features, as shown in Eq (10). 𝑓𝑖 is the intrinsic feature map, Φ𝑖,𝑗 is 
the linear operation for generating the 𝑗-th ghost feature map 𝑓 ′

𝑖𝑗
in an efficient way. The last Φ𝑖,𝑠 is the identity mapping, so the 

number of effective linear operations is 𝑠 − 1. With linear operations, one intrinsic feature can generate s(𝑠 ≥ 1) features.

𝑓 ′
𝑖𝑗
=Φ𝑖,𝑗 (𝑓𝑖), ∀𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑠, (10)

The intrinsic feature map is 𝑓𝑖 ∈ℝℎ′×𝑤′×𝑚, the output feature map is 𝑓 ′
𝑖𝑗
∈ℝℎ′×𝑤′×𝑛, with 𝑠 times of linear operation, 𝑚 intrinsic 

feature maps can generate 𝑛 feature maps, so 𝑛 =𝑚 ∗ 𝑠. Due to the effective linear operation is 𝑠 − 1, so we can get that 𝑚 ⋅ (𝑠 − 1) =
𝑛

𝑠
⋅ (𝑠 − 1). In linear operations, kernel size is 𝑑, and 𝑑 × 𝑑 is of similar size to 𝑘 × 𝑘. We get a reduction in computation of Eq (11).

ℎ′⋅𝑤′⋅𝑐⋅𝑘⋅𝑘⋅𝑛
𝑛

𝑠
⋅ℎ′⋅𝑤′⋅𝑐⋅𝑘⋅𝑘+(𝑠−1)⋅ 𝑛

𝑠
⋅ℎ′⋅𝑤′⋅𝑑⋅𝑑

= 𝑐⋅𝑘⋅𝑘
1
𝑠
𝑐⋅𝑘⋅𝑘+ 𝑠−1

𝑠
⋅𝑑⋅𝑑

≈ 𝑠⋅𝑐
𝑠+𝑐−1 ≈ 𝑠

(11)

2.5. Redesigning the sizes of anchor boxes

The size of the input image is 320 × 320. FPN generates three scaled feature maps with sizes of 10 × 10, 20 × 20, 40 × 40. Due 
to feature maps from different levels in a network have different receptive field, so they are respectively responsible for detecting 
ships with various sizes ships. We used the anchor box-based detection method, where the numbers and sizes of anchor boxes are 
predefined before network training, and each scaled feature map is matched with three anchor boxes. We use k-means clustering to 
generate 9 priors, mentioned in YOLO [19], which correspond to three different scaled ships. Fig. 7 illustrates prior values of anchor 
boxes obtained from clustering in SWIR, LWIR and fusion datasets. Table 2 shows the width and height of different anchor sizes.

3. Experimental results and analysis

Models are trained on a computer with an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz and Nvidia Tesla V100 GPU. The optimizer 
uses stochastic gradient descent (SGD) and the cosine learning rate decay strategy to train the network. The initial learning rate is 
0.01, momentum is 0.9, weight decay is 0.0005. The network was trained for 250 epochs. Comparative experiments are conducted 
on the embedded device Jetson TX2 with 8Gb memory and 256 CUDA cores.

3.1. Description of infrared ship datasets

In our previous study, we released the infrared ship dataset including SWIR, LWIR and their fusion images [30]. There are 1044 
images of each type, for a total of 1044 × 3 images. For image fusion, the premise is to register source images using feature matching 
methods. Image registration is the process of aligning two or more images of the same scene obtained from different viewpoints, at 
different times, or from different sensors. It can geometrically warp the sensed image into the common spatial coordinate system of 
the reference image and align their common area pixel-to-pixel. More details about the method of image fusion can be obtained from 
our published article [31].

