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Abstract: This paper presents a discussion regarding regression models, especially those belonging
to the location class. Our main motivation is that, with simple distributions having simple interpreta-
tions, in some cases, one gets better results than the ones obtained with overly complex distributions.
For instance, with the reverse Gumbel (RG) distribution, it is possible to explain response variables by
making use of the generalized additive models for location, scale, and shape (GAMLSS) framework,
which allows the fitting of several parameters (characteristics) of the probabilistic distributions, like
mean, mode, variance, and others. Three real data applications are used to compare several location
models against the RG under the GAMLSS framework. The intention is to show that the use of a
simple distribution (e.g., RG) based on a more sophisticated regression structure may be preferable
than using a more complex location model.

Keywords: beyond mean regression; distributional regression; parsimony principle; regression
models; smoothing functions

1. Introduction

With the increasing use of new data analysis techniques, mainly artificial intelligence,
machine learning, neural networks, and big data, regression analysis has become, perhaps,
the most important tool among the various statistical (learning) methods of optimiza-
tion, and of decision-making management. Evidently, the greater the complexity of the
databases, the greater the complexity in the proper treatment of these data. The number of
papers with increasingly complex techniques is naturally emerging because of the need to
extract more accurate information from the data.

This manuscript is more of a work belonging to this class of papers, although we
think it is less complex compared to its alternatives, which are mainly presented as (log
linear) location models. Usually, the location parameters are associated to other important
parameters like mean, percentiles, standard deviation, skewness, and kurtosis, in which
these characteristics are implicitly modeled. There are papers that perform a good work
obtaining the solutions. For instance: the three parameter log-xgamma Weibull regression
model [1], the four parameter Topp Leone generated Burr XII [2], log-odd log-logistic
Marshal Olkin generalized half-normal [3] and log-beta Burr XII [4] regression models, and
the five parameter log-Hjorth Weibull regression model [5]. We note that many of these
complex distributions suffer from the interpretation of the parameters and their estimations
needed whenever predictions are demanded.
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In the sequel, instead of developing and considering highly complex location models
to deal with complex data, a different approach will be used, considering a more sophisti-
cated class of regression models based on the reverse Gumbel (RG) distribution, a simple
distribution with simple parameters and predictions interpretations. The chosen tool for
the presented analyses is the generalized additive models for location, scale, and shape
(GAMLSS) [6] framework, since they allow that any and all of distribution parameters to
be explicitly modeled.

Hence, the aim of this paper is to compare if a GAMLSS model based on a very simple
distribution (RG) is able to outperform several highly complex location models. In this
sense, Section 2 presents a description of the location models, the GAMLSS framework
and some statistical inference concepts. In Section 3 we present three real data applications
(voltage data, class-H insulation, and heart transplant) comparing some recently developed
location models against the RG distribution under the GAMLSS framework. Finally,
Section 4 ends the paper with some concluding remarks.

2. Materials and Methods
2.1. Location Models

Location regression models are useful to relate a dependent (response) variable to one
or more explanatory variables. Suppose a response Y, with location parameter µ(v), which
depends on the explanatory variable vector v. For this case, a class of regression models
for location is characterized by

Y = µ(v) + Z, (1)

where Z follows a specific distribution that does not depend on v.
For instance, let us consider that Y follows a reverse Gumbel distribution (RG), i.e.,

Y∼RG(µ, σ), also known as the type I extreme value distribution, given by

f (y; µ, σ) =
1
σ

exp
[
−
(

y− µ

σ

)
− exp

(
−y− µ

σ

)]
, −∞ < y < +∞,

where −∞ < µ < +∞ is the mode, and σ > 0 is the scale parameter, E(Y) = µ + 0.57722σ
and the median is µ + 0.36611σ [7]. The RG distribution is appropriate for moderately
positive skew data.

