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Abstract

Most B cell lymphomas originate from B cells that have germinal center (GC) experience

and bear chromosome translocations and numerous point mutations. GC B cells remodel

their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombi-

nation (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM

by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosy-

lase (UNG). AID promotes collateral damage in the form of chromosome translocations and

off-target SHM, however, the exact contribution of AID activity to lymphoma generation and

progression is not completely understood. Here we show using a conditional knock-in strat-

egy that AID supra-activity alone is not sufficient to generate B cell transformation. In con-

trast, in the absence of UNG, AID supra-expression increases SHM and promotes

lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma

SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our

data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity

and evolution of B cell lymphoma.

Author summary

Activation Induced Deaminase (AID) is a critical enzyme of the immune response

because it gives rise to higher affinity antibodies as well as to various antibody isotypes
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(IgG, IgA, IgE). AID introduces deaminations (a pre-mutagenic alteration in the DNA)

on the antibody genes, which are then processed by uracil-N-glycosylase (UNG). Occa-

sionally, AID can target other genes, resulting in potentially oncogenic mutations or chro-

mosome translocations. Here we have explored the contribution of AID and UNG to

lymphoma generation by combining gain- and loss-of-function genetic mouse models.

We find that increasing the activity of AID does not, by itself, increase the incidence of

lymphomas in mice. In contrast, mice lacking UNG activity are more susceptible to suffer

lymphoma when AID is expressed at higher levels. By sequencing the exomes of lympho-

mas from these mice, we have learned that AID can contribute to lymphoma development

in a translocation-independent fashion, by increasing the variability of oncogenic muta-

tions present in the tumors. Thus, UNG acts as a brake to AID-induced intratumoral het-

erogeneity and evolution.

Introduction

Non-Hodgkin-lymphomas (NHL) are high incidence hematological malignancies, with more

than 500,000 new cases diagnosed in 2018 worldwide (World Cancer Research Fund, www.

wcrf.org). NHL comprise a number of distinct pathological entities, however, the vast majority

of them arise from the malignant transformation of mature B cells with germinal center (GC)

experience. Those include follicular lymphoma (FL) and the more aggressive diffuse large B

cell lymphoma (DLBCL), which together account for more than 50% of all NHL, as well as

Burkitt lymphoma (BL) [1].

The etiological relevance of GCs in the malignant transformation of B cells is complex and

multi-layered [2,3]. GCs are microanatomical structures that are formed in secondary lym-

phoid organs upon B cell stimulation during the immune response. When activated by antigen

in the context of an antigen presenting cell and a cognate T cell, B cells engage in an intense

proliferative reaction and are subject to point mutations at the variable, antigen recognition

portion of their antibody (or immunoglobulin, Ig) genes, a process called somatic hypermuta-

tion (SHM). SHM, combined with affinity maturation, allows the generation of higher affinity

antibodies. In addition, T-cell-activated B cells undergo a region-specific recombination reac-

tion called class switch recombination (CSR), which replaces the primary IgM/IgD constant

region by alternative downstream constant regions at the Ig heavy (IgH) locus, thus giving rise

to IgG, IgE or IgA isotypes and adding enormous functional versatility to antibody-mediated

antigen clearance [4–8].

CSR and SHM are triggered by a single enzyme called activation induced deaminase (AID)

through an initial cytosine to uracil deamination event on the DNA of Ig genes. AID deficiency

dramatically blocks SHM and CSR and causes human HIGM2 immunodeficiency [9,10].

AID-mediated deamination results in a U:G mismatch that can then be recognized by the base

excision repair (BER) or the mismatch repair (MMR) pathways to ultimately give rise to a

mutation (in the case of SHM) or a double strand break and a recombination reaction, in CSR.

Accordingly, Ung-/- -BER deficient- mice, and Msh2-/- -MMR deficient- mice show different

alterations in SHM and CSR [11–18]. Likewise, double Ung-/-Msh2-/- deficient mice only retain

transition mutations at C/G, directly emerging from the replication of U:G mismatches, and

are devoid of other SHM footprints, as well as of CSR [19,20].

Early studies showed that several lymphoma-associated oncogenes bore mutations with the

hallmark of SHM [21–23], and the molecular contribution of AID activity to off-target SHM

was directly shown in mice later [20,24], indicating that a relatively high proportion of genes
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can be targets of AID mutagenic activity. Moreover, AID can trigger chromosome transloca-

tions involving IgH and Myc, the hallmark of Burkitt lymphoma [25–27], as well as many

other genomic locations [28,29]. Notably, AID-dependent myc/IgH translocations are abol-

ished in the absence of UNG [25], suggesting that UNG activity is required for the processing

of AID deaminations into the DNA double strand break preceding the chromosome transloca-

tion joining. On the other hand, SHM frequency is increased in the combined absence of

UNG and MSH2, indicating that BER and MMR contribute together to the faithful repair of

AID-induced deaminations [4,20,24,30]. In line with these observations, UNG deficient mice

develop B cell lymphomas [31], indicating a tumor suppressor role for UNG. However, the

contribution of UNG to lymphomagenesis is intricate and not completely understood. On one

hand, UNG deficiency protects against the development of BCL6-driven DLBCL in IμHABcl6

mice [32]. On the other, UNG protects B cells from telomeric loss mediated by AID [33], and

this can in turn result in a tumor enabling activity by protecting cell fitness [34].

In addition, various studies have correlated AID activity with human B cell neoplasia. AID

expression is associated to bad prognosis in hematological malignancies [35–39] and foot-

prints of SHM have been found in human B cells [21,22,40] and B cell neoplasia [23,41,42]. In

addition, genetic mouse models have been used to explore the causative role for AID in B cell

transformation. Several loss of function approaches have shown that AID deficiency delayed

the appearance of B cell malignancies [26,37,43] and that this effect might be specific of mature

B cell neoplasias [37,44–46]. However, gain-of-function approaches uncovered an unexpected

complexity on the contribution of AID to B cell malignant transformation. In an early study

where AID was expressed as an ubiquitous transgene, T, but not B cell lymphomas were gener-

ated [47]; this idea of tissue- or stage- specific sensitivity to AID-induced transformation was

also proposed in other transgenic models [48]. Two additional AID transgenic mouse models

failed to promote B cell transformation, presumably due to B cell specific negative regulation

of AID levels [49] or activity [50]. Finally, an AID transgene driven by Ig light chain regulatory

regions revealed that although AID promoted genomic instability, B cell transformation

required concomitant loss of the tumor suppressor p53 [51]. Thus, the contribution of AID,

and specifically of SHM, to B cell transformation is not fully understood.