SWIR images were captured by indium gallium arsenide (InGaAs) uncooled infrared focal plane array (FPA) detector with the 
resolution of 320 × 256 and using a zoom lens with focal lengths of 16 to 160 mm. The spectral ranges from 0.9 to 1.7 μm and the 
pixel spacing is 30 μm. LWIR images were captured by vanadium oxide (VOx) uncooled infrared FPA detector with the resolution of 
7

640 × 512 and using a prime lens with a focal length of 50 mm. The spectral ranges from 8 to 14 μm. Fig. 8 (a) shows the structural 
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Fig. 7. The height and width distributions of the ground truth obtained by clustering from the original SWIR, LWIR and fusion ship datasets. Cluster centers are used 
as a prior for anchor boxes.

Fig. 8. The images acquisition device. (a) The structural diagram of the device, including the mechanical housing of SWIR and LWIR cameras and the holder of 
the device. The structural model is rendered to make it more intuitive. (b) The real hardware of the images acquisition device consists of SWIR and LWIR cameras, 
mounted on a tripod.
8

Fig. 9. Partial infrared images of ships in multiple bands. (a) SWIR, (b) LWIR and (c) Fusion of SWIR and LWIR.
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Table 3

True positive (TP), True negative (TN), 
False positive (FP), False negative (FN).

Ground Truth
Prediction

Ship Non-Ship

Ship TP FN

Non-Ship FP TN

Table 4

Complexity comparison of different methods, including parameters and computation cost and inference speed.

Model Faster-RCNN YOLOv3 YOLOv3-Efficientnet YOLOv3-SPP YOLOv4 YOLOv5-x YOLOv5-l YOLOv5-m Ours

Input Size 300 × 300 320 × 320 320 × 320 320 × 320 320 × 320 320 × 320 320 × 320 320 × 320 320 × 320
Params (M) 28.275M 61.523 10.552 62.573 63.938 87.244 46.631 21.056 4.848

FLOPs (G) 448.29 19.38 1.10 19.49 17.68 54.449 28.640 12.650 1.29

FPS - 21.66 29.28 21.34 20.67 13.22 24.35 44.34 59.89

diagram of the device, Fig. 8 (b) shows the real hardware of the images acquisition consists of SWIR and LWIR cameras. Fig. 9

(a)(b)(c) shows the partially acquired SWIR, LWIR, and fused images respectively.

The SWIR, LWIR, and Fusion datasets were divided into three parts in this experiment with a ratio of 0.8:0.1:0.1, respectively. 
That is 835 × 3 images for training, 104 × 3 images for validation, 104 × 3 images for testing.

3.2. Evaluation criteria

In this study, the metrics including Precision, Recall, F1 and Average Precision (AP), as shown in Eq (12), Eq (13), Eq (14) and Eq 
(15) respectively, frames per second (FPS), parameters and floating-point operations (FLOPs) were used to evaluate the performance 
of the proposed method. The meanings of true positive (TP), true negative (TN), false positive (FP), false negative (FN) are shown in 
Table 3. Precision is the probability of correctly predicting positive samples among positive predictions, as shown in Equation. Recall 
represents the probability of correctly classifying a true positive sample, as shown in Equation. F1 is a comprehensive indicator that 
combines precision and recall to evaluate the performance of the model. Average precision is the area enclosed under the precision-

recall curve calculated by integration, as shown in Equation. Frames per second (FPS) is the number of frames processed by the 
model in a second, which represents the inference speed and real-time performance of the model. FLOPs represent the computation 
cost of the model, it with parameters evaluate the complexity of the model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(13)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(14)

𝐴𝑃 =

1

∫
0

𝑃 (𝑅)𝑑𝑅 (15)

3.3. Computational complexity and inference speed

Compared with other methods, the proposed method has fewer parameters, low FLOPs and faster inference speed, as shown in 
the Table 4. We deployed all models on the embedded device Jetson TX2, and tested the inference speed with 10,000 images. The 
results illustrated that our method’s inference speed close to 60 FPS with limited computing resources.

