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A B S T R A C T   

Chloropropanols, one of the major contaminants in food, and the corresponding esters or glycidyl esters (GEs) are 
of great concern in terms of product safety due to their potential carcinogenicity. During heat processing, 
glycerol, allyl alcohol, chloropropanol esters, sucralose, and carbohydrate in mixed foodstuffs are probable 
precursors of chloropropanol. The standard analytical techniques for chloropropanols or their esters are GC–MS 
or LC-MS following sample derivatization pretreatment. By comparing modern data against that five-year-old 
before, it appears that the levels of chloropropanols and their esters/GEs in food products have somewhat 
decreased. 3-MCPD esters or GEs may yet exceed the permitted intake set, however, especially in newborn 
formula which requires particularly stringent regulatory measures. Citespace (6.1. R2) software was employed in 
this study to examine the research focii of chloropropanols and their corresponding esters/GEs in the literature.   

1. Introduction 

As food toxicants, chloropropanols in foodstuffs are of great concern 
for consumers owing to their intrinsic carcinogenic toxicity and ubiquity 
(European Commission, 2001; European Commission, 2020). There are 
four types of chloropropanols with one or two chlorine atoms in position 
1 or 2 in glycerol, namely, with prefix of mono- or di-; they include 3- 
monochloropropane-1,2-diol (3-MCPD), 2-monochloropropane-1,3- 
diol (2-MCPD), 1, 3-dichloropropane-2-diol (1, 3-DCP), and 2, 3-dichlor-
opropane-1-diol (2, 3-DCP), as shown in Fig. S1 (Jedrkiewicz et al., 
2016). 

In 1978, Velisek et al. firstly discovered 3-MCPD in acid-hydrolyzed 
vegetable proteins (HVPs) used to make soy sauce (Velisek et al., 1978). 
Its corresponding esters were found soon after and have since attracted a 
lot of research interest (Velisek et al., 1980). Later, free chloropropanols 
and their fatty esters were found in heated food, infant formula, 
margarine and related food matrices, fried cereal food, and vegetable 
oil. Data for the aforementioned four types of chloropropanols in 

toxicological investigations are relatively varied due to inherent varia-
tions in their structural characteristics (Olsen, 1993; Andres et al., 2013; 
Lynch et al., 1998). 3-MCPD is of particular interest to scientific re-
searchers currently due to its prevalence and relative abundance in food 
products. Most of the harmful side effects of chloropropanol esters that 
are produced by the esterification of chloropropanol with fatty acids are 
uncertain, except for those of 3-MCPD ester and 1, 3-DCP ester. 

As shown in Table S1, expert committees have issued toxicological 
data for chloropropanols. It is accepted that the in vitro genotoxic ac-
tivity is not expressed in vivo (Fellows, 2000; Marshall, 2000; JECFA, 
2001; EC, 2001; COM, 2000; COC, 2000; S. C. O,2001). Tolerated daily 
intake (TDI) data has fluctuated over time with regard to 3-MCPD. First, 
in 2001, the Scientific Committee for Food (SCF, 2001) set a TDI value of 
2 µg/kg⋅bw/day. In 2016, the European Food Safety Authority (EFSA, 
2016) set a TDI value of 0.8 µg/kg⋅bw/day. In 2016, the World Health 
Organization (WHO) and Food and Agriculture Organization (FAO) of 
the United Nations set a maximum TDI value of 4 µg/kg⋅bw/day for 3- 
MCPD and its corresponding esters singly or in combination 
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(expressed as 3-MCPD equivalents). As recently as 2018, the EFSA 
updated the TDI value to 2 µg/kg⋅bw/day. Table 1 lists the limit ranges 
imposed by several authorities. Only the TDI of chloropropanol has been 
established by authorities; the limit requirements for chloropropanol 
esters or GEs in food products have not yet been established. 

GEs, conversely, which were first reported in 2009, have raised even 
more concern as per their potential to release the genotoxic carcinogen 
glycidol in animal studies (Weiβhaar and Perz, 2009). The present Eu-
ropean Commission (EC) is anticipated to update the established limits 
for the permissible amount of 3-MCPD in soy sauce and hydrolyzed 
vegetable proteins in addition to the maximum levels of GEs in vegetable 
oil and infant formula. Chloropropanols are mainly found in ready-to- 
eat foods, where several reports have identified them as hazardous. 

To safeguard public health and provide the groundwork for future 
research, it is necessary to fully understand the relevant properties of 
chloropropanols in food. This requires detailed, up-to-date, thorough 
data for chloropropanols, their related fatty esters, and GEs in food 
products. A summary of existing data is given in Fig. 1. The summary 
was established based on the literature from 2000 to 2022 in the Web of 
Science, Springer, and Wiley databases using the search terms “chlor-
opropanol,” “MCPD,” “DCP,” and “ester”. Our goal is to systematically 
and comprehensively summarize (i) the potential mechanisms of for-
mation, i.e., why these pollutants are present in food; (ii) the analytical 
techniques used to gather this data; (iii) the presence of these toxicants 
in foodstuffs and how they affect healthy, safe diets; (iv) the methods of 
removing chloropropanols to lessen their potential harm. Citespace (6.1. 
R2) software was employed to process the collected data to better un-
derstand the research to date on chloropropanols and their corre-
sponding esters or GEs. 