Here, using a non-transgenic conditional mouse model for AID supra-expression, we

found that AID expression alone was not sufficient to promote B cell lymphomagenesis,

regardless of the onset of AID expression and even in the absence of p53. In contrast, removal

of BER activity by breeding to Ung-/- mice resulted in an increase of SHM and of B cell lym-

phoma incidence. Molecular characterization of Ung-/- tumors by whole exome sequencing

revealed that AID supra-expression increased intratumor heterogeneity (ITH), giving rise to a

more diverse range of oncogenic alterations. Thus, our work establishes formal genetic evi-

dence for the contribution of AID-mediated SHM to B cell lymphoma tumor evolution.

Results

A mouse model to address the contribution of AID to B cell

lymphomagenesis

To address the contribution of AID activity to B cell lymphomagenesis we made use of a con-

ditional mouse model for AID expression [52]. A cassette containing the Aicda and EGFP
cDNAs separated by an internal ribosomal entry site (IRES) was placed into the endogenous

Rosa26 locus preceded by a floxed transcriptional stop sequence (R26+/AID mice, S1A Fig,

[52]). Thus, AID expression from the Rosa26-Aicda allele is silent until the transcriptional stop

is removed by Cre. To approach the role of AID in B cell lymphomagenesis we induced AID

expression in B cells by breeding R26+/AID mice to Cd19+/cre mice, where Cre is inserted in the
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B-cell specific Cd19 allele [53] (R26+/AIDCd19+/cre mice). We observed that the onset of expres-

sion from the Rosa26-Aicda allele occurred early in B cell precursors and progressively

increased during B cell differentiation, being almost complete in mature B cells, and consis-

tently with previous reports using the Cd19-Cre strain (S1B Fig) [54,55]. Expression of AID at

early stages did not detectably affect bone marrow differentiation (S1C Fig).

To assess AID expression in mature B cells from R26+/AIDCd19+/cre mice, we performed a

qRT-PCR analysis that allowed quantification of AID mRNA expressed specifically from the

Rosa26-Aicda allele, or total AID mRNA, resulting from the combined expression from the

endogenous AID allele and the Rosa26-Aicda allele. Expectedly, we detected expression of

Rosa26-Aicda both in naïve and activated B cells from R26+/AIDCd19+/cre mice and not in B

cells from control mice (Fig 1A, top graphs). Accordingly, assessment of total AID mRNA

showed that the Rosa26-Aicda allele promotes expression of AID in naïve B cells (Fig 1A, bot-

tom left) and significantly increases the total expression level of AID in activated B cells (Fig

1A, bottom right). In agreement with this result, western blot analysis in naïve B cells revealed

AID protein only in R26+/AIDCd19+/cre mice, while LPS+IL4 activated B cells had increased

AID protein levels in R26+/AIDCd19+/cre mice (1.6 fold increase), compared to R26+/+Cd19+/cre

control mice (Fig 1B and 1C). Thus, we have generated a model for expression of AID in naïve

B cells and supra-expression in activated B cells.

To assess the activity of the Rosa26-Aicda allele we first performed in vitro stimulations of

spleen naïve B cells in the presence of LPS and IL4 and found that the frequency of CSR to

IgG1 was increased by roughly 1.5 fold in R26+/AIDCd19+/cre B cells when compared to R26+/
+Cd19+/cre control B cells (Fig 1D). We next assessed GC formation and CSR in vivo after

mouse immunization with sheep red blood cells (SRBC). We found that R26+/AIDCd19+/cre

mice accumulated more IgG1+ switched cells than did R26+/+Cd19+/cre cells (1.5 fold increase),

while the proportion of Fas+ GL7+ GC B cells was not affected (Fig 1E and 1F). We conclude

that R26+/AIDCd19+/cre mice display increased AID expression and activity.

Early AID supra-expression is not sufficient to promote B cell lymphoma

To evaluate the contribution of AID supra-expression to B cell lymphomagenesis, we gener-

ated cohorts of R26+/+Cd19+/cre and R26+/AIDCd19+/cre mice for ageing experiments. Mice were

inspected weekly and animals showing symptoms of overt disease were euthanized. We found

that survival was not affected in R26+/AIDCd19+/cre compared to R26+/+Cd19+/cre mice (Fig 2A,

left) and that lymphoma incidence was not increased in R26+/AIDCd19+/cre mice (Fig 2A, right,

and not shown). Cre-driven expression of AID in R26+/AIDCd19+/cre mice occurs progressively

and relatively late during B cell differentiation. To assess whether the lack of oncogenic impact

of AID in R26+/AIDCd19+/cre mice was due to a specific resistance of mature B cells to AID

oncogenic transformation, we generated R26+/AIDVav-Cre+/TG mice, where AID supra-expres-

sion is driven by Vav-Cre from very early hematopoietic progenitors [56]. Reporter GFP

expression was detected from early lymphoid development as expected (S2 Fig). We again

found no survival reduction and no apparent histological differences in R26+/AIDVav-Cre+/TG

mice compared to control R26+/+Vav-Cre+/TG mice (Fig 2B). Likewise, R26+/AIDmb1+/cre mice

did not show increased lymphoma incidence compared to R26+/+mb1+/cre littermates [46].

It has previously been shown in a different mouse model that deregulated expression of AID

is insufficient to induce B cell lymphoma and that concomitant loss of p53 is required for trans-

formation [51]. To address whether in our R26+/AIDCd19+/cre mice p53 tumor suppressor activity

was preventing AID-induced oncogenic transformation, we generated R26+/AID Cd19+/creTp53-/-

mice. We found that survival was not affected in R26+/AIDCd19+/creTp53-/- mice when compared

to R26+/+ Cd19+/creTp53-/- (Fig 2C, left). Likewise, the majority of tumor-bearing mice succumbed
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to T cell lymphoma or solid tumors both in R26+/+Cd19+/creTp53-/- and in R26+/AIDCd19+/cre

Tp53-/- mice (65% and 77% combined frequency, respectively).

Thus, supra-physiological expression of AID in R26+/AID mice did not impact on the overall

mouse survival or the incidence of B cell lymphomas, regardless of the onset of expression or

the absence of p53 tumor suppressor.