3.4. Comparative experiments on SWIR, LWIR and fusion datasets

To evaluate the detection performance, we quantitatively compare our method with other representative object detection meth-

ods, such as YOLOv3 [19], YOLOv3-SPP (YOLOv3 with SPP module [32]), YOLOv4 [33], on our previously published datasets.

3.4.1. Experiments on SWIR images

SWIR imaging system relies on receiving reflected light for imaging, so disfavored illumination and dense sun glint, may cause 
poor contrast and targets are easily drowned in background noise. Seawater absorbs SWIR light, so the boundary between ocean and 
sky is usually obvious in SWIR images. Fig. 10 illustrates the results of different methods for ship detection in SWIR images. Under 
poor illumination conditions or specific detection angles, structural and texture information about the target is lost in SWIR images. 
9

For some small size ships, accurate detection is difficult and can easily cause missed detection. Our method is effective in detecting 
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Fig. 10. The visual comparisons of different methods for ship detection on SWIR images. There is less sea clutter and other noise in SWIR images, and there is a more 
prominent contrast difference between ship and background. (a) is Ground true (GT) image. The variable size of ships brings challenges to the detection. YOLOv3 
failed to detect the ship of small size, while YOLOv5-x failed in detecting large-size ships. Our method accurately detected ships of different sizes on SWIR images.

Table 5

Performance comparison of the proposed method with other representative networks 
on SWIR dataset.

Model Input Size
SWIR

AP @0.7 F1 Recall Precision

YOLOv3 320 × 320 96.48% 0.93 90.48% 95.96%

YOLOv3-Efficientnet 320 × 320 97.99% 0.98 98.10% 98.10%

YOLOv3-SPP 320 × 320 95.36% 0.94 91.43% 96.00%

YOLOv4 320 × 320 96.31% 0.97 97.14% 96.23%

YOLOv5-x 320 × 320 97.06% 0.94 89.52% 97.92%

YOLOv5-l 320 × 320 98.71% 0.95 93.33% 97.03%

YOLOv5-m 320 × 320 93.61% 0.94 93.33% 94.23%

Ours 320 × 320 95.05% 0.96 95.24% 96.15%

Fig. 11. The visual comparisons of different methods for ship detection on LWIR images. (a) is Ground true (GT) image. The LWIR image has low contrast, it is 
difficult to distinguish between the ship and the background (sky, sea clutter), due to they have similar gray level distribution. YOLOv3, YOLOv3-SPP and YOLOv5-m 
failed to detect ships in some LWIR images. Our method can precisely detect ships in LWIR images with low contrast.

small size ships or ships with lacking structural and texture information. Table 5 indicates a quantitative comparison of different 
methods for ship detection in SWIR images.

Table 5 shows the performance comparison of the proposed method with other representative methods on the SWIR dataset. 
Experimental results demonstrate that the performance of the proposed method is close to the state-of-the-art method with fewer 
10

parameters and low computation cost.



Heliyon 10 (2024) e26229L. Wang, Y. Dong, C. Fei et al.

Table 6

Performance comparison of the proposed method with other representative networks 
on LWIR dataset.

Model Input Size
LWIR

AP @0.7 F1 Recall Precision

YOLOv3 320 × 320 91.32% 0.89 82.86% 95.60%

YOLOv3-Efficientnet 320 × 320 95.87% 0.97 97.14% 97.14%

YOLOv3-SPP 320 × 320 96.00% 0.93 87.62% 98.92%

YOLOv4 320 × 320 94.84% 0.95 95.24% 95.24%

YOLOv5-x 320 × 320 93.57% 0.94 95.24% 92.59%

YOLOv5-l 320 × 320 97.75% 0.93 95.24% 90.09%

YOLOv5-m 320 × 320 94.67% 0.93 95.24% 91.74%

Ours 320 × 320 92.69% 0.93 92.38% 94.17%

Fig. 12. The fused images have more information than SWIR and LWIR, which is beneficial to locate the ship’s position more precisely, as shown in the figure. 
However, fused images also bring drawbacks from SWIR and LWIR images, such as increased noise and decreased contrast. There is more noise from LWIR images in 
fused images. (a) is Ground true (GT) image.