2. Previous research 

Our Citespace analysis findings for chloropropanol research projects 
are shown in Fig. S2. In recent decades, the focus of research on chlor-
opropanol in foods has changed. As shown in Fig. S2, the research on 
chloropropanols was initially focused on 3-MCPD, 2-MCPD, 1, 2-MCPD 
ester, 1, 3-DCP, 1, 2-DCP, and their exposure, nephrotoxicity, and 
pathogenic mechanism (Caco-2 model). 3-MCPD ester was identified as 
a potential hazard contaminant in food by a worldwide symposium 
convened by International Life Sciences Society (ILSI Europe), in 
collaboration with the EC. Since then, research focii have gradually 
shifted to formation mechanism, analysis methods, occurrence, and 
elimination methods. 

Pathogenic mechanism 

According to the Joint FAO/WHO Expert Committee on Food Ad-
ditives (JECFA), the kidney is the primary organ affected by 3-MCPD 
toxicity. Chronic oral exposure causes nephropathy, tubular hyperpla-
sia, and adenomas (Food and Agriculture Organization of the United 
Nations and World Health Organization, 2006). The pathogenic mech-
anism of chlorpropanol on the kidney has not yet been fully elucidated. 
In-vivo experiments revealed that several 3-MCPD metabolites, partic-
ularly β-chloraldehyde, which is generated by the enzyme alcohol de-
hydrogenase, can inhibit the glycolysis enzymes glyceraldehyde 3- 
phosphate dehydrogenase and propanose triphosphate isomerase. 
Several scholars have hypothesized accordingly that the damage 
induced by inhibition of the glycolytic pathway and energy metabolism 
may be the origin of the nephrotoxic mechanism of 3-MCPD (Sawada 
et al., 2016). 

In addition, the accumulation of calcium oxalate crystals in the 
kidney due to the formation of oxalic acid and calcium salt in urine may 
hasten the progression of nephropathy (Jones et al., 1981; Corley et al., 
2005). In a rat model, the relative weight of the kidney increased when 
the dose of 3-MCPD reached 30 mg/kg⋅bw/day; rats with renal damage 
had oxalate crystals, namely the metabolite of 3-MCPD, accumulated on 
the inner membrane of the tubules as well (Ge et al., 2014). Galactosyl 
glycerol concentration is a preliminary indicator of 3-MCPD effects on 
the body. It was discovered that the amount of galactose-based glycerol 
in rats’ urine increased after 40 days of treatment with 30 mg/kg⋅bw/ 
day of 3-MCPD. It was speculated accordingly that 3-MCPD causes 
imbalance of β-galactosidase (β-Gal) in the kidney and epididymis, 
reducing hydrolyzed galactosyl glycerol to galactosyl and glycerol (Li 
et al., 2010). 

According to other animal experiments, chloropropanols are haz-
ardous to a variety of organs including the heart, liver, immune system, 
neurological system, and reproductive system. There is, however, no 
conclusive proof that chloropropanols have a direct toxicological effect 
on humans, necessitating additional study. 

Formation mechanism 

At present, the precise formation mechanism of chloropropanols is 
not known. As a result, it is not yet possible to explain the differences in 
their levels in food. The two classifications of potential chloropropanol 
formation mechanisms in food matrices are shown in Fig. 2 and Fig. 3. 
The first is formed during the heat-treatment process from reactions of 
intrinsic or added components (e.g., glycerol, allyl alcohol, 

Table 1 
Provisions of GEs, 3-MCPD and 3-MCPD ester in food.  

Authority Food type Analytes Limit requirements 

SB 10338–2000 HVP, soy sauce 3-MCPD ≤ 1 mg/kg 
EU (2001) HVP, Soy sauce juice 3-MCPD ≤ 0.02 mg/kg 
FAO /WHO (2001) Food 3-MPCD 2 µg/kg 
GB 2717–2003 Brewing soy sauce 3-MCPD ≤ 0.02 mg/kg 
EU (EC1881-2006) HVP 3-MCPD ≤ 0.02 mg/kg 
United States HVP, Soy sauce juice 3-MCPD ≤ 1 mg/kg 
AOCS Edible oil for food processing 3-MCPD ester < 2 mg/kg 

Edible oil (baby food) < 0.5 mg/kg 
GB 2762–2017 HVP 3-MCPD Liquid condiment ≤ 0.4 mg/ kg Solid condiment ≤ 1.0 mg/kg 
EU (2018/290) Powdered infant milk powder 3-MCPD and esters (GEs) 125 µg/kg (50 µg/kg) 