Fig 1. Characterization of R26+/AIDCd19+/Cre mice. (A) Increased expression of Aicda mRNA in B cells from R26+/AIDCd19+/Cre

mice. mRNA levels of R26-AID and total Aicda was measured by RT-qPCR in naïve (left) and in LPS+IL4 activated B (right) cells

from R26+/AIDCd19+/Cre (red bars) and R26+/+Cd19+/Cre control mice (blue bars). Values are relative to levels in naïve (left) or

activated (right) B cells from R26+/AIDCd19+/Cre mice; mean of two experiments is shown; n = 6 per group. (B) Increased AID

protein in B cells from R26+/AIDCd19+/Cre mice. Total lysates of naïve or LPS+IL4 activated B cells from R26+/AIDCd19+/Cre and

R26+/+Cd19+/Cre mice were analysed by western blot with a monoclonal anti-AID antibody. Incubation with an anti-tubulin

antibody is shown as loading control. (C) Quantification of AID protein in LPS+IL4 activated B cells by western blot. Total lysates

of activated B cells from 4 individual mice of each genotype, R26+/AIDCd19+/Cre and R26+/+Cd19+/Cre and 1 Aicda-/- were analyzed

by western blot as shown in (B). Values are relative to R26+/+Cd19+/Cre and normalized to actin or tubulin. (D) Increased CSR in

R26+/AIDCd19+/Cre mice. Representative FACS analysis of CSR to IgG1 in LPS+IL4 activated B cells from R26+/AIDCd19+/Cre and

R26+/+Cd19+/Cre mice (left panel). Quantification is shown on the right. Each dot represents an individual mouse (n = 11 mice per

group). (E) Increased immunization response in R26+/AIDCd19+/Cre mice. Representative FACS analysis of GC (Fas+GL7+) B cells

(upper panels) and CSR to IgG1 (lower panels) in non-immunized R26+/+Cd19+/Cre (control, PBS) and SRBC-immunized R26+/
+Cd19+/Cre and R26+/AIDCd19+/Cre mice after B220+ gating. (F) Quantification of Fas+GL7+ GC B cells (upper panel) and CSR to

IgG1 (lower graphs) on B220+-gated (lower left) and B220+Fas+GL7+-gated B cells (lower right) from the immunization

experiment shown in (E). Each dot represents an individual mouse (n = 2–5 mice per group). � p�0.05; �� p�0.005; ����

p�0.0001; two-tailed t-test.

https://doi.org/10.1371/journal.pgen.1008960.g001
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UNG deficiency increases mutation load in B cells from R26+/AIDCd19+/cre

mice

We have previously shown that the combined action of BER and MMR can faithfully repair a

big fraction of the mutations triggered by AID deamination [20,30]. To determine if under

supra-physiological AID expression abolishing BER would result in a higher mutation load,

we generated R26+/AIDCd19+/cre Ung-/- mice. AID-induced SHM frequency was assessed at the

Sμ region of the IgH locus by PCRseq [30] in naïve B cells or in GC B cells isolated from

SRBC-immunized mice. As controls, we used naïve or GC B cells from R26+/+Cd19+/creUng+/-

mice, R26+/AIDCd19+/creUng+/- mice and R26+/+Cd19+/creUng-/- mice. In addition, we included

LPS+IL4 activated B cells from AID deficient mice (Aicda-/-) as a negative control. We found

that in naïve B cells, early AID supra-expression triggered detectable accumulation of muta-

tions only in the absence of UNG (R26+/AIDCd19+/cre Ung-/- versus R26+/AIDCd19+/creUng+/- or

R26+/+Cd19+/creUng-/-) (S1 Appendix, Fig 3A, left). We obtained similar results in GC B cells

isolated from SRBC-immunized mice, where mutation load driven by Rosa26-Aicda is very

much increased when combined with UNG deficiency, but shows only as a trend in an UNG

proficient background (Fig 3A, right). Separate analysis of transition and transversion

Fig 2. R26+/AIDCd19+/Cre mice do not develop lymphoma. Kaplan-Meier survival analysis (left) and representative H&E staining of spleen sections (right) of (A)

R26+/+Cd19+/Cre (n = 51) and R26+/AIDCd19+/Cre mice (n = 44) mice and (B) R26+/+ Vav +/cre (n = 23) and R26+/AID Vav +/cre (n = 35) mice. (C) Kaplan-Meier survival

analysis of R26+/+Cd19+/CreTp53-/- (n = 40) and R26+/AIDCd19+/CreTp53-/- (n = 49) and representative H&E staining of thymus T cell lymphomas found in both groups

of mice. Mice were followed for 80 weeks (A-B) or at humane endpoint (C). p>0.05 in all cases; log-rank Mantel-Cox test. Magnification is 5x (left) and 20x (right);

scale bar is 200μm.

https://doi.org/10.1371/journal.pgen.1008960.g002
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mutations showed that UNG deficiency promotes an increase at C/G transitions both under

endogenous AID and AID supra-expression contexts. Thus, the observed increase in mutation

frequency in UNG deficient cells was accounted by an increase in transitions at C/G pairs (Fig

3B), consistent with the outcome of direct replication of unrepaired U:G mismatches [11,15].

We conclude that UNG deficiency increases the mutation load in B cells that supra-express

AID. Given that chromosome translocations are impaired in UNG deficient B cells [25], R26+/
AIDCd19+/creUng-/- mice provide a unique opportunity to assess the contribution of AID-

induced SHM to lymphomagenesis.

UNG deficiency promotes oncogenic transformation by AID

To address the contribution of AID-induced SHM to oncogenic transformation, we generated

cohorts of R26+/+Cd19+/creUng+/- mice, R26+/AIDCd19+/creUng+/- mice and R26+/+ Cd19+/cre

Ung-/- and R26+/AIDCd19+/creUng-/- mice and performed ageing experiments. We found that

R26+/AIDCd19+/creUng-/- mice showed a reduced median survival compared to the other groups

of mice (Fig 4A). Moreover, at sacrifice R26+/AIDCd19+/creUng-/- mice harboured a different

pattern of B cell lymphomas by immunohistochemistry evaluation, with a smaller proportion

of large-B cell (LB) lymphoma and a bigger proportion of small B cell (SB) lymphoma than