Considering that Z follows a standard RG distribution, i.e., µ = 0, in Equation (1),
then Y will follow a RG distribution with model parameters θ = (µ(v), σ). Note that, by
modeling only µ, we are actually explicitly modeling the mode of the response and also
implicitly modeling both the average and median of Y.

2.2. GAMLSS Framework

An alternative approach, when other measures are affected by explanatory variables,
e.g., variance, skewness, and excess of kurtosis, is to explicitly model the parameters
related to these measures. In this sense, the GAMLSS framework [6] occupies a prominent
position among the beyond the mean (or location) regression models [8], generalizing both
generalized linear [9] and generalized additive [10] models. GAMLSS are semi-parametric
regression models in which any distribution may be defined to describe the response Y,
and different regression structures may be considered to explain any or all of its parameters,
using linear and/or nonlinear functions.

Let Y ∼ D(θ), where D is the distribution of the response variable, and θ is its
parameter vector. Then, a GAMLSS can be written as

gk(θk) = Xkβk +
Jk

∑
j=1

sjk(xjk), (2)
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where gk(·) denote appropriate link functions for the kth parameter, which is usually
determined by the range of the parameter considered [11], Xk is a known n× (mk + 1)
model matrix, mk denotes the number of explanatory variables related to the kth parameter,
βk =

(
β0k, β1k, . . . , βmkk

)> is a parameter vector of length (mk + 1), and sjk(.) are smoothing

functions (in this paper, it will be considered as a P-spline [12,13]). When
Jk

∑
j=1

sjk(xjk) = 0,

model (2) reduces to a fully parametric GAMLSS version [6] (pGAMLSS, for short).
Since any distribution may be used in GAMLSS, usually there is no need to transform

the data in study, resulting in clearer interpretations. A wide list of distributions in GAMLSS
may be found in Reference [7]. For instance, if Y∼RG(µ, σ), then a GAMLSS model based
on the RG distribution is given by

g1(µ) = µ = X1β1 +
J1

∑
j=1

sj1(xj1),

g2(σ) = log σ = X2β2 +
J2

∑
j=1

sj2(xj2).

Here, the considered link functions for µ and σ were the identity and logarithm due to
their range, respectively. Moreover, we can actually rewrite a location model in terms of
the GAMLSS framework. Let us consider Y∼RG(µ, σ) again, and then Equation (1) can be
rewritten as

θ =

[
g1(µ)

σ

]
=

[
X1β1

σ

]
.

It is noteworthy that, depending on the parameterization of the response variable
distribution [7], µ is not necessarily a location parameter. Nonetheless, the model presented
in Equation (2) can be applied more generally to any type of parameter from a population
distribution [6].

2.3. Estimation and Model Selection

The maximum likelihood estimates for a GAMLSS model can be performed in the
gamlss package [14] (and its add-ons) in R software [15]. The algorithms used are the RS and
CG procedures described by References [6,11,14] and are available in the documentation of
the package.

In order to deal with censored observations (events that will occur in the future) within
the GAMLSS framework, the methodology is identical to the one used in classical models,
i.e, we must add the probability that this information will occur in the future 1− F(yi; θk)
into the likelihood , where F(·) denotes the cumulative density function. Then, the log-
likelihood is given by l(θk) = ∑i∈F log f (yi; θk) + ∑i∈C log 1− F(yi; θk). Computationally,
we can use the gamlss.cens [16] package to obtain the model estimates in the presence of
censored observations.

As the explanatory variables can be included in any of the regression structures of all
parameters, there are some procedures to select the additive terms. In this paper, we are
using the so-called Strategy A [11,17], a stepwise-based method applied to select the terms
for each model parameters based on the Akaike information criterion (AIC) [18]. This
approach can be achieved using the stepGAICAll.A() function in the gamlss package.

After selecting the additive terms, we verify the model assumptions by conducting
a residual analysis. The worm plots (WP) [19] are a useful tool based on the normalized
quantile residuals [20], that graphically show if the fitted model presents an adequately
fit to the data. With this plot we can compare the differences between the empirical and
model residual mean, variance, skewness, and kurtosis, respectively, within the range in
the QQ plot. More information regarding WP may be found in Reference [11].