Liquid infant milk powder 3-MCPD and esters (GEs) 15 µg/kg (6 µg/kg) 
EU (2020/1322) Fish oil and other Marine bio fats Glycidyl esters (GEs) 1000 µg/kg 

Marine bio fats (baby food) 500 µg/kg 
Powdered infant formula 50 µg/kg 
Vegetable oils and mixed vegetable oils 3-MCPD and 3-MCPD ester 1250 µg/kg 
Vegetable oils and fats (baby food) 750 µg/kg 

Note: SB, Provincial Standard; HVP, acid-hydrolyzed vegetable protein; EU, European Union; FAO/WHO, Food and Agriculture Organization/World Health Orga-
nization; GB, National Standard; AOCS, American Oil Chemists Society; 3-MCPD, 3-monochloropropane-1,2-diol; 3-MCPD ester, 3-monochloropropane-1,2-diol ester; 
GEs, glycidyl esters. 
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Fig. 1. Flow diagram of literature search and data collection.  

Fig. 2. Inner formation mechanism of chloropropanols and chloropropanols esters.  

Fig. 3. External formation mechanism of chloropropanols.  
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chloropropanol esters, sucralose, or carbohydrates); the second is caused 
by the migration of chloropropanols from food packaging or contact 
materials to food (e.g., paper packing materials). Compared to the other 
three chloropropanols, 3-MCPD is the most thoroughly investigated 
model accompanying the clearest understanding of the formation 
mechanism from food matrices. 3-MCPD is used as an example in the 
remainder of this review. 

4.1. Inner synthesis in mixed foodstuffs 

The inner synthesis mechanisms of chloropropanols in foods are 
affected by many factors, including possible precursors, chloride anion 
concentrations (which may occur naturally or be added as sodium 
chloride), cooking methods, and oil-refining conditions. Over the last 
few decades, various possible precursors for chloropropanol formation 
have been studied including organic compounds in food (e.g., glycerol 
(Fig. S3), allyl alcohol (Fig. S4), chloropropanol esters (Fig. S5), sucra-
lose (Fig. S6), and carbohydrates). Propylene glycol and glycerol are 
frequently used as humectants and flavor carriers in foods such as 
confectionery items, dried fruits, and vegetables. They are also potential 
precursors of chloropropanols (Wenzl et al., 2007). Collier et al. (1991) 
elucidated the formation mechanism by which 3-MCPD is produced in 
aqueous systems using glycerol and hydrochloric acid (Fig. S3). This 
process most likely involves a nucleophilic substitution reaction (SN2) of 
the chloride anion (Collier et al., 1991). The production of chlor-
opropanols has also been attributed to allyl alcohol, a very unstable enol 
structure molecule that results from the heat degradation of alliin 
(originally discovered in garlic) (Myszkowski and Zielinski, 1965; Kubec 
et al., 1997). Across thermal degradation pathways, sucralose, a com-
mon non-caloric artificial sweetener used in high-temperature bakery 
items, can emit hydrogen chloride at concentrations between 300 and 
600 ppm (Chapello, 1998; Goldsmith and Merkel, 2001). Under pyro-
lytic conditions, the produced hydrogen chloride in these products can 
react with glycerol to produce various monoesters of chloropropanols, 
which may then rapidly transform into their corresponding di-esters 
(Rahn and Yaylayan, 2010). Chloropropanols can also be produced by 
degrading their esters. 

The temperature of food thermal process is also a very important 
factor affecting the formation of chloropropanol and their fatty esters. 
Normally, chloropropanols are formed during the thermal process of 
various foodstuffs above 150 ℃ (Wenzl et al. 2007). For chloropropanol 
fatty esters, their formation mechanisms are quite complex and research 
results are inconsistent. Firstly, the 3-MCPD ester content of fried potato 
chips decreased with the increase of frying time, but increased with the 
increase of frying temperature (Yu et al., 2017a; Yu et al., 2017b). In 
another study for deep-fat frying of chicken breast meat samples, there 
was a significant (p less than 0.05) decrease in the 3-MCPD esters with 
the increasing of the frying duration. While, the 3-MCPD esters were 
decomposed and their levels were lower at high temperature when 
heated for 5 days (Yu et al., 2017a; Yu et al., 2017b). In a previous study, 
the amount of 3-MCPD esters decreased with increasing temperature 
over the range 100–230 ◦C and reached its highest value at 100 ◦C 
(Svejkovsk and Dole, 2006). While, in another study, the amount of 3- 
MCPD esters reached their highest values within 1–1.5 h at 
220–260 ◦C (deodorizing period) based on the lab-scale physical 
refining, and then their decomposition rate increased with the 
increasing temperature (Li C. et al., 2016). 