Fig 3. Increased SHM in BER deficient mice. Mutation analysis of IgH Sμ region in naïve and GC B cells from R26+/+ Cd19+/cre Ung+/-,
R26+/AID Cd19+/cre Ung+/-, R26+/+ Cd19+/cre Ung-/-, R26+/AID Cd19+/cre Ung-/- and Aicda-/- mice by PCR-Seq. (A) Total mutation frequency

and (B) frequency of transition and transversion mutations at C/G lying in WRCY/RGYW hotspots. (n = 2, each composed of a pool of 3

mice; � p� 0.05; two-tailed t-test; error bars represent SD).

https://doi.org/10.1371/journal.pgen.1008960.g003
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Fig 4. BER deficiency promotes AID-dependent lymphomagenesis. (A) Kaplan-Meier survival analysis of R26+/+Cd19+/
creUng+/-(n = 43), R26+/AIDCd19+/creUng+/- (n = 35), R26+/+Cd19+/creUng-/- (n = 41) and R26+/AIDCd19+/creUng-/- (n = 45) mice
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R26+/+Cd19+/creUng-/- mice (Figs 4B, 4D, S3, S4 and S5; see Methods for details). FACS and

immunohistochemistry analysis showed heterogeneity, but tumors from R26+/+Cd19+/creUng-/-

and R26+/AIDCd19+/creUng-/- mice typically expressed B cell markers, including Pax or B220 as

well as the proliferation antigen Ki67 (Figs 4C, 4E, S4 and S5). In addition, we observed that

many tumors expressed GL7 and Bcl-6 (Figs 4C, 4E, S4 and S5). Likewise, AID expression was

retained in R26+/AIDCd19+/creUng-/- tumors, but was also common in R26+/+Cd19+/creUng-/-

tumors, supporting a GC origin (Figs 4D, S4 and S5). Together, these results indicate that under

the condition of UNG deficiency, AID supra-expression promotes GC B cell transformation.

AID promotes intratumor heterogeneity

To analyse the contribution of AID to lymphomagenesis at the molecular level, we performed

Whole Exome Sequencing (WES) of R26+/+Cd19+/creUng-/- (n = 7) and R26+/AIDCd19+/creUng-/-

(n = 8) tumors and a healthy tissue control. We sequenced a total of 148Gb with an average

depth of 79x (S1 Table and S6 Fig). Variant calling analysis of tumoral versus healthy tissue

(see Methods for details) revealed a total number of 4801 unique variants in 5195 different

genes, with an average of ~640 variants and ~740 genes affected per tumor (S6A Fig). Most of

the variants corresponded to single nucleotide variants (SNVs, ~76%) and a minor fraction

were insertions or deletions (INDELS) (~24%) (S6A and S6B Fig).

To assess the mutation load of R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- tumors,

we first calculated mutation frequencies per genotype. Since in the absence of UNG A/T off-

target mutations are minor [20] and transversion mutations at C/G are impaired [11,30] (Fig

3), for this analysis (Fig 5A) only transition mutations at C/G pairs were considered. In R26+/+

Cd19+/creUng-/- tumors, we identified very large numbers of transition mutations at C/G pairs,

which were preferentially enriched within WRC/GYW (W = A/T; R = C/G; Y = C/T) AID

mutational hotspots (Fig 5A), suggesting a contribution of AID to the mutational landscape

observed in these tumors. Interestingly, we found a significantly higher mutation frequency

and more pronounced hotspot focusing in R26+/AIDCd19+/creUng-/- than in R26+/+Cd19+/cre

Ung-/- tumors (Fig 5A). These results indicate that AID-induced mutations occur at larger

numbers in R26+/AIDCd19+/cr Ung-/- than in R26+/+Cd19+/creUng-/- tumors, consistently with

our findings in non-transformed GC B cells. We found that copy number variations (CNV)

and chromosome translocations occurred at similar frequencies in R26+/AIDCd19+/creUng-/-

and R26+/+Cd19+/creUng-/- tumors (S6C and S6D Fig and S3 and S4 Tables), in agreement with

the idea that AID activity is not expected to give rise to double strand breaks in the absence of

UNG [11,15,25,57].

Intratumor heterogeneity (ITH) has been related to poor prognosis and impaired response

to treatment [58–60]. To assess if AID-induced SHM could contribute to ITH we measured

clonal and subclonal variants in R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- tumors as

a proxy to estimate ITH [61]. In this context, clonal variants refer to early acquired mutations

shared by a big proportion of the cancer cells, as reflected by their high variant allele frequency

(p = 0.011, Log-rank Mantel-Cox test). (B) Lymphoma diagnosis of R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- mice.

Outer rings depict proportion of lymphomas with a SB or LB lymphoma phenotype; inner circle indicates the number of

lymphoma tumors analyzed. � p� 0.05, Two-tailed Fisher test. (C) Immunophenotype of a control mouse spleen (upper panels)

and of representative tumors from R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- mice (lower panels). Total live cells (left

panel) and B220+ gated cells (middle and right panels) are shown. (D) Immunohistochemistry analysis of representative tumors

from R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- mice. Magnification is 10x for H&E and Pax5 (left panels) and 40x for

the rest of the panels. Scale bars are 250μm and 50μm for 10x and 40x images respectively. (E) Summary of

immunophenotyping markers for a collection of 10 tumors per genotype (as shown in S4 and S5 Figs. Shade (+) indicates

positive staining, white indicates negative staining, triangle shade indicates heterogenous staining.

https://doi.org/10.1371/journal.pgen.1008960.g004
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Fig 5. AID contributes to intratumor heterogeneity. (A) Average transition mutation frequency at total C/G pairs

and at C/G within WRC/GYW hotspots in tumors from R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- mice as

measured by whole exome sequencing (Two-tailed γ2 test; all comparisons -Total C/G vs WRC/GYW within the same

genotype; Total C/G AID WT vs AID KI; WRC/GYW AID WT vs AID KI-, p<2.2x10-16). (B) Number (upper panel)

and proportion (lower panel) of clonal and subclonal variants in each of the seven R26+/+Cd19+/creUng-/- (WT) and

eight R26+/AIDCd19+/creUng-/- (KI) tumors analyzed. Piecharts depict the proportion of clonal and subclonal variants of

all the tumors analyzed pooled by genotype (Two-tailed Fisher test; ����p�10−4). Inset panels show a representative

example of the intratumor heterogeneity in each genotype. Clusters as defined by SciClone are depicted in different

colors. Clonal variants are those belonging to the cluster with the highest variant allele frequency (VAF; orange clusters

in inset panels), usually between 40–50%. Subclonal variants are those belonging to clusters with a lower VAF than that

of the clonal cluster. Density plots depict the posterior predictive density, a surrogate of the accuracy of the prediction

model assigning variants to the different clusters (green lines represent the diploid model; grey continuous and

discontinuous lines represent the model fit of each cluster and each variant, respectively). Tumor coverage refers to the

number of reads supporting each variant. Genes that are frequently mutated in human lymphoma tumors are

indicated in black.

https://doi.org/10.1371/journal.pgen.1008960.g005
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(VAF). Interestingly, several genes that are frequently mutated in human lymphomas, such as

Fas [62], Eef1a1 [63] and some members of the histone family genes (Hist1h1b, Hist1h1d,

Hist1h2bg, Hist1h3b) [64] bear clonal variants (Fig 5B, inset). Conversely, subclonal variants

are mutations arising later in tumor development, defining younger clones with lower VAFs.