3.4.2. Experiments on LWIR images

LWIR images exhibit intensity inhomogeneity due to the uneven heat dissipation. In addition, ship target and background (e.g. 
sea clutter, sky and clouds) have similar intensity distributions in LWIR images. These issues bring challenges to ship detection with 
LWIR images. Fig. 11 illustrates the visual comparisons of different methods for ship detection in LWIR images. The proposed method 
can correctly detect ships in LWIR images with low contrast and interference from the background. Table 6 indicates a quantitative 
comparison of different methods for ship detection in LWIR images. The proposed method is close to being the state-of-the-art 
method in various metrics. From experimental results, we can see that the accuracy of LWIR images is lower compared with the ship 
detection accuracy of SWIR images. Although LWIR system has better imaging quality for targets at night or under poor illumination 
conditions. However, in daytime ship detection, LWIR imaging has no obvious advantages [34]. All of these issues contribute to 
making ship detection in LWIR difficult.

3.4.3. Experiments on fused images

Fusion images can provide comprehensive information about marine scenarios, which can help make more robust decisions. 
Several ship detection results of fusion, SWIR and LWIR images are visually illustrated in Fig. 12. However, fused images also bring 
drawbacks from SWIR and LWIR images. Disturbed by sea clutter and limited by the fusion methods, ships and clutters may have 
inapparent difference, which is not conducive to ship detection. Table 7 shows the quantitative comparison of different methods on 
the fusion dataset. Compared with SWIR and LWIR datasets, the detection accuracy of all methods decreases. While fused images can 
provide more information in a variety of harsh illumination conditions and environments, fused images bring weaknesses in SWIR 
and LWIR images. In order to exploit the advantages of fused images, better image fusion strategies are needed.

3.4.4. Discussion of SWIR, LWIR, fused images in ship detection

From the experimental results, SWIR images have the highest accuracy in ship detection. This is due to the characteristics of SWIR 
imaging. Seawater absorbs SWIR light, which suppresses interference from sea clutter, resulting in strong contrast between ships and 
the background. SWIR imagers rely on reflected light for imaging; thus, SWIR images obtain more information than thermal infrared 
such as texture information. In addition, SWIR imaging has strong penetration ability for haze and fog. For low light level condition, 
11

it can utilize the night glow phenomenon and it can provide wide dynamic imaging (from daylight to overcast night conditions) [2].
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Table 7

Performance comparison of the proposed method with other representative networks 
on Fusion dataset.

Model Input Size
Fusion

AP @0.7 F1 Recall Precision

YOLOv3 320 × 320 77.93% 0.81 79.05% 83.00%

YOLOv3-Efficientnet 320 × 320 91.79% 0.94 92.38% 95.10%

YOLOv3-SPP 320 × 320 92.47% 0.89 83.81% 95.65%

YOLOv4 320 × 320 91.84% 0.88 88.57% 87.74%

YOLOv5-x 320 × 320 84.68% 0.87 82.86% 90.62%

YOLOv5-l 320 × 320 93.20% 0.90 85.71% 93.75%

YOLOv5-m 320 × 320 89.61% 0.88 83.81% 93.62%

Ours 320 × 320 86.34% 0.85 80.00% 91.30%

Table 8

Discussion on the advantages and disadvantages of SWIR, LWIR and fused images in ship detection.

Type of image Advantages Disadvantages

SWIR (1) SWIR imaging exhibits strong penetration capabilities 
for haze and fog. (2) SWIR can utilize the night glow 
phenomenon and it can provide wide dynamic imaging. 
(3) SWIR images display high contrast and abundant detail 
information.

