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. Children of severe hand, foot, and mouth disease (HFMD) often present with same clinical features as

. those of mild HFMD during the early stage, yet later deteriorate rapidly with a fulminant disease course.

. Our goal was to: (1) develop a machine learning system to automatically identify cases with high risk
of severe HFMD at the time of admission; (2) compare the effectiveness of the new system with the
existing risk scoring system. Data on 2,532 HFMD children admitted between March 2012 and July
2015, were collected retrospectively from a medical center in China. By applying a holdout strategy
and a 10-fold cross validation method, we developed four models with the random forest algorithm

. using different variable sets. The prediction system HFMD-RF based on the model of 16 variables

. from both the structured and unstructured data, achieved 0.824 sensitivity, 0.931 specificity, 0.916
accuracy, and 0.916 area under the curve in the independent test set. Most remarkably, HFMD-RF offers
significant gains with respect to the commonly used pediatric critical iliness score in clinical practice. As
all the selected risk factors can be easily obtained, HFMD-RF might prove to be useful for reductions in
mortality and complications of severe HFMD.

Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by a group of enteroviruses such
as enterovirus 71 (EV71) and coxsackievirus A16 (CA16)"2. In recent years, outbreaks of HFMD have increased,
and more and more severe cases and fatalities have appeared throughout most of the Asia-Pacific Region coun-
tries®. For example, data reported by the Western Pacific Regional Office of the World Health Organization
showed that in China, a total of 2,468,174 cases of HFMD including 220 deaths were reported in 2016*, represent-
ing a substantial public health threat.
: HFMD is characterized by fever, general malaise, sore throat and vesicular eruptions on the hands, feet,
© tongue and oral mucosa®. Severe cases can also involve serious neurological, respiratory or circulatory complica-
: tions, such as meningitis, encephalitis, cardiorespiratory failure, acute flaccid paralysis or even death®. Although
. the prognoses in most cases are good, children with severe HEMD usually have no typical clinical manifestations
in the early stage and rapidly progress to severe or fatal disease in a short term. Consequently, the identification
of high-risk patients who are going to develop a severe form of HFMD is a key goal in the management of this
disease.
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Characteristics Total Data Set (n=2532) | Training Set (n=1899) | Test Set (n=633) | X/t P-value
Stage (Severe/Mild) 365/2167 274/1625 91/542 0.13 0.732
Gender (Male/Female) 1715/817 1282/617 433/200 0.17 0.677
Vomiting (Yes/No) 393/2139 292/1607 101/532 0.12 0.727
Age (month) 24.11£17.14 24.19+16.94 23.86£17.72 0.43 0.669
Respiratory rate (/min) 27.27£5.61 27.27£6.16 27.27+3.46 —0.01 |0.989
Peak temperature (°C) 39.08+£0.71 39.08£0.71 39.09+0.72 —0.30 |0.763
Fever duration (day) 2.50+1.76 2.52+1.79 2474+1.67 0.65 0.513
Blood glucose (mmol/L) 5.56+6.14 5.54+1.35 5.62+1.42 —1.21 |0.226
Platelet (10°/L) 322.03+93.06 321.61£92.70 323.29+£94.20 —0.27 |0.790
Percentage of lymphocytes (%) 39.35+16.41 39.53416.50 38.82+16.16 0.95 0.345
Lactate dehydrogenase (U/L) 310 (73) 309 (72) 313 (73) 0.50 0.620"
Alkaline phosphatase (IU/L) 178.96 +66.34 179.12£61.69 178.46 +78.73 0.49 0.624
Creatine kinase (IU/L) 114 (80) 114 (80) 113 (80) 030 |0.761*
Creatine kinase-MB (IU/L) 32.34+18.07 32.31+£17.98 32.42+18.36 —0.12 | 0.904
Creatinine (umol/L) 24.21+5.84 24.13£5.73 24.45+6.15 —1.38 | 0.169
Uric acid (umol/L) 285.41+83.18 285.33+83.26 285.66 + 83.00 —0.09 |0.932
Blood chlorine (mmol/L) 100.31+£2.34 100.31£2.25 100.29 £2.61 0.22 0.830
Alanine aminotransferase (IU/L) | 18 (11) 18 (11) 18 (11) —0.75 | 0.456"