Thus, a higher proportion of subclonal variants in a tumor reflects a higher ITH. We found

that R26+/AIDCd19+/creUng-/- tumors have a higher proportion of subclonal variants than R26+/
+Cd19+/creUng-/- tumors (Fig 5B, right), indicating that AID contributes to the generation of

ITH.

To gain insights into the functional relevance of AID activity to the development of lym-

phoma, we focused on variants affecting known cancer-related genes, including genes that are

frequently mutated in human lymphoma [65–71] (see Methods for details). We identified a

total number of 132 and 154 cancer-related genes bearing somatic mutations (see Methods) in

R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- tumors, respectively (S2 and S5 Tables;

complete list of variants in S3 Table). Notably, a big proportion of these mutated genes are

shared between the two groups of tumors (Fig 6A), suggesting a common network of func-

tional pathways being affected for lymphoma generation (Fig 6B and S5 Table). However, we

identified several cancer-related genes that were exclusively mutated in R26+/AIDCd19+/
creUng-/- tumors (Fig 6A and S5 Table). Functional annotation revealed that these genes

impinge on more diverse cellular functions, with the p53 DNA damage checkpoint or the neg-

ative regulation of B cell activation being more affected in R26+/AIDCd19+/creUng-/- than in

R26+/+Cd19+/creUng-/- tumors (Fig 6B and 6C). Furthermore, mutations in R26+/AIDCd19+/
creUng-/- exclusive cancer genes occurred more frequently in C/G pairs than in A/T pairs and

were enriched in hotspots, strongly suggesting that they have originated from AID activity (Fig

6D). Together, these data indicate that AID induced SHM increases ITH and broadens the

range of oncogenic events associated to lymphomagenesis.

Discussion

Here we have made use of a genetic model for AID expression to assess the contribution of AID

to lymphoma development. Our R26+/AIDCd19+/cre model is different from previous approaches

in that it is not a transgenic model and it allows conditional expression of AID together with GFP

as a positive tracer for AID expression. Expectedly, we find that AID mRNA and protein are

detected in naïve B cells in R26+/AIDCd19+/cre and that in activated B cells total AID expression

and activity is increased in R26+/AIDCd19+/cre mice compared to R26+/+Cd19+/cre littermates.

Thus, in contrast to previous reports [48–50], heterologous Rosa26-Aicda expression in R26+/AID

Cd19+/cre mice does not seem subject to particular mechanisms of negative regulation, and simply

leads to a relatively proportional increase of AID activity.

In agreement with previous data using different mouse models [47–51], we show here that

AID supra-expression in R26+/AID mice is not sufficient to promote mature B cell transformation

even if driven from very early on in B cell progenitors with Vav-Cre or mb1-Cre [46] drivers, sug-

gesting that cumulative AID activity during B cell differentiation does not have a measurable

oncogenic impact by itself. Interestingly, Rosa26-Aicda did not promote mature B cell lympho-

mas even in the absence of p53, in sharp contrast with a previous report [51]. This discrepancy

may well be explained by the difference in AID expression levels achieved in these two studies.

While AID expression and activity was only mildly increased in R26+/AIDCd19+/cre mice, it

reached much higher levels in the IgκAID mouse from Robbiani et al, when compared to wild

type mice, especially in GC B cells. We believe that these expression levels may promote increased

genome instability and hence triggered more efficiently a DNA damage response, which would

explain the increased incidence of B cell lymphoma observed in the absence of p53 [51].
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Fig 6. AID broadens the functional impact of oncogenic events in UNG deficient tumors. (A) Cancer-related genes found mutated in tumors from

R26+/+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- mice. Upper panel shows total number of variants identified in all cancer-related genes in each of

the tumors; color code defines the functional impact of the variants as annotated by Variant Effect Predictor (VEP; see methods section for details).

Lower panel represents presence (colored box) or absence (empty box) of variants in each of the cancer-related genes for each of the analyzed tumors.

For simplicity, only mutated genes found in> = 2 tumors per group are shown; a full list is included in S3 Table. Green indicates genes exclusively

mutated in R26+/+Cd19+/creUng-/- tumors; orange indicates genes exclusively mutated in R26+/AIDCd19+/creUng-/- tumors; blue indicates genes mutated

in both. (B) Circos plot representation of the biological functions associated to all mutated cancer-related genes (Gene Ontology biological process

database) in R26+/+Cd19+/creUng-/- (left) and R26+/AIDCd19+/creUng-/- (right) tumors. (C) Number of genes (left) and p-value of the enrichment (right,

EASE score -modified Fisher exact test- as provided by DAVID, see methods for details) of the common biological functions affected in both R26+/
+Cd19+/creUng-/- and R26+/AIDCd19+/creUng-/- tumors. (D) Proportion of mutations in C/G and A/T nucleotides (left) and within WRC/GYW hotspots

(right) in cancer-related genes that are exclusively mutated in R26+/AIDCd19+/creUng-/- tumors (Fisher two-tailed test; ����p�10−4).

https://doi.org/10.1371/journal.pgen.1008960.g006
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In contrast with the lack of lymphomagenic effect of AID, alone or combined with p53 defi-

ciency, we show here that in the absence of UNG, a mild increase in AID expression (R26+/AID

Cd19+/cre mice) is sufficient to decrease mean survival and contributes to lymphoma evolution,

supporting the notion that UNG can act as a tumor suppressor in the context of B cell lympho-

magenesis. Intriguingly, UNG has very recently been shown to improve B cell fitness and to

have tumor-enabling activity [34] possibly by protecting B cells from telomeric loss induced by

AID [33]. Although seemingly contradictory with our data, it is worth noting that Safavi et al

also observed that Ung-/- B cell lymphomas bear the footprint of AID SHM, although the

expression of AID was lost in established tumors. Together, these results suggest that the inter-

play between AID and UNG is a delicate balance where expression levels, and possibly the

stage of tumor progression, play a role.