The concentrations of 3-MCPD esters and 3-MCPD in Chinese dishes 
were identified as 516.11 μg/kg and 17.88 μg/kg in restaurants and 
75.86 μg/kg and 10.43 μg/kg in school canteens, respectively. These 
concentrations were found to differ significantly with different cooking 
methods. In decreasing order of intensity, the following cooking tech-
niques have the most significant effects on the productions of 3-MCPD 
and its esters: deep frying > griddling > stir frying > braising > stew-
ing (Zhang J.L. et al., 2020). Throughout the oil-refining process, the 
synthesis of chloropropanol esters, as the primary precursor for 

chloropropanols, is affected by triglyceride type, chlorinated com-
pounds, acidity of the oil, metal ions, water dosage, and deodorization 
temperature (Liu Z. et al., 2022; Silva et al., 2019; Ramli et al., 2020; 
Zhang et al., 2021; Lakshmanan and Yung, 2021; Gao et al., 2022). 

Recently, chloropropanol esters have attracted much attention due 
to their ubiquity and high levels in refined edible oil products. Although, 
there is no direct evidence to support any adverse health effects from 
chloropropanol esters, they have raised concerns due to their ease of 
hydrolysis to free chloropropanol in the gastrointestinal tract and the 
large amount of processed vegetable oil in many different foods. The 
data is fragmented and the major pathways of chloropropanol formation 
in food from ester hydrolysis remain unclear. The formation mecha-
nisms under discussion presently, and the reactions that have been 
observed to date, are shown in Fig. S7. 

The formation mechanisms of chloropropanols in foods have been 
postulated via three viable synthesis pathways with chloropropanol 
esters as potential formation precursors: (i) direct nucleophilic attack by 
the chloride ions at the carbon atoms of glycerol with ester or protonated 
hydroxyl groups (Fig. S7a and Fig. S7b); (ii) nucleophilic attack by 
chloride ions with the formation of reactive intermediates (e.g., acyl 
oxonium ions or an epoxide ring in the form of glycidol) prior to the 
attack (Fig. S7c); and (iii) free radical reaction via the formation of 
radicals as a reactive intermediate, which are formed by glycerol ester 
(Fig. S7d) (Hamlet et al., 2011). Shimizu et al. (2012) identified 
monoglyceride (MAG) as the most active potential precursor for 3- 
MCPD through a simulated deodorization experiment with acylgly-
cerol and chlorine salt as substrates. Smidrkal et al. (2016) found that 
when the level of free fatty acids in sunflower oil refining is the same as 
that of 3-MCPD ester, diglyceride (DAG) is more likely to produce 3- 
MCPD than MAG. The various experimental model systems utilized in 
the research process may be the cause of this dispute. 

4.2. External contamination via migration 

3-MCPD and 1, 3-DCP have been detected in paperboard packaging 
(Devore et al., 1991; Boden et al., 1997) as by-products of wet-strength 
additives. Polyamidoamine-epichlorohydrin (PAE) is the predominant 
wet-strength additive used for moisture resistance in paper products. 
The proposed mechanism through which chloropropanols originate in 
this type of packaging are shown in Fig. 3(Peng et al., 2017). In water, 
the hydrolysis of epichlorohydrin produces 3-MCPD, whereas the 
interaction between the epoxide group of epichlorohydrin and the 
chlorine ion produces 1, 3-DCP. These pollutants migrate from the 
packaging into food products upon contact with the food matrices. 

Chloropropanols are generated as food contaminants during heat- 
treatment via the reaction of allyl alcohol, chloropropanol esters, 
sucralose, carbohydrates, glycerol or propylene glycol, and chloride ions 
(Hamlet et al., 2002; Wenzl et al., 2007; Collier et al., 1991; Myszkowski 
and Zielinski, 1965; Kubec et al., 1997; Chapello, 1998; Goldsmith and 
Merkel, 2001; Rahn and Yaylayan, 2010). Different observations have 
been made regarding the synthetic paths of chloropropanols due to the 
different experimental models employed by researchers (Shimizu et al., 
2012; Hamlet et al., 2011; Smidrkal et al., 2016). Further studies are yet 
needed to secure realistic experimental models. 

5. Detection approaches 

Approaches for the detection of chloropropanols or their corre-
sponding esters in food matrices are a necessary first step to further 
research. An overview of existing detection mechanisms and approaches 
is given in Fig. 4 and Table S2. 

5.1. Detection of chloropropanols 

Existing determination methods for chloropropanols include chro-
matography, electro-chemical methods, and optical analysis; each have 
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distinct qualitative and quantitative mechanisms (Chi et al., 2022; 
Custodio-Mendoza et al., 2018; Li et al., 2022; Martin et al., 2021; Cheng 
et al., 2022; Chen et al., 2022; Nemati et al., 2021; Yaman et al., 2021; 
Zhao et al., 2012). 