SWIR imaging is susceptible to interference from strong 
sunlight reflection.

LWIR LWIR can imaging without any natural or artificial 
illumination required.

(1) LWIR imaging may not effectively capture the target 
during day and night alternation. (2) LWIR imaging is 
susceptible to excessive sea clutter under direct sunlight.

Fusion Fused images can provide more information in a variety of 
harsh illumination conditions and environments.

(1) Fused images exhibit relatively low contrast. (2) Fused 
images contain noise from the LWIR image.

Table 9

Ablation experiments on the effect of Bottleneck, Ghost, CBAM modules on model parameters, 
FLOPs, and inference speed. Model1 is the original YOLOv3 network.

Model Bottleneck Ghost module CBAM Parameters (M) FLOPs (G) FPS

Model1 61.523 19.38 21.66

Model2 ✓ 22.273 5.32 43.54

Model3 ✓ ✓ 4.750 1.29 62.50

Model4 ✓ ✓ ✓ 4.848 1.29 59.89

LWIR can image without any natural or artificial light sources, which is advantageous for all-weather monitoring. However, LWIR 
imaging may not effectively capture targets during day-night transitions. Under direct sunlight, LWIR images may contain too much 
sea clutter, which is not conducive to ship detection.

Fused images provide more information in a variety of harsh illumination conditions and environments. However, fused images 
also bring drawbacks from SWIR and LWIR images. Disturbed by sea clutter and limited by the fusion methods, ships and clutters 
may have inapparent difference, which is not conducive to ship detection.

On the basis of the above analysis, Table 8 summarizes the advantages and disadvantages of SWIR, LWIR and fused images for 
ship detection in the marine environment.

3.5. Ablation experiments

To validate the effectiveness of the method and submodules, ablation experiments were conducted in the paper. Table 9 shows the 
effect of different submodules on network parameters, computational complexity, and inference speed. Model1 is the original YOLOv3 
network. The application of bottleneck in the backbone network greatly reduces the parameters and computational complexity of the 
model, and improves the inference speed. The Ghost module is used in the Neck and Head networks to further reduce the network 
parameters and computational complexity, and to further improve the model’s inference speed. The addition of the CBAM module 
did not significantly increase the model’s parameters and computational complexity.

Tables 10, 11, and 12 show the effect of different submodules on the accuracy of ship detection in SWIR, LWIR, and fused images, 
respectively. The use of Bottleneck and Ghost modules reduces the model’s parameters and computational complexity and improves 
the model’s inference speed. However, as the parameters decrease, the ship detection accuracy of the model in SWIR, LWIR, and 
fused images also decreases. The use of CBAM improves the ship detection accuracy while maintaining the lightweight and high 
12

inference speed of the model.
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Table 10

Ablation experiments on the effect of Bottleneck, Ghost, and CBAM modules on ship detection in SWIR 
images. Model1 is the original YOLOv3 network.

Model Bottleneck Ghost module CBAM AP@0.7 F1 Recall Precision

Model1 96.48% 0.93 90.48% 95.96%

Model2 ✓ 92.52% 0.91 90.48% 91.35%

Model3 ✓ ✓ 90.72% 0.90 89.52% 89.52%

Model4 ✓ ✓ ✓ 95.05% 0.96 95.24% 96.15%

Table 11

Ablation experiments on the effect of Bottleneck, Ghost, and CBAM modules on ship detection in LWIR 
images. Model1 is the original YOLOv3 network.

Model Bottleneck Ghost module CBAM AP@0.7 F1 Recall Precision

Model1 91.32% 0.89 82.86% 95.60%

Model2 ✓ 87.66% 0.88 85.71% 90.91%

Model3 ✓ ✓ 85.28% 0.86 83.81% 88.00%

Model4 ✓ ✓ ✓ 92.69% 0.93 92.38% 94.17%

Table 12

Ablation experiments on the effect of Bottleneck, Ghost, and CBAM modules on ship detection in fused 
images. Model1 is the original YOLOv3 network.