We have observed morphological differences in the lymphomas generated in the presence

of AID supra expression, compared to those emerging under endogenous AID expression.

However, from this study we cannot ascertain whether they represent a completely different

pathological entity or a more aggressive form of the same entity. Likewise, it could well be that

early AID supra-expression would favour the transformation of an earlier cell of origin, but

this could only be unequivocally tested using specific genetic tracing models.

Regardless of these considerations, our data suggest that increased lymphoma vulnerability

of Ung deficient mice directly reflects the increased SHM frequency observed when UNG defi-

ciency is combined with Rosa26-Aicda expression, while Rosa26-Aicda alone (this study) or

Ung-/- alone (this study, [20,30]) have only a moderate effect on SHM. Given that UNG is

essential for AID-triggered double strand breaks and chromosome translocations, our report

provides the first direct genetic proof that the SHM activity of AID can, by itself, contribute to

B cell transformation. In turn, the absence of double strand breaks and thus of DNA damage

response could favour the survival and accumulation of mutations of GC B cells and their like-

lihood to oncogenic transformation. Importantly, mutations and homozygous UNG losses

have been found, although at low frequency, in human B-NHL[72].

Various studies have previously suggested that AID can drive or contribute to clonal evolu-

tion in B cell malignancies [39,73,74]. Our study also provides, to our knowledge, the first

causal evidence of AID-induced SHM B cell tumors, as measured by whole exome sequencing

in a genetic model. Interestingly, both control R26+/+Cd19+/cre and R26+/AIDCd19+/cre tumors

bear the hallmark of AID activity, but this is more pronounced in tumors with supra-expres-

sion of AID (R26+/AIDCd19+/cre mice). Further, our study directly shows that AID-induced

SHM promotes a bigger proportion of subclones and increased ITH. Our model predicts that

AID would increase ITH and contribute to second hit oncogenic transformation events prefer-

entially in tumoral cells with UNG loss-of-function events. Thus, we propose that AID-

induced SHM may contribute to lymphoma progression by giving rise to a more diverse out-

put of oncogenic variants that presumably impinge on tumor evolution and aggressiveness

[58–60].

Methods

Ethics statement

All animals were housed in the Centro Nacional de Investigaciones Cardiovasculares animal

facility under specific pathogen-free conditions. All animal procedures conformed to EU

Directive 2010/63EU and Recommendation 2007/526/EC regarding the protection of animals

used for experimental and other scientific purposes, enforced in Spanish law under RD 53/

2013. The procedures have been reviewed by the Institutional Animal Care and Use Commit-

tee (IACUC) of Centro Nacional de Investigaciones Cardiovasculares, and approved by
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Consejeria de Medio Ambiente, Administración Local y Ordenación del Territorio of Comu-

nidad de Madrid.

Mice and B cell cultures

R26+/AID mice were described previously [52] and bred to Cd19cre [53], Vav-CreTG/+ [56]

Tp53-/- [75] and Ung-/- [76] mice as indicated. Aicda-/- [10] were used as negative control for

SHM assays. Littermates aged from 6 to 12 weeks were used for SHM, CSR and immunization

experiments.

T-dependent immunization was induced by intravenously injection of 108 sheep red blood

cells resuspended in 100 μl of sterile PBS. Immunization response was analyzed in spleen 7

days after sheep red blood cell injection.

For CSR experiments spleen naive B cells were isolated by immunomagnetic depletion

using anti-CD43 beads (Miltenyi Biotec). Purified naïve B cells were cultured at 1.2 x 106 cells/

ml in complete RPMI medium supplemented with 10% FBS (Gibco), 50 μM 2-βmercaptoetha-

nol (Gibco), 10 mM Hepes (Gibco), penicillin and streptomycin (Gibco), 25 μg/ml lipopolysa-

charide (LPS, Sigma-Aldrich) and 10 ng/ml IL-4 (PreproTech).

Flow cytometry and cell sorting

Single-cell suspensions were obtained from bone marrow, spleen or cultured B cells and

stained with fluorochrome/biotin-conjugated antibodies to detect mouse surface antigens:

B220 (RA3-6B2), CD19 (1D3), IgM (ll/41), IgD (11-26c.2a), IgG1 (A85-1), CD25 (PC61), Fas

(Jo2)), Ly77 (GL7), CD4 (RM4-5), CD8 (53–6.7) and CD44 (IM7). Samples were acquired on

LSRFortessa or FACSCanto instruments (BD Biosciences) and analyzed with FlowJo software.

GC B cells and naïve B cells were purified from spleen from immunized mice using FACSAria

(BD Biosciences) or SY3200 (Sony).

qRT-PCR

RNA was extracted from naïve and cultured B cells using Trizol and RNeasy kit and Dnase

treatment (Qiagen) and retro-transcribed to cDNA using random hexamers (Roche) and

SuperScript II reverse transcriptase (Invitrogen). qRT-PCR was performed using Sybr Green

in the 7900 Fast Real Time thermocycler (Applied Biosystems). The following primers were

used: mouse- GAPDH (forward) 5’-TGA AGC AGG CAT CTG AGG G-3’, (reverse) 5’-CGA

AGG TGG AAG AGT GGG AG-3’; Total AID (forward) 5’- ACC TTC GCA ACA AGT CTG

GCT -3’, (reverse) 5’- AGC CTT GCG GTC TTC ACA GAA -3’ and R26-AID (forward) 5’-

ATT CGC CCT TGG GAT CCA-3’, (reverse) 5’-AGC CAG ACT TGT TGC GAA GGT-3’.

mRNA expression was normalized to GAPDH mRNA measured in triplicates in each sample.

Relative quantification was performed using the ΔΔCT method.

Immunoblotting

Naïve and activated B cells were incubated on ice for 20 min in NP-40 lysis buffer in the pres-

ence of protease inhibitors (Roche) and lysates were cleared by centrifugation. Total protein

was size-fractionated on SDS-PAGE 12% acrylamide-bisacrylamide gels and transferred to

Protan nitrocellulose membrane (Whatman) in transfer buffer (0.19M glycine, 25 mM Tris

base and 0.01% SDS) containing 20% methanol (90 min at 0.4A). Membranes were probed

with anti-mouse-AID (1/25, eBioscience, 14-5959-82) and anti-mouse-tubulin (1/5000,

Sigma-Aldrich, T9026) or anti-β-actin (1/40000, clone AC-74, Sigma A2228). Then, mem-

branes were incubated with HRP-conjugated anti-rat (1/5000, Bethyl Laboratories, A110-
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105P) and anti-mouse (1/10000, DAKO) antibodies, respectively and developed with Clarity™
Western ECL Substrate (Bio-Rad). Quantification of AID and actin/tubulin specific bands was

performed with ImageJ software as integrated density values.