5.1.1. Chromatography detection approach 
HPLC, GC, and GC–MS methods are not appropriate for the detection 

of chloropanols due to intrinsic limitations such as molecular structure 
characteristics, low volatility, and low molecular weight. Researchers 
developed a conventional derivatization pretreatment process prior to 
GC analysis, which effectively circumvented these restrictions. Deriva-
tization pretreatment can produce more volatile analytes to prevent 
undesired interactions of chloropropanols with other components dur-
ing sample preparation and GC analysis. By derivatization, a variety of 
analytical methods have been established for determinations including 
GC (Plantinga et al., 1991), GC–MS (Mezouari et al., 2015), and HPLC 
coupled with fluorescence detection (FLD) (He et al., 2021), as shown in 
Table S2. 

Derivatization reagents are the most crucial factors during analysis 
processing. The most popular ones for detecting chloropropanols are 
heptafluorobutyrylimidazole (HFBI), heptafluorobutyric acid (HFBA) 
(Abu-El-Haj et al., 2007), phenylboronic acid (PBA) (Huang et al., 
2005), and butaneboronic acid (BBA) (Pesselman and Feit, 1988; Retho 
and Blanchard, 2005; Cao et al., 2009). With a detection limit (LOD) of 
less than 1 µg/mL, Schurig and Wistuba (1984) successfully identified 3- 
MCPD in an acid-hydrolyzed vegetable protein for the first time by GC in 
1984. Later, Pesselman and Feit (1988) improved the method’s detec-
tion sensitivity by ten orders of magnitude and further developed it to-
ward an LOD of 0.10 µg/mL (S/N = 3). However, the structural 
characteristics of chloropropanols lead to unfavorable interactions with 
components in the GC system, resulting in poor peak shape and low 
sensitivity. Relying solely on residence duration for qualitative identi-
fication of target residues is unreliable as well (Gao et al., 2006). 

A combination of GC and MS can be used to determine chlor-
opropanol concentrations at a parts-per-billion (µg/kg) level of 3-MCPD 
in HVP, flour, bread, and other products with LOD below 3–5 µg/kg 
(Hamlet and Sutton, 1997). The Association of Official Analytical 
Chemists (AOAC) published a method for qualitative and quantitative 
determination of 3-MCPD in foods by GC–MS with LOD of 0.005 mg/kg 
(Brereton et al., 2001). In June of 2017, GC–MS was also defined by 
Chinese professionals as an important method in “National food safety 
standard determination of chloropropanols and fatty acid esters in food” 
with the LOD of 3-MCPD as 0.005 mg/kg (GB5009.191-2016, China). 
Prior to HPLC-FLD, a derivational pretreatment method by high-acid 
oxidation was developed with LOD of 0.36 ng/mL for the quantitative 
detection of 3-MCPD in vegetable oil and water samples (Hu et al., 
2013). The essence of this approach is the generation of chlor-
oacetaldehyde via the oxidization cleavage of 3-MCPD with sodium 
periodate. HPLC analysis coupled with an FLD detector can be used as a 

monitor after fluorescence derivatization with adenine. Compared to the 
GC–MS method, this method has a lower LOD (by about 10 orders of 
magnitude) without any complex pretreatment, extraction, or enrich-
ment measures required. The average recovery of all measured values 
was 95.36 % in a relevant study, and the relative standard deviation 
(RSD) of repeated measurement was less than 3.44 % indicating excel-
lent accuracy and sensitivity of this method. 

Several other pretreatment approaches for the detection of chlor-
opropanols have been proposed as well, such as the molecular imprinted 
polymer (MIP) membrane extraction with GC–MS (Qiu et al., 2018), 
ultrahigh-performance liquid chromatography, and microwave-assisted 
derivatization (MAD) with HPLC-UV (Chung et al., 2018). These 
methods are versatile, as they apply over a wide range of samples; they 
are also efficient and sensitive enough for detection limits of ppm or ppb 
levels. However, they require expensive instruments and time- 
consuming experimental procedures. Further, because all of the ex-
tract’s nucleophilic chemicals can react with the derivatization reagents, 
these methods lead to excessive background noise, poor selectivity, and 
low content of the distinctive ions. HFBI is also highly sensitive to 
moisture, which complicates the consistent derivatization process. 

5.1.2. Electro-chemical detection approach 
In a study by Sun et al. (2014), an electrochemical approach was 

established based on an electrochemical sensor obtained from a glassy 
carbon electrode (AuNP/GCE) enhanced with gold nanoparticles and 
coated with a MIP film. In order to detect 3-MCPD in soy sauce samples, 
potassium ferricyanide and potassium ferrocyanide ([Fe(CN)6]3-/4-) 
were used as probes (Sun et al., 2014). The LOD of this method is 3.8 ×
10− 18 mol/L and the average recovery rate of 3-MCPD ranges from 95.0 
% to 106.4 % (RSD less than 3.49 %), indicating strong adsorption 
performance and selectivity. However, the complexity of the sensor’s 
synthesis process and the number of repeated applications restrict the 
scope of its application. 