Table 1. Baseline Characteristics. Data are mean = standard derivation or median (interquartile range). The
Chi-square test was used for comparison of categorical variables and the two-sample t test for continuous
variables between the training set and the test set. “Transformed logarithmically to assume a near-normal
distribution for t-test.

A variety of predictive factors have been utilized by clinicians and researchers to identify cases whose condi-
tions are likely to deteriorate. A meta-analysis of 19 observational studies has identified variables that conferred
risk for rapid progression to severe disease, including fever duration, peak temperature, age, vomiting, neutrophil
count, hyperglycemia and EV71 infection’. Other groups have sought to correlate clinically useful biomarkers
such as cytokines with disease severity!*-12. Several single nucleotide polymorphisms might correlate with both
susceptibility and progression of severe disease!>!*. Moreover, MRI-related variables have also been involved in
the identification of severe HFMD children with state-of-the-art machine learning algorithms'>.

The most commonly used scoring system for disease severity in pediatric intensive care units is the pediatric
critical illness score (PCIS), which was drawn up by the emergency group of Chinese pediatric society, Chinese
medical association in 1995. One of the greatest challenges with PCIS application in HFMD lies in that it is not
designed specifically for HFMD and thus cannot adequately evaluate the severity of HFMD'. To our knowledge,
no simple, real-time and automatic prediction tools for severe HFMD identification have emerged as clinically
practicable since 1995. Therefore, the interest of this study consists in staging HFMD early in hospitalization to
provide effective and timely medical intervention.

The widespread implementation of Electronic Medical Record (EMR) brings the promise of abundant data
resources for research purposes such as better prediction of clinical deterioration'”. A number of machine learn-
ing algorithms and models have shown their advantages in improving real-time identification of sepsis shock,
heart failure and other diseases!'®-22. In this paper we show whether machine learning methods and clinical data
obtained from a relatively large population of HEMD patients can be efficiently applied to address the severe
HFMD identification problems. We identified relevant predictive variables in severe HFMD and compared mod-
els of different complexity to provide to physicians a simple, robust and automatic decision-making support
system. We also provided a comparison between the system and PCIS currently used in clinic.

Results
Basic Characteristics. Table 1 shows the baseline characteristics of all subjects. A total of 2,532 HFMD
hospitalizations were included in this study (mean age, 24.11 [standard derivation 17.14] months; 1,715 males
[67.73%]). Of these hospitalizations, 365 (14.42%) progressed to the severe stage with complications including
encephalitis (n =237), meningitis (n = 36), acute flaccid paralysis (n =19), cardiorespiratory failure (n =258),
or death (n=>5). For the population of severe cases, the median time from illness onset to diagnosis was 2 days
(interquartile range 1-3), and 1 day (interquartile range 0-2) for diagnosis to severity. Distributions of the
onset-to-diagnosis and diagnosis-to-severity time interval showed that 79.18% (289/365) of cases sought treat-
ment in hospital within 3 days of illness onset and 74.52% (272/365) of cases developed severe complications after
1 day of admission (Supplementary Figure S1).

All the hospitalizations were randomly sorted 7:3 into a training set with 1,899 patients and a test set with
633 patients. There is no significant difference between the training and test sets in terms of baseline variables
(Table 1).