IgH Sμ amplification and mutation analysis by PCR-Seq

For the analysis of mutations at IgH Sμ region, genomic DNA was isolated from GC and naïve

B cells from immunized mice. Amplifications were performed in 4 independent reactions

using the following primers:

(forward) 5’- AATGGATACCTCAGTGGTTTTTAATGGTGGGTTTA-3’; (reverse) 5’-

GCGGCCCGGCTCATTCCAGTTCATTACAG-3’. Amplification reactions were carried in a

final volume of 25 μl each, using 2.5 U Pfu Ultra HF DNA polymerase (Agilent) for 26 cycles

(94˚C for 30”, 55˚C for 30”, 72˚C for 60”). PCR products were purified and fragmented using

a sonicator (Covaris), and libraries were prepared according to the manufacturer’s instructions

(NEBNext Ultra II DNA Library Prep; New England Biolabs). Sequencing was performed in a

HiSeq 2500 platform (Illumina). Analysis was performed as previously described [30].

Immunohistochemistry

Spleens and tumors were fixed with 10% neutral-buffered formalin and embedded in paraffin.

5 μM sections were stained with hematoxylin and eosin (Sigma) using standard protocols. For

Ki67, Bcl6 and Pax5 immunohistochemistry, sodium citrate buffer (10mM pH 6, Sigma-

Aldrich) was used for antigen retrieval. Endogenous peroxidases were blocked with 3% (v/v)

H2O2 (Merck) in methanol (Sigma-Aldrich). For AID immunohistochemistry, EDTA buffer

(1mM EDTA, 0,05% Tween-20 pH 8) was used for antigen retrieval and endogenous peroxi-

dases were blocked with 0.3% H2O2 in water. Rabbit anti-Ki67 (Abcam, 1/100), goat anti-Pax5

(Santa Cruz Biotechnology, 1/2000), rat anti-AID (eBioscience, 1/50), and anti-Bcl-6 (IG91E,

generously provided by Dr G Roncador, CNIO) were incubated overnight at 4˚C. Biotinylated

secondary antibodies were incubated 1 hour at room temperature. Biotinylated antibodies

were detected with the ABC system (Vector Laboratories). Images were acquired with a Leica

DM2500 microscope or digitized in a Hamamatsu NanoZoomer Scanner. Tumors were diag-

nosed by a pathologist. Two criteria were used to categorize tumors as SB lymphoma or LB

lymphomas 1) tumoral growth pattern; SB lymphomas show a follicular pattern and LB lym-

phomas show a diffuse growth pattern and 2) cellular morphology; tumors with predominance

of centrocyte morphology (small cleaved irregular nuclei and inconspicuous nucleoli) were

classified as SB lymphomas and those with a majority of the large centroblasts with open vesic-

ular nuclei and nucleoli attached to the nuclear membrane were classified as LB lymphoma.

Whole Exome Sequencing (WES)

Whole exome sequencing was performed in 15 tumors and one healthy tissue (tail) as a non-

tumoral control. In brief, genomic DNA was isolated by standard procedures, quantified in a

fluorometer (Qubit; Invitrogen), fragmented in a sonicator (Covaris) to *200 nucleotide-long

(mean size) fragments and purified using AMPure XP beads (Agencourt). Quality was assessed

with the 2100 Bioanalyzer (Agilent). Then, fragment ends were repaired, adapters were ligated,

and the resulting library was amplified and hybridized with a SureSelect Mouse All Exon kit

library (Agilent) of RNA probes. DNA–RNA hybrids were then captured by magnetic bead

selection. After indexing, libraries were paired-end sequenced in a HiSeq 2500 platform to pro-

duce 2x100bp reads. DNA capture, library preparation, and DNA sequencing were performed

by the Genomics Unit at Centro Nacional de Investigaciones Cardiovasculares (CNIC).
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a. Identification of somatic variants from WES data. Raw reads were demultiplexed and

processed into fastq files by CASAVA (v1.8) and quality checked by FastQC (0.10.1). Sequenc-

ing adaptors were removed by cutadapt (1.7.1) (minlength = 30; minoverlap = 7) and the

resulting reads were mapped to the mouse genome (GRCm38 v75 Feb 2014) using BWA-

MEM (0.7.10-r789) (command line option -M to mark shorter split hits as secondary). Dupli-

cates were marked by Picard tools (1.97). Variant calling was performed by means of Geno-

meAnalysisTK-3.5 (GATK3.5) and GATK Resource Bundle GRCm38 using default

parameters and thresholds: 1) Aligned reads were realigned for known insertion/deletion

events (Realigner TargetCreator and IndelRealigner tools) to minimize the number of mis-

matching bases and reduce false SNV calls; 2) base qualities were recalibrated (BaseRecalibra-

tor tool) by a machine learning model to detect and correct systematic errors in base quality

scores; 3) a custom Panel Of Normals (PON) was built; 4) somatic variants were called by

MuTect2 (from GATK3.6); 5) Variants were functionally annotated with Variant Effect Pre-

dictor (VEP) version 84 (command line option—per-gene to output only the most severe func-

tional consequence of the variant at the gene level) and filtered out to remove false positives

(custom scripting). PON was built by combining the following variants: set1, intersection

between germline (HaplotypeCaller) and somatic (MuTect2) variant calls in healthy tissue;

set2, somatic variants (MuTect2) that have been called in all the 15 tumor samples and healthy

tissue, including variants labeled as “NO PASS” by the caller in�2 of the samples; set3,

somatic variants (MuTect2) that have been called in�13 tumor samples and healthy tissue

and that have been labeled as “PASS” by the caller in all the samples. Filtering out of potential

false positives was done by removing all variants that were called in healthy tissue, annotated

in dbSNP (v142) or annotated in the Mouse Genomes Project (v5) for 129P2/OlaHsd, 129S1/