Yuan and coworkers developed a method that immobilizes hemo-
globin (Hb) using magnetic molecular imprinted nano-polymer and uses 
Hb’s reducibility to detect 3-MCPD with an LOD of 0.25 mg/L (Yuan, 
et al., 2019). The qualitative principle of this method is a reduction peak 
current at − 0.236 V, which can be electrochemically produced and 
reduced by 3-MCPD through Hb catalysis; the quantitative principle is 
an increase in the reduction peak intensity with increase in 3-MCPD 
concentration at the given current. Its RSD is 2.9 %. Drawbacks to this 
approach include need to add nitrogen to the electrolyte during the 
detection process and the limited shelf life of the modified electrode. 

5.1.3. Optical detection approach 
A detection method for 3-MCPD in soy sauce was developed based on 

fluorescence with a molecule-imprinted template on a paper substrate, 
where samples can be directly analyzed without pretreatment (Fang 
et al., 2018) (Table S2). The LOD, recovery, and RSD of the method are 

Fig. 4. Proportions of detection methods for chloropropanols.  
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0.6 ng/mL, 97.2 % ~ 105.3 %, and less than 5.6 %, respectively, indi-
cating higher accuracy than the HPLC-FLD approach. In addition, the 
HPLC-FLD method requires complex sample pretreatments (oxidation 
cleavage and derivatization of the samples), and it is likely that 
incomplete conversion impacts the outcomes of the process according to 
its 98.96 % conversion rate. Drawbacks to the fluorescence method 
include the poor mechanical stability of the paper substrate and the 
time-consuming surface modification procedure. 

In addition to the methods discussed above, several other approaches 
have been developed for chloropropanol detection (e.g., UV–vis spec-
troscopic techniques) (Aama et al., 2020) each with their own advan-
tages and disadvantages. 

5.2. Detection of chloropropanol esters 

Following ester hydrolysis and transesterification, free 3-MCPD or 2- 
MCPD is typically measured indirectly to determine the presence of 
chloropropanol esters in foodstuffs (Chung and Chan, 2012; Chai et al., 
2016; Dubois et al., 2019; Garballo-Rubio et al., 2017; Hidalgo-Ruiz 
et al., 2021; Ioime et al., 2021; Karl et al., 2016; Liu et al., 2013; Marc 
et al., 2016; Samaras et al., 2016; Wang et al., 2016; Yamazaki et al., 
2013; Zheng et al., 2021; Li et al., 2015; Li et al., 2020) (Table S2). These 
methods typically include two steps: first, the release of free 3-MCPD 
from its esterified form, and second, the detection of free 3-MCPD 
(Zheng et al., 2021). However, the possible formation of additional 3- 
MCPD from ester hydrolysis during the pretreatment can produce 
positive-biased results. Some other esters can undergo alkaline or acidic 
catalyzed transesterification and transform into 3-MCPD (Chai et al., 
2016). 

Researchers have developed several other detection techniques for 
chloropropanol esters that do not necessitate hydrolysis pretreatment in 
response to the unreliability of the methods discussed above. Katsuhito 
Hori et al. (2012) developed a technique with LOD less than 0.063 mg/ 
kg for measuring 3-MCPD ester in edible oil via supercritical fluid 
chromatography (SFC) coupled with triple quadrupole mass spectrom-
etry (QqQ-MS). SFC, as a novel separation method, was employed for the 
analysis of 3-MCPD esters; it is suitable for the analysis of hydrophobic 
compounds due to the polarity of the supercritical fluids. (For instance, 
carbon dioxide is compatible with hexane.) This was the first report on 
the analysis of 3-MCPD esters by SFC/QqQ-MS. In another study also by 
Katsuhito Hori et al. (Hori et al., 2012), a method for the detection of 3- 
MCPD esters and GEs in edible oil using liquid chromatography time-of- 
flight mass spectrometry (LC/TOF-MS) was developed. For GEs, the LOD 
was less than 0.16 ng/kg; for 3-MCPD monoesters and di-esters, LOD 
was 0.86 and 0.22 ng/mL, respectively (Hori et al., 2012). Liu H.H. and 
coworkers (2016) reached an RSD of less than 8.1 % for the simulta-
neous determination of 3-MCPD esters residues in foods using solid 
phase extraction coupled with ultra-performance liquid 
chromatography-electrospray tandem mass spectrometry (UPLC-MS/ 
MS). The detection of 2-MCPD and 3-MCPD fatty acid di-esters in edible 
oils was established by MacMahon and coworkers’ study (2013) using 
electrospray ionization (ESI) liquid chromatograms combined with 
tandem mass spectrometry (LC-MS /MS) to a maximum limit of quan-
tification of 30 ng/g (PPB) and RSD of 2–16 %. The deuterium internal 
standard substances of two esters were added to quantify them for ac-
curate quantitation of isomeric 3-MCPD and 2-MCPD di-esters. Though 
these recently developed detection methods may be powerful tools for 
examining 3-MCPD esters, the apparatus is expensive and a large 
number of internal standards are required. 