Feature Selection. After removal of variables with missing rate >20%, a total of 153 variables consisting of
laboratory results, vital signs, symptoms and demographics were extracted from the structured and unstructured
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Figure 1. Identification and selection procedure of clinical features for machine learning models.

data of EMR (Fig. 1). Then, we selected the predictors related to severe HFMD according to literature review,
expert clinician opinion and univariate analysis. Eleven variables were chosen from the structured laboratory
results: blood glucose, platelet, percentage of lymphocytes, lactate dehydrogenase, alkaline phosphatase, creatine
kinase, creatine kinase-MB, creatinine, uric acid, blood chlorine, alanine aminotransferase, and five from the
unstructured free text: age, respiratory rate, peak temperature, fever duration, vomiting.

Predictive efficiencies of the selected variables were supported by the Chi-square test or the two sample
t-test to clarify the differences between the severe and mild HFMD groups. As expected, the null hypothesis was
rejected for all the variables (Table 2), which showed that their statistical distributions should be considered to be
different and the differences to be significant. These results confirmed the importance of variables from both the
structured and unstructured data in identifying severe HFMD.

Prediction Results Using Machine Learning Algorithms.  Figure 2 showed the receiver operating char-
acteristic (ROC) curves for the four RF models basing on different variable sets. With all the 153 variables, the
first model (Model 1) identified severe HFMD with a reasonable area under the ROC curve (AUC) of 0.862.
Using the structured variables alone, the second model (Model 2) had comparable performance to that of Model
1, with an AUC of 0.855. Yet using the unstructured variables alone, the performance of the third model (Model
3) declined seriously to an AUC of 0.710. Interestingly, if both kinds of variables were used, the fourth model
(Model 4) had even greater predictive ability than Model 1, yielding an AUC of 0.916. Overall, the performance of
only one kind of variables lagged behind their combined performance in a RF model, demonstrating the impor-
tance of defining complex predictors and of combining their efficiencies in nonlinear models. This conclusion
was supported by the similar changing patterns of AUC when applying other machine learning algorithms such
as support vector machine, XGBoost, logistic regression and multi-layer perceptrons, although these algorithms
performed a little worse than or equally to RF (Supplementary Figure S2).

We computed the importance score for each variable to identify the important features used by the RF classi-
fier. The larger the score is, the more important the variable is. As shown in Fig. 3, the most important predictive
variable was lactate dehydrogenase (LDH), followed by creatine kinase-MB (CK-MB), blood glucose and creatine
kinase (CK). The symptom vomiting was the fifth important factor. Only a very small importance was found in
respiratory rate, alanine aminotransferase, percentage of lymphocytes and platelet.
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Vomiting (Yes/No) 133/365 260/2167 142.31 <0.001
Age (month) 30.58+20.01 23.02£16.36 6.85 <0.001
Respiratory rate (/min) 28.72+12.94 27.03+£2.87 2.49 0.013
Peak temperature (°C) 39.21+£0.57 39.06+£0.73 4.40 <0.001
Fever duration (day) 327+1.93 2.38+1.69 8.30 <0.001
Blood glucose (mmol/L) 6.14+1.39 547+1.34 8.78 <0.001
Platelet (10°/L) 353.53+108.05 316.72+£89.23 6.07 <0.001
Percentage of lymphocytes (%) 39.77+16.43 36.90+16.15 —3.09 0.002
Lactate dehydrogenase (U/L) 320 (67) 228 (250) —13.10 <0.001"
Alkaline phosphatase (IU/L) 163.19+43.48 181.61 £69.12 —6.69 <0.001
Creatine kinase (IU/L) 120 (53) 113 (79) —3.94 <0.001"
Creatine kinase-MB (IU/L) 34.56+17.84 19.124+13.13 —17.82 <0.001
Creatinine (umol/L) 24.444+6.93 23.60+5.94 —2.43 0.015
Uric acid (umol/L) 287.51+82.58 27298 £85.74 —-3.09 0.002
Blood chlorine (mmol/L) 100.00 £ 3.46 100.36 £2.09 2.74 0.006
Alanine aminotransferase (IU/L) | 19 (6) 18 (11) —2.58 0.010"

Table 2. Characteristics of severe and mild HFMD groups. Data are mean =+ standard derivation or median
(interquartile range). The Chi-square test was used for comparison of categorical variables and the two-sample
t test for continuous variables between the severe group and the mild group. “Transformed logarithmically to
assume a near-normal distribution for t-test.
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Figure 2. The receiver operating characteristic (ROC) curves of the four random forest models.