Model Bottleneck Ghost module CBAM AP@0.7 F1 Recall Precision

Model1 77.93% 0.81 79.05% 83.00%

Model2 ✓ 73.83% 0.77 73.33% 81.91%

Model3 ✓ ✓ 71.71% 0.69 60.00% 80.77%

Model4 ✓ ✓ ✓ 86.34% 0.85 80.00% 91.30%

Fig. 13. Visualization results of the proposed network for three detection heads in SWIR, LWIR and fusion images. For heads at different scales, the network has 
different sizes of regions of interest (ROI). From head 1 to 3, the size of the ROI decreases sequentially.

3.6. Network visualization

For the qualitative analysis, we apply the Eigen-CAM [35] to generate visual explanation, as shown in Fig. 13. Class activation 
map (CAM) focuses on making sense of what the model learns from the data, calculating the importance of the spatial locations in 
the convolutional networks. Eigen-CAM can produce a location map highlighting the important regions in the input image, providing 
interpretability and transparency to the network.

Fig. 13 shows the visualization results of the proposed network for three detection heads in the SWIR, LWIR and fusion images. 
Fig. 13 (a) is the original image and Fig. 13 (b)(c)(d) shows the ROI of the detection heads Head-1, Head-2, Head-3, respectively. 
Head 1 has the largest receptive field, from head 1 to 3, the size of the ROI decreases sequentially. This is advantageous for accurate 
detection of ships in different scales. For the SWIR image, there is a significant grayscale difference between the ship and background 
13

and heads in different scales can precisely locate the ship’s location in the image. In LWIR images, there is more interference from sea 
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clutter and clouds, and the contrast between the ship and background is low. The network cannot locate the ship and its surroundings 
in LWIR image. For fusion image, the grayscale distribution between the ship and the image is analogous, which makes it difficult 
for the network to locate the ship’s location. The sea clutter in the fused image is even more pronounced than the ship. We can see 
that in head 3 of the fused image, the network focus on the sea cluster, which also explains why the detection accuracy of the fusion 
image is lower than that of LWIR and SWIR images. In subsequent studies, better image fusion strategies are needed to suppress 
noise in SWIR and LWIR images and improve the contrast of ships in images.

4. Conclusion

Ship detection is the core component for realizing the application of autonomous ships and improve maritime traffic safety. 
Infrared imaging systems with different spectral ranges can provide robust decision for ship detection in marine environments. In the 
open sea, unmanned marine vehicles (e.g., unmanned surface vehicles and unmanned ships) have limited hardware resources, and 
complicated methods are difficult to deploy on a computationally limited platform.

In this paper, we have presented a lightweight CNN for ship detection in SWIR, LWIR and fused images. Specially, the back-

bone is built from bottleneck depth-separable convolution with residuals. Redundant feature maps are generated using cheap linear 
operations in the neck and head networks. The network’s learning and representational capacities are promoted by introducing 
channel and spatial attention, and redesigning the sizes of anchor boxes. Experiments have verified the accuracy and reliability of 
the algorithm adopted in this paper. The proposed method has high inference speed in an embedded device with limited computing 
resources, and the detection accuracy is close to that of the state-of-the-art method.

In future research, we will explore improved strategies for fusing infrared images in various spectral bands to improve the 
ship detection accuracy in fusion images. Moreover, combining multispectral, radar and infrared data will provide richer target 
information and improve the performance of ship detection. In coming research, the proposed method will be deployed to other 
platforms, such as digital signal processor (DSP), field-programmable gate array (FPGA), to evaluate algorithm performance and 
prepare for practical applications in marine environments. The proposed method will contribute to automation and autonomy for 
marine vehicles and systems and enhance the maritime traffic safety in practical applications.
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