The most common analytical techniques for determining the pres-
ence of chloropropanols or their esters in food matrices are GC–MS or 
LC-MS following sample derivatization pretreatment. We expect that 
future research will center on determination methods with easy, 
convenient sample preparation and low LOD. 

6. Occurrence in food 

Chloropropanols, their esters, and GEs are mainly present in food-
stuffs such as soy sauce, edible vegetable oil, bread, infant formula, 
noodles, and other products. As reported previously, the amounts of 3- 
MCPD, 3-MCPD esters, and GEs produced during different cooking 
methods vary; frying and stewing produce the highest and lowest 
amounts of these toxicants, respectively (Zhang et al., 2020). As shown 
in Table S3, the reference data for these contaminants have decreased in 
the past few years, indicating that additional/improved mitigation 
measures have effectively reduced contaminant concentrations in 
foodstuffs. Infant formula is currently the primary research focus. 

Several reports have revealed that the concentrations of chlor-
opropanols or their esters and GEs vary by locality (Becalski et al., 2018; 
Nguyen and Fromberg, 2020; Arisseto et al., 2017; Fan et al., 2021; 
Zhang et al., 2020; Custodio-Mendoza et al., 2019; Kamikata et al., 
2019). In China, the concentrations of 3-MCPD ester and 2-MCPD ester 
range from ND to 1.469 mg/kg and ND to 0.218 mg/kg, respectively 
(Cui et al., 2021). In the United States, concentrations for bound 3- 
MCPD and glycidol in infant formulas containing palm/palm olein 
range from 0.021 to 0.92 mg/kg and from < LOQ to 0.40 mg/kg, 
respectively; the levels in formulas without palm/palm olein range from 
0.072 to 0.16 mg/kg and from 0.005 to 0.15 mg/kg, respectively (Leigh 
and MacMahon, 2017). The average bound 3-MCPD and bound glycidol 
concentrations in the U.S. infant formula collected between December 
2017 and January 2019 range from 0.035 µg/g to 0.63 µg/g and from 
0.019 µg/g to 0.22 µg/g, respectively (Beekman et al., 2020). In Ger-
many, however, the average concentrations of 3-MCPD and GEs 
declined from 0.094 to 0.054 µg/g and from 0.010 to 0.006 µg/g, 
respectively, between 2015 and 2019 (Beekman et al., 2021). In 2013, 
the European Food Safety Authority announced that margarine and 
related products, as well as vegetable and animal fats, contained 
elevated levels of 3-MCPD (EFSA, 2013). 

Dietary exposure assessments for 3-MCPD vary widely across age 
groups and diets. In a previous European population study, the average 
dietary exposure level of 3-MCPD was 0.5 to 1.5 µg/kg⋅bw/day for in-
fants and adolescents versus 0.2 to 0.7 µg/kg⋅bw/day for people over 18 
years of age (EFSA, 2016). A study conducted in Brazil showed 3-MCPD 
ester and GE intakes up to 5.81 and 10.46 mg/kg⋅bw/day, respectively, 
indicating a potential risk of 3-MCPD esters and GEs in the country’s 
infant formula market. There are still potential risks of excessive intake 
of 3-MCPD esters and GEs in infant formula in some regions of the world. 
Extra care and regulatory measures are required to safeguard pediatric 
health. 

7. Elimination methods 

As discussed above, chloropropanols widely found in food products 
are potential carcinogens with possible adverse effects on human health. 
There is an urgent need to mitigate their levels in food products to 
ensure safety. Commonly used elimination methods mainly center on 
optimizing oil-refining conditions to reduce the amount of chlor-
opropanol esters, which are the major formation precursors of chlor-
opropanols. The introduction of acid, whether in an acid degumming 
step or via bleaching clay, can form chloropropanol esters especially at 
high temperatures (Ramli et al., 2011; Schurz, 2010; Bis et al., 2020). 
The formation of 3-MCPD esters or GEs is associated with triglyceride 
type, chlorinated compounds, oil acidity, metal ions, water dosage, and 
deodorization temperature during the oil-refining process. Techniques 
to eliminate these precursors before, during, or after the deodorization 
procedure have been established based on the parameters mentioned 
above (Silva et al., 2019; Ramli et al., 2020; Zhang et al., 2021; Laksh-
manan and Yung, 2021; Gao et al., 2022). The five process parameters of 
water dosage, phosphoric acid dosage, degluing temperature, activation 
daily dose, and deodorization temperature can be fine-tuned to produce 
refined palm oil with the lowest possible amount of 3-MCPD ester while 
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ensuring the best possible quality. 3-MCPD ester can be reduced by 87.2 
% from 2.9 mg/kg to 0.4 mg/kg in the conventional refining process 
with color and oil stability index of 2.4R and 14.3 h, respectively (Zul-
kurnain et al., 2013). 