Entropy 2021, 23, 469 4 of 11

3. Results

In this section, we will consider three classical data sets that were used as motivational
examples to develop new (log-)location models in the past few years. These models will
be compared to the GAMLSS framework based on the two-parameter Reverse Gumbel
distribution [7]. All comparisons are made using both AIC [18] and Bayesian information
criterion (BIC) [21]. We also provide, in each application, the effective degrees of freedom
for all fitted models, i.e., the sum of the degrees of freedom of linear terms with the
smoothing parts (when they are considered in the fitting process).

3.1. Application 1: Voltage Data

This data set was reported by Lawless [22], who conducted an experiment considering
accelerated voltage life test to study specimens of solid epoxy electrical-insulation. Basically,
the experiment consists in determining the failure times for epoxy insulation specimens
(in min), considering three levels of voltage (xi): 52.5, 55.0, and 57.5 kV. The total of times
observed were n = 60, where six observations were classified as censored observations.

These data have already been modeled by the following (log-)location models:

• Five-parameter log-Topp Leone generated Burr XII (LTLGBXII) [2] distribution;
• Four-parameter log-Weibull Marshall-Olkin Weibull (LWMOW) [23] distribution;
• Four-parameter log-Zografos-Balakrishnan odd log-logistic generalized half-normal

(LZBOLL-GHN) [24] distribution;
• Four-parameter log-odd log-logistic Fréchet (LOLLFr) [25] distribution;
• Four-parameter heteroscedastic log-extended generalized odd half-Cauchy Weibull

(HLEGOHC-W) distribution; four-parameter log-extended generalized odd half-
Cauchy Weibull (LEGOHC-W) distribution; two-parameter heteroscedastic log-Weibull
(HLW) [26] distribution;

• Three-parameter log-odd log-logistic generalized half-normal (LOLLGHN) distribu-
tion; two-parameter log-generalized half-normal (LGHN) distribution; four-parameter
log-beta generalized half-normal (LBGHN) [27] distribution;

• Four-parameter log-gamma extended Weibull (LGE-W) [28] distribution
• Four-parameter log-Kumaraswamy generalized Rayleigh (LKwGR); distribution

three-parameter log-exponentiated generalized Rayleigh(LEGR) distribution; two-
parameter log-generalized Rayleigh (LGR) [29] distribution;

• Four-parameter exponentiated logistic geometric type I(ELGI) distribution; four-
parameter exponentiated logistic geometric type II (ElGII) distribution [30].

Note that, as mentioned in Section 2.2, no transformation on the response variable is
necessary while using the GAMLSS framework. However, in this application, as considered
in the above papers, we will model the logarithm of the failure times, i.e, the response
variable considered in this example is y: log-time in minutes. Further, xi will be considered
as continuous (as in the previous applications), since the goal here is not to check if there is
a significant difference between the levels of voltage xi but to understand how x impacts in
the failure times.

Figure 1 displays the densities of the response variable (log-time in minutes) for each
voltage level. The idea here is to check whether it is necessary to fit a regression structure
(consider xi) for the scale parameter σ of the RG distribution on the GAMLSS framework.
As we can see, there is clearly a difference between the dispersion of the three different
levels and thus σ may be modeled as a function of xi. Moreover, we may note that the
mode for xi = 57.5 and xi = 55.0 seem to be quite similar, but different from the mode
presented by xi = 52.5, indicating a non linearity effect between µ and the voltage levels.

Based on the Strategy A variable selection method [11,17], the final fitted GAMLSS
model, to represent Y is given by

µi = 15.646 + s(xi) and log σi = 5.83 + s(xi). (3)
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Note that, for both regression structures, a P-spline [12,13] was considered due to the
nonlinear relationship between xi and both parameters. The smoothing parameters λ for µ
and σ are 3.23 and 2.85, respectively.