Overall Comparison of Predictive systems. Owing to its superb performance, we built a prediction
system based on Model 4 of RF for predicting the progression of HFMD and named it HFMD-RE The HFMD-RF
system was then compared with the clinically used scoring system, PCIS. ROC curves for these two systems are
plotted in Fig. 4. Their performance was presented in Table 3. In comparison to PCIS in the training and test sets,
our system’s AUC, sensitivity, specificity and accuracy were significantly improved. The p-values comparing the
two systems are less than 0.001 except for the sensitivity in the test set (p =0.017). Our system’s sensitivity and
specificity numerically improved by 21.3% and 25.2% in the test set. The accuracy and AUC of our model were
both 0.916, which increased by 24.7% and 18.8% in comparison with PCIS.

Discussion

Due to the rapid progression of symptoms and the ambiguous boundary between disease stages, patients with
severe HFMD are at high risk of insufficient quality of care and poor post discharge outcomes®. Rapid identi-
fication of patients with severe HFMD is thus urgently required to prevent deterioration and to reduce acute
mortality. In this study, we developed and validated a prediction system for progression to severe HFMD through
automated analysis of EMR data. Our major findings are as follows: (1) The prediction system can provide accu-
rate identification of severe HFMD with an AUC of 0.916, basing on 16 clinical variables collected at the time of
admission. (2) Results have shown that LDH, CK-MB, blood glucose, CK and vomiting are the top five indicators
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Figure 4. The receiver operating characteristic (ROC) curves of the HFMD-RF system and the pediatric critical
illness score (PCIS).

associated with the risk of severe HFMD. (3) Our system achieved significantly higher performance than appli-
cation of the existing PCIS in clinic.

Special expertise and resource may be required to implement a sophisticated machine learning system in an
EMR. As a result, the tradeoff between cost of implementation and benefit of performance improvement with
sophisticated approaches should be considered. Through a process using literature review, expert clinician opin-
ion, univariate analysis and machine learning, we built and compared four RF models based on different variable
sets. Model 1 of 153 variables obtained a moderate performance in terms of AUC, a measurement of global classi-
fication. Model 2 was superior to Model 1 because it got a comparable AUC using only 11 structured variables and
was relatively easier to implement. Model 3 and 4 are likely more difficult to implement because of their depend-
ence on processing of unstructured data. However, this cost may be worth the improved performance in Model

SCIENTIFICREPORTS |7: 16341 | DOI:10.1038/541598-017-16521-z 5



www.nature.com/scientificreports/

(improvement, P value)

P value)

P value)

‘ ‘ Sensitivity Specificity Accuracy AUC
Performance
PCIS 0.631 0.742 0.726 0.723
Training Set
HFMD-RF 0.807 0.969 0.945 0.919
PCIS 0.670 0.753 0.741 0.768
Test Set
HFMD-RF 0.824 0.931 0.916 0.916
Sensitivity Specificity (improvement, | Accuracy (improvement, AUC (improvement, P

value)

Performance comparison

Training Set

HFMD-RF against PCIS

27.9%, P <0.001

30.6%, P <0.001

30.2%, P <0.001

26.8%, P <0.001

Test Set

HFMD-REF against PCIS

21.3%, P=0.017

25.2%, P <0.001

24.7%, P <0.001

18.8%, P < 0.001

Table 3. Performance comparison of HFMD-RF against the pediatric critical illness score (PCIS). The Chi-
square test was used for comparison of Sensitivity, Specificity and Accuracy, and the two-sample t test for AUC
between HFMD-RF and PCIS.