Silva et al. (2019) discussed the effects of single and double washing 
bleach steps on the levels of 3-MCPD ester and 2-MCPD ester in refined 
palm oil. The double washing bleach significantly reduced the levels of 
3-MCPD ester, 2-MCPD ester, and GEs up to 17.1 %, 56.4 %, and 76.9 %, 
respectively (Silva et al., 2019). Interactions between degumming and 
bleaching processes, as well as their effects on the formation of 3-MCPD 
ester and GEs in refined, bleached, and deodorized palm oils have also 
been investigated; water degumming is effective in lowering the 3- 
MCPD ester level by up to 50 % (Sim et al., 2018). The precursors of 
chloropropanols should be removed or inhibited during refining to halt 
the synthesis of these contaminants. Controlling the synthetic precursor 
of chloropropanols can eliminate them during the oil-refining process. 

Alternative approaches have emerged in recent decades including 
molecular distillation, enzymatic removal, and adsorption (Strijowski 
et al., 2011; Ramli et al., 2011; Ren et al., 2018; Kyselka et al., 2018). 
Molecular distillations are particularly successful in removing 3-MCPD 
ester and GEs from refined oils (Wen L. et al., 2022; Strijowski et al., 
2011; Kyselka et al., 2018). An easy enzymatic method was established 
to convert 3-MCPD and its esters from a plant oil reaction medium to 
non-toxic glycerol without necessitating high temperatures or organic 
solvents. According to Bornscheuer and Hesseler (2010), 3-MCPD ester 
can be converted by an enzyme cascade into the harmless product 
glycerol via an enzymatic cascade reaction. Adsorption can also remove 
3-MCPD ester after refining plant oil; commonly used adsorbents include 
zeolite, magnesium silicate, activated carbon, and active soil (Strijowski 
et al., 2011; Ramli et al., 2020; Ren et al., 2018; Kyselka et al., 2018; 
Wen L. et al., 2022). A calcinated zeolite and a synthetic magnesium 
silicate were shown to be able to lower the concentration of 3-MCPD 
esters and similar compounds by up to 40 %, according to a study by 
Strijowski (2011). The zeolite in particular was able to reduce the con-
tent of 3-MCPD esters and associated compounds relatively quickly in a 
wide variety of treatment temperatures. In a different study by Wen 
(2022), the 3-MCPD esters were removed during the decolorization step 
of the tea oil refining process using four adsorbents, including bleaching 
clay, powdered activated carbon, rod-like activated carbon, and mag-
nesium silicate. As a result of the 2 % increase in magnesium silicate 
addition, the content of 3-MCPD esters in camellia oil decreased first, 
reaching its lowest level of 4.10 mg/kg, and the related adsorption rate 
increased to 42.4 %. While, activated clay has the most effective 
adsorption in a different study for the process of refining fish oil (Gong S. 
S. et al., 2018). Therefore, further research is required on the adsorption 
impact caused by adsorbent surface area, pore structure, and surface 
chemical composition. 

We expect that future research will center on pursuing more effi-
cient, affordable ways to manage the levels of chloropropanols and their 
esters in food products without the introduction of secondary pollutants. 

8. Conclusion 

Chloropropanols and their esters or GEs are food contaminants of 
various toxicities that may critically affect food safety. This paper pro-
vided a review of the formation, detection, and removal of chlor-
opropanols and related esters. The formation processes were initially 
separated into internal and exterior categories, with precursors 
including allyl alcohol, chloropropanol esters, sucralose, carbohydrates, 
glycerol, or propylene glycol. The factors that affect chloropropanol 
formation in cooking oils and other food products with complex sub-
strates require further study, as it is evident that chloropropanols are 
easily generated in foodstuffs and inevitably ingested. At present, 
GC–MS and LC-MS with sample derivatization pretreatment are the most 
common analytical methods of chloropropanols and their esters in food 
matrices. There has been an overall reduction in the past five years of 

chloropropanols, their esters, and GEs in foods. Apart from infant for-
mula sold in Brazil, humans have a generally low risk of exposure for 
chloropropanol esters and GEs. However, recent restrictions on 3-MCPD 
and its fatty acid esters defined by the standard Commission Regulation 
(EU) 2020/1322 show that additional risk evaluation is still required for 
certain populations, including newborns and young children (EC, 2020). 

The removal of carcinogenic chloropropanol formation precursors 
may reduce their levels in certain foods. Future research on chlor-
opropanols, their esters, and GEs may center on developing more 
practical experimental models of the formation mechanism, easier-to- 
use sample preparation techniques, low-LOD testing methods, and 
more efficient and affordable elimination techniques. Tackling unre-
solved issues will mitigate existing uncertainties concerning chlor-
opropanols and their esters as they affect human health. 
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