Figure 1. Densities of y for each voltage level, disregarding censored observations.

In order to show the advantage of the fitted GAMLSS model (3), Table 1 presents all
AIC, BIC, and effective degrees of freedom values for all models considered to fit such data.
In addition of the semiparametric GAMLSS model presented in (3), we also provide the
results of the fully parametric GAMLSS (pGAMLSS) based on the RG distribution, which
regression structures are given by µi = 13.157− 0.129 xi and log σi = 6.073− 0.113 xi. The
idea here is to show how much reduction in AIC and BIC is caused by the addition of a
smoother in the GAMLSS framework (please note that this addition may occur based on
practical reasons, i.e., when a nonlinear effect is observed between an explanatory variable
and a given parameter). Further, we shall highlight that the maximum likelihood estimates
(MLEs), as well as AIC and BIC values presented in Reference [23], seem slightly off for the
LWMOW model and the results presented in Table 1 differ from their original paper. The
same occurs with the AIC and BIC values for the ELGII model available in Reference [30].

Table 1. Akaike information criterion (AIC), Bayesian information criterion (BIC), and effective
degree of freedom (df) from the fitted models for the voltage data.

Model df AIC BIC Model df AIC BIC

RG (GAMLSS) 5.5 157.6 168.6 LGE-W 5 168.6 179.1
HLEGOHC-W 6 161.3 173.9 HLW 4 171.4 179.8
RG (pGAMLSS) 4 162.1 170.5 log-Weibull 3 173.4 179.7
LOLLFr 4 164.3 172.7 LWMOW 5 173.5 184.0
LEGOHC-W 5 165.6 176.1 LKwGR 5 177.4 187.8
LZBOLL-GHN 5 166.2 176.7 LGHN 3 178.8 185.1
LOLLGHN 4 166.4 174.8 LGR 3 179.5 185.7
ELGI 5 166.7 177.2 LEGR 4 180.5 188.8
LBGHN 5 167.1 177.5 ELGII 5 187.3 197.8
LTLGBXII 6 168.4 180.9

Table 1 illustrates that the GAMLSS model, based on the RG distribution considering
smoothing functions, outperformed all other previous fitted models, i.e., a more flexible
class of regression model (GAMLSS) is able to capture more information provided by
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the data, granting good fit even when a very simple distribution (RG) is considered.
Nonetheless, even the parametric GAMLSS version, i.e., the pGAMLSS based on the RG
distribution, presents a better fit than all other (log-)location models considered, according
to the BIC measure (170.5). Figure 2 displays the fitted survival functions based on the
RG distribution and its residuals analysis through the WP. These plots indicate that the
proposed model provides a reasonable fit to these data.
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Figure 2. For the voltage data: (a) the estimated and empirical survival function from the generalized
additive models for location, scale, and shape (GAMLSS) model based on the reverse Gumbel (RG)
distribution considering smoothing functions and (b) the worm plot (WP).

3.2. Application 2: Class-H

We are now considering the data set about failure of motorettes with a new Class-H
insulation. These data were introduced by Nelson [31], where the response variable y
is the logarithm of the failure time (in hours). In order to investigate the effects of the
temperatures in the failure times, four temperatures were considered in this experiment,
190, 220, 240, and 260 ◦C.

As in previous applications to these data, we will consider the temperature as a
continuous variable, i.e., we are not only interested to test the difference between the
levels of temperature. Once again, in order to compare previous works with the GAMLSS
framework, the RG distribution will be considered. The previous (log-)location models
considered to model these data are:

• Four-parameter log-Lomax Weibull (LLW) distribution [32];
• Five-parameter log-beta transmuted Weibull (LBTW) distribution [33];
• Five-parameter log-beta exponentiated Weibull (LBEW) distribution [34];
• Four-parameter log-beta-Weibull (LBW) distribution [35].