4, which obtained the best AUC by integrating five unstructured and eleven structured variables. Combining
the analysis of free-text notes and structured laboratory results appears to have the best predictive performance.

A similar machine learning model has been built recently for risk prediction of severe HFMD and achieved
an AUC of up to 0.985 with several clinical and MRI-related features's, representing a great advance. However,
MRI examination requires special equipment and is time- and cost-consuming, making this model difficult in
general medical practice or for every patient. Jun Qiu et al. developed another model with good discrimination
(AUC > 0.9) using only four laboratory parameters?. Whereas this model has a different purpose and can only
discriminate children with high mortality risk from severe HFMD cases. Therefore, the present identification
system HFMD-RF was developed to provide accurate risk stratification for mild HFMD patients in a timely and
effective manner with easily-obtained variables.

Comparing HFMD-RF with the existing scoring system PCIS, HFMD-RF demonstrated superior perfor-
mance in both the training and test sets in terms of sensitivity, specificity, accuracy and AUC. These results reveal
that HFMD-RF may be more clinically practicable for the identification of severe HFMD patients than PCIS. One
reason for this finding may lie in that we used 16 variables selected specifically for HFMD while the 10 variables
in PCIS (see Methods) are aimed at all the serious diseases in pediatric intensive care units. Besides, unlike PCIS
which combines sub-score in each variable linearly to create an overall score?*?*, we used RF so that distinct var-
iables can be integrated in nonlinear models for optimal prediction®.

Our research indicates that myocardial enzymes LDH, CK-MB, CK are very important risk factors for severe
HFMD, as have been found in previous studies?’%°. LDH is a cytoplasmic enzyme and its release into plasma reflects
the degree of tissue damage. CK-MB and CK, which are mostly found in myocardial cells, are well-known and sen-
sitive indicators of myocardial injury. Compared with the mild HFMD group, the severe HFMD group had signif-
icantly higher LDH, CK-MB, CK levels, indicating the degree of myocardial injury differs in children with HFMD.
This suggests that LDH, CK-MB and CK may be valuable diagnostic markers in predicting the disease severity in
HFMD children before they develop pulmonary oedema, pulmonary haemorrhage or heart failure.

The selected attributes in HFMD-RF can also be used to provide simple biomedical discriminatory rules for
severe HFMD identification. We provide means or medians for the mild and severe HFMD groups, which can
be of help in physicians’ decision-making process. Most of the variables used in our system have been reported
previously, such as age, peak temperature, fever duration, vomiting, blood glucose and so on"**%*!. Besides, our
results also indicated the prediction significance of other variables including alkaline phosphatase, creatinine and
uric acid that are mainly related with the status of the liver and kidney and are not currently used as predictive
factors in this disease. These newly found predictors might be useful to understand the potential cause of severe
HEMD from a medical point of view.

It is crucially important to note that different combination lists of variables might exist with similar predictive
performance due to the uncertainty space of the solutions in decision-making problems??. Besides superior per-
formance, the variable list used in our model has a great advantage in that each variable was present in the EMR
for clinical care. No additional reporting structure or extra clinical assessments were required.

Given these benefits, we plan to deploy the HFMD-RF system at our center to facilitate interventions that
targeted hospitalized HFMD children. To implement this, EMR data will be exported to a secure server on which
the system will run; the identification result of the system will be put back into the EMR for care delivery. In this
way, our model can be replicated easily in other hospitals without considering EMR vendor.

Some important limitations of the HFMD-RF system should be noted. Firstly, as the system was developed in
aretrospective manner that could introduce bias, a prospective validation is needed to demonstrate its predictive
capability. Furthermore, we employed only one single center’s data for system development and evaluation, addi-
tional validation with local data should be carried out before its generalization to other hospitals. Due to these
limitations, it would be useful to expand the model validation in prospective and multi-center clinical samples.
In addition, another limitation of our study is a lack of a golden standard for severe HFMD. We, as well as other
studies’>?, used the Chinese guidelines for HFMD diagnosis and treatment as the reference standard.