Figure 3 displays the densities for each temperature level. With this plot, we have
a visual of information indicating that both parameters, µ and σ, may be modeled by
the explanatory variable. We may also note a possible nonlinearity of the temperature
effect in mode µ parameter, since the mode for temperature 190 ◦C is quite lower than the
other levels.

Through the Strategy A variable selection method [11,17], the final fitted GAMLSS
model based on the RG distribution is given by

µi = 14.966 + s(temperaturei) and log σi = −4.276 + 0.011 temperaturei,

where the fitted smoothing parameter λ for µ is 17.47. Note that, although temperature was
considered to model both regression structures, the smoothing function was only necessary
to model the mode µ.

Table 2 shows the values of AIC, BIC, and effective degrees of freedom values for
all fitted models to the Class-H data. As in the previous application, we also provide the
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results of the pGAMLSS framework (i.e., only considering linear effects on both parameters)
based on the RG distribution, which regression structures are given by µi = 15.314−
0.033 temperaturei and log σi = −3.444+ 0.008 temperaturei. Once again, we can conclude
that, by using a simpler distribution, but considering a flexible regression structure (as
GAMLSS), we may have better goodness-of-fit measures.

Figure 3. Densities of y for each temperature level.

Table 2. AIC, BIC, and effective degree of freedom (df) from the fitted models for the Class-H data.

Model df AIC BIC

RG (GAMLSS) 5.3 4.29 11.0
LLW 5 13.8 22.2
RG (pGAMLSS) 4 16.6 23.3
LBEW 6 16.9 27.0
LBTW 6 18.5 28.6
LBW 5 18.7 27.2
log-Weibull 3 22.4 27.5

For a visual check of the goodness-of-fit, Figure 4 provides the fitted and empirical
survival functions, as well the residuals WP from the fitted GAMLSS model based on the
RG distribution, where it seems that the model is adequately fitted to the data.
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Figure 4. For class-H data: (a) the estimated and empirical survival function from RG and (b) the WP.
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3.3. Application 3: Heart

In this last application, we are considering the data provided by Kalbfleish and Pren-
tice [36], where a study regarding the longevity of patients waiting for a heart transplant
was conducted. During the study, some patients (27%) died before an appropriate heart
could be found, so, by considering the response variable the time to receive the transplant,
these events were considered as censored information.

The goal here is to study the effects of some explanatory variables on the time until
transplant. The variables taken into account are y: log-time in days since acceptance into
the transplantation program to transplant and to death; δi: failure indicator (0: censored,
1: observed); xi1: age at acceptance (in years); xi2: previous surgery (0: no, 1: yes); and xi3:
transplant (0: no, 1: yes).

Figure 5 shows the relationship between the response and all explanatory variables.
We may note that the mode of y changes for each level of X2 and X3, and, as the age at
acceptance increases, the mode of y decreases, indicating that all three variables might
be used to fit the mode µ parameter of the RG distribution. We may also note that the
dispersion is influenced by X1 and X2, indicating that they are probably good predictors to
fit the scale parameter σ.

0
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0 1
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0 1
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Y
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2

4

6

20 40 60
X1

Y

Figure 5. Dispersion plot and boxplots for heart data as a function of the explanatory variables.

Using the Strategy A variable selection method [11,17], the final fitted GAMLSS model
based on the RG distribution is given by

µi = 4.662− 0.054xi1 + 1.768xi2 + 2.633xi3 and log σi = 1.967− 0.033xi1. (4)

No smoothing functions were applied onto the age at acceptance in both parameters, i.e.,
in fact, the final selected GAMLSS model to explain the behavior of the response variable
according to the available explanatory variables is the fully parametric version, pGAMLSS.
As stated in the first application in Section 3.1, the smoothing functions may be considered
when there is a nonlinear effect of a explanatory variable in a given parameter (which is
not observed in this case).
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We will compare model (4) with the following (log-)location models already proposed
in the literature to deal with these data:

• Four-parameter log-odd power Lindley Weibull (LOPLW) distribution [37];
• Four-parameter log-extended odd Fréchet generalized half-normal (LEOF-GHN)

distribution [38];
• Four-parameter log-extended-exponentioned Weibull (LEE-W) distribution [39];
• Four-parameter log-Burr XII-Weibull (LBXII-W) distribution [40];
• Four-parameter log-log-gamma generated-Weibull (LLGG-W) distribution [41];
• Four-parameter log-Topp-Leone odd log-logistic-Weibull (LTLOLL-W) distribution [42];
• Three-parameter log-odd log-logistic Weibull (LOLLW) distribution [43].

Table 3 presents the AIC, BIC, and effective degrees of freedom values. Even though
the LEOF-GHN model presents the smallest AIC, the pGAMLSS based on the RG distri-
bution returns an AIC of only 1.5 units greater. Moreover, the RG model based on the
fully parametric GAMLSS framework produces the best BIC value; thus, by the parsimony
principle and also considering the model with the simplest interpretability, the GAMLSS
alternative would be preferable. In order to check the model assumptions, the WP of the
fitted pGAMLSS model is presented in Figure 6, showing that, in fact, the model provides
a reasonable fit. Since there is a continuous covariate in this problem, we do not present
the estimated and empirical survival functions.

Table 3. AIC, BIC, and effective degree of freedom (df) from the fitted models for the heart data.

Model df AIC BIC

LEOF-GHN 8 334.3 355.3
RG (pGAMLSS) 7 335.8 354.2
LOPLW 8 338.4 359.5
LEE-W 7 343.3 361.8
LBXII-W 7 343.3 361.8
LTLOLL-W 8 345.3 366.4
LLGG-W 7 345.7 364.1
LOLLW 6 347.5 363.4
log-Weibull 5 353.4 366.6
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Figure 6. Worm plot of the fitted fully parametrc GAMLSS model based on the RG distribution.

4. Discussion

Although there is a reasonable number of new regression models being developed
in the last few years (e.g., the ones previously fitted to the three applications considered
in this paper), usually they present a highly complex structure that may suffer from the
interpretation of the parameters. This is a critical drawback since the interpretability of such
characteristics is still the major advantage of regression models compared to other methods.

The key point within the discussion in application sections in papers that develop
new (log-)location models is usually based on goodness-of-fit measures, such as AIC and
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BIC. Focusing on this specifically point, let us suppose a response variable Y that follows a
Gaussian distribution, and an explanatory variable X which directly affects both the mean
µ and standard deviation σ of Y. To fit such behaviors, should we build a location model
or a heteroscedastic model (GAMLSS in other words) or propose a new location model?
The natural choice here seems to be the GAMLSS (distributional regression) approach.

Further, we may be interested in discussion on why more complex models might
present better statistics, like AIC and BIC, when compared to some of their special and/or
limiting cases. Looking at the properties of these models, we usually note the association
between their location parameter and other important characteristics, such as mean, per-
centiles, standard deviation, skewness, and kurtosis. This means that, in the modeling
stage of the location parameter, we are implicitly modeling these characteristics, as well. In
the GAMLSS structure, we can explicitly model any and all parameters directly, i.e., differ-
ent regression structures can be considered to explain all the parameters of the response
variable distribution. Thus, apart from producing better goodness-of-fit measures, we can
still identify which characteristics affect each of the parameters.

Finally, we present a review of regression models, based on fitting any and all parame-
ters using linear and/or nonlinear structures, and consequently modeling more accurately
the data behavior through the GAMLSS framework. The use of simpler models, with inter-
pretable parameters, based on very sophisticated regression structures, presented better
results than the ones obtained through highly complex location models. Following the par-
simony principle and/or the interpretability of the parameters, we may conclude—at least
from a practical point of view—that, by using the GAMLSS framework, the development
and proposal of new models with a high number of parameters is, in some cases, avoidable.
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