In conclusion, on a retrospective data set we successfully developed a RF model utilizing the EMR content
to identify severe HFMD children in their mild stages. The novel model achieved higher sensitivity, specificity,
accuracy and AUC than the existing scoring system PCIS.
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Methods

Study population. We performed a retrospective study of hospitalizations at Guangzhou Women’s and
Children’s Medical Center using data obtained from the inpatient EMR. Clinical diagnosis of HFMD was guided
by the Chinese guidelines for HEMD diagnosis and treatment issued by the Ministry of Health of China (revised
in 2010, http://www.moh.gov.cn/mohyzs/s3586/201004/46884.shtml). Children were clinically diagnosed as hav-
ing HFMD, if they displayed maculopapular or vesicular rash on the hands, feet, oral mucosa, and/or buttock. In
this study, we included 2,532 hospitalizations admitted between March 2012 and July 2015 for children <16 years
suffering from newly diagnosed HFMD. Of these 2,532 children, 2,167 children were categorized as mild HFMD
without any serious complications before discharge from hospital, and the other 365 children deteriorated to
severe HFMD with serious complications, including encephalitis, meningitis, acute flaccid paralysis, cardiorespi-
ratory failure or death after admission. The diagnosis of severe HEMD was reconfirmed by two senior physicians
through reviewing physician progress notes.

This study was approved by the Ethics Committee and Institutional Review Board of Guangzhou Women’s
and Children’s Medical Center, Guangzhou, China, and conducted in accordance with the ethical guidelines of
the Declaration of Helsinki of the World Medical Association. The requirement to obtain informed consent was
waived because of the retrospective nature of the study. All data were deidentified before they were provided to
the investigators.

Feature extraction. For model development, we used variables from the examination done upon admission
because our aim was to identify patients who might need more attention and resources at the start of their hospital-
izations. All of the variables included in the investigation were collected by reviewing the patient medical records
that were preserved in EMR. In the data set, structured data elements used for severe HFMD prediction were lab-
oratory results, which include hematologic, biochemical, immunologic, humoral and microbiological findings.
Potential unstructured data elements were admission notes, which include demographic characteristics (age and
sex) and clinical parameters (signs and symptoms). To extract variables from unstructured clinical documenta-
tion in Chinese, we referred to Dong Xu’s work®® and used a data-driven framework which incorporated machine
learning and natural language processing. Specifically, the framework combined the core lexica of medical terms
(Systematized Nomenclature of Medicine-Clinical Terms in Chinese, Chinese Pharmacopoeia and Wanfang Med
Online, see ref.**), an iterative bootstrapping algorithm to obtain more accurate terms and a random forest algorithm
to compute correlations between terms and descriptions. Through this procedure, the input text was converted into
an output record containing a clinical variable (a symptom, a vital sign, or a demographic feature, such as papule,
myoclonic jerk, convulsion, vomiting, and so on), the time of the variable and an optional description. In total, 145
variables were extracted from the structured data and 45 from the unstructured text as candidate predictors.

Feature selection. First, we removed potentially difficult-to-obtain variables with missing rates more than
20%, leaving 153 features (126 from structured data and 27 from unstructured data) for analysis. Next, through
literature review and consensus meeting between the authors including two senior physicians, nine variables (five
from structured data and four from unstructured data) were selected according to importance reported by litera-
tures. Although feature selection through using established clinical knowledge is a common method, a significant
bias might be introduced in the selection process. Therefore, additional univariate analysis was used to select
relevant variables for the prediction model. The top 10 variables selected by the data-driven univariate analysis
based on Chi-square calculations were added to the feature set. After removal of duplicates, a total of 16 variables
were selected, of which 11 were from structured data and 5 from unstructured data (Fig. 1).

Data preprocessing. Before applying machine learning algorithms, values that were missing or out of pre-
defined physiological ranges were interpolated with a Nearest-Neighbor algorithm?®, which impute an incomplete
variable by giving the corresponding value of the closest sample within the set of fully-informed samples. This
way of interpolation is able to avoid introducing additional outliers that are nonexistent in the original dataset.
The standard minimum-maximum normalization to [0, 1] was then performed for the data to reduce the effect of
large feature range variation. After preprocessing, the samples in the majority groups were randomly undersam-
pled with the EasyEnsemble method™ to achieve data balance.

Model development. The random forest (RF) algorithm was adopted basing on its wide use in clinical
decision systems and the excellent performance in classification tasks. A RF is a classifier that uses an ensemble of
classification trees®*-*. Each tree is unpruned (grown fully) and is built by using both bagging (bootstrap aggre-
gation) and random variable selection, yielding low-bias and low-correlation trees. In contrast to the original
publication®, in our models we used the Scikit-learn implementation*’ to obtain the prediction by averaging the
probability scores across the trees, rather than letting each tree vote for a single class. The number of input varia-
bles randomly chosen at each split was set as the square root of the number of features, and the number of trees in
the forest was set as 500. Importance of each variable was evaluated based on the loss in predicting performance
by its omission from the model.

Besides RE a representative set of classification algorithms was also selected for the severe HEMD prediction
task from the dataset. These algorithms were the support vector machine*!, XGBoost*}, logistic regression and
multi-layer perceptrons®. The parameters were set to default values for the algorithms.

We developed 4 models with each algorithm for identification of patients who will progress to severe HFMD
based on different numbers of variables: (1) 153 variables in the data set before feature selection; (2) 11 variables
selected from structured data; (3) 5 variables from the unstructured text; (4) 16 variables from both the structured
and unstructured data. All models were developed in Python using the package Scikit-learn*.
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The holdout and cross validation methods were employed to reduce overfitting in the model and to derive
a reliable estimate of the performance of the model. Mild and severe HFMD children were randomly split into
two experimental datasets, a training set with 70% of cases (including 1,625 mild and 274 severe patients) and a
test set with 30% of cases (including 542 mild and 91 severe patients). The training set was utilized for the feature
extraction and feature selection processes described above and was used to generate the prediction models with
a 10-fold cross validation step. The test set was employed to estimate the models’ performance. To measure the
models’ predictive performance on practical, real world data, we calculated the sensitivity, specificity, accuracy
and AUC in the training and test set*.

Experimental comparison. To compare the performance of the proposed model, we also evaluated PCIS,
a widely used scoring system in China. Ten physiological indexes are enrolled: heart rate, spontaneous breath
rate, systolic blood pressure, oxygen partial pressure under breathing room air, serum sodium, potassium, creati-
nine or urea nitrogen, hemoglobin, PH value of arterial blood gas, gastrointestinal system condition (stress ulcer
hemorrhage and intestinal paralysis, only stress ulcer hemorrhage or other). PCIS is usually tabulated by hand by
nurses and a score of 4, 6, or 10 is generated from each category and aggregated to a 40-100 total score. Patients
were divided, according to PCIS scores, into noncritical group (>80), critical group (71-80) and extremely crit-
ical group (<70). PCIS was calculated for most of the admitted HFMD children at our medical center. For a fair
comparison, we extracted the PCIS values recorded right upon admission.

Statistical analysis. Continuous variables of each group are presented as mean + standard deviation, and
the categorical variables are expressed as absolute values. Chi-square test was used for analyzing categorical data
and ratio values, while a two-sample t-test was used for analyzing the continuous data. The data that did not
have a normal distribution are expressed as median (interquartile range) and were transformed logarithmically
to assume a near-normal distribution for t-test. The accepted level of statistical significance for all analyses was
p < 0.05. Statistical analyses were performed using SPSS version 17.0 (SPSS Inc, Chicago, IL).
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