SvImJ, 129S5SvEvBrd, BALB/cJ, C57BL/6NJ and CBA/J strains. Exome sequencing metrics

included in S1 Table were calculated using Picard tools HsMetrics.

b. Copy number variation analysis from WES data. Copy number variation analysis was

done using CopywriteR, an R package which implements a statistical method to estimate CNV

from off-target reads in capture-based sequencing experiments. This approach overcomes

most of the limitations and biases associated to CNV estimation from targeted sequencing

data. Briefly, the software reads the alignment files, removes non-random off-target reads, cal-

culates depth of coverage in predefined bins, corrects it by GC-content and mappability and

generates a CNV profile. We used 20Kb bins and provided both tumor and healthy tissue (as a

negative control) samples for the software to call CNV regions that exclusively occur in

tumors.

c. Translocation analysis. Raw WES reads were processed and aligned to the mouse

genome (GRCm38 v75 Feb 2014) as indicated in section “Identification of somatic variants

from WES data”. Translocations were identified using Manta1.6.0 with default parameters: 1)

Execute configManta.py to configure the analysis:--exome parameter to indicate that reads

come from whole exome sequencing;--normalBam and--tumorBam to indicate normal and

tumor samples, respectively;--referenceFasta to indicate genome of reference used for the

alignment;--runDir to indicate working directory; 2) Execute runWorkflow.py to run the anal-

ysis. Both configManta.py and runWorkflow.py are part of the standard distribution of Manta

software. Translocations occurring in> = 2 tumors (same breakpoint coordinates) were con-

sidered as germinal and discarded from the analysis.

d. Inference of clonal architecture of tumors and estimation of intratumor heterogene-

ity from WES data. Intratumoral heterogeneity was estimated using the R package SciClone

[61]. Variant allele frequencies (VAFs) and CNV information were used to infer clonal archi-

tecture of each of the 15 tumors analyzed. To ensure statistical robustness, only those variants

supported by� 100 reads were considered for the ITH analysis, as recommended by the
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authors of the tool. Mutations with a VAF greater than 0.8 were excluded to filter out germline

mutations. Variants belonging to the cluster with the highest VAF were considered as “clonal”

and those belonging to clusters with a lower VAF were annotated as “subclonal”.

e. Identification and functional annotation of cancer associated genes from WES

data. Cancer associated genes were identified as those genes that bear at least one variant in

one of the 15 tumors analyzed and that are annotated in IntOGen [65] as cancer drivers (gene

set composed of 459 genes) or appear mutated in human diffuse large B cell lymphoma, Bur-

kitt lymphoma or follicular lymphoma tumors [65–71] (lymphoma associated genes; gene set

composed of 239 genes). Functional annotation of the 132 and 154 cancer-related genes identi-

fied in R26+/+Cd19Cre/+Ung-/- and R26+/AIDCd19Cre/+Ung-/- tumors was performed by Gene

Ontology Biological process database. Enrichment tests were done using DAVID 6.8.

Statistical analysis

Statistical analyses were performed with GraphPad version 6.01 or stats R package v3.1.1.

Error bars in figures represent SD. Two-tailed Student’s t test was applied to continuous data

following a normal distribution (Shapiro-Wilk test) and two-tailed Fisher or χ2 test were used

to assess differences between categorical variables. Kaplan-Meier survival curves were com-

pared by log-rank Mantel-Cox test. Differences were considered statistically significant at

P� 0.05.

Supporting information

S1 Fig. Mouse model for the conditional expression of AID in B cells. (A) Representation of

the cassette used to generate the R26+/AIDCd19+/Cre mouse model. An AID-IRES-GFP con-

struct preceded by a transcriptional STOP flanked by loxP sites was inserted within the Rosa26
locus. R26+/AID mice were then crossed with Cd19+/Cre mice to generate R26+/AIDCd19+/Cre

mice. (B) Progressive R26-AID allele expression during B cell differentiation. Representative

FACS analysis of GFP reporter expression in bone marrow and splenic B cells from R26+/AID

Cd19+/Cre (black empty line) and R26+/+Cd19+/Cre (grey shade) mice. Bone marrow B cell subsets

were gated as prepro (B220+CD19-), pro (B220+CD19+IgM-CD25-), pre (B220+CD19+

IgM-CD25+), immature (B220+CD19+IgM+IgD-) and recirculating (B220+CD19+IgM+IgD+).

Spleen B cells were gated as B220+. (C) B cells from R26+/AIDCd19+/Cre mice develop normally.

Left, representative FACS plots of prepro, pro, pre immature and recirculating B cells from

R26+/AIDCd19+/Cre and control R26+/+Cd19+/Cre mice. Right, frequency quantification of each B

cell subpopulation in R26+/AIDCd19+/Cre (n = 9) and R26+/+Cd19+/Cre mice (n = 8). Two-tailed

t-test, error bars represent SD.

(TIF)

S2 Fig. Mouse model for the conditional expression of AID in hematopoietic cells. FACS

analysis of GFP reporter expression in bone marrow, spleen and thymus cells from R26+/AID

Vav+/cre (black empty line) and R26+/+Vav+/cre (grey shade). Bone marrow and spleen B cell

subsets were gated as in S1B–S1C Fig. T cell subsets were gated as DN (CD4-CD8-), DN1

(CD4-CD8-CD44+CD25-), DP (CD4+CD8+), CD4+SP (CD4+CD8-), CD8+SP (CD4-CD8+)

from thymus and naive-T (B220-CD3+) from spleen.

(TIF)

S3 Fig. Staining controls for Fig 4D. Ki67 and AID immunohistochemistry of spleen sections

from SRBC immunized Aicda+/+ and Aicda-/- mice. Magnification is 5x inset is 40x. Scale bars

are 500μm and 50μm for 5x and 40x images respectively.

(TIF)
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S4 Fig. Immunohistochemistry analysis (left) and immunophenotype (right) of 10 tumors

from R26+/+Cd19+/creUng-/- mice. Magnification for Ki67 and AID IHQ images is 40x. Scale

bar is 50μm. Total live cells (left FACs panel) and B220+ gated cells (middle and right FACs

panels) are shown.

(TIF)

S5 Fig. Immunohistochemistry analysis (left) and immunophenotype (right) of 10 tumors

from R26+/AIDCd19+/creUng-/- mice. Magnification for Ki67 and AID IHQ images is 40x.

Scale bar is 50μm. Total live cells (left FACs panel) and B220+ gated cells (middle and right

FACs panels) are shown.

(TIF)

S6 Fig. Exome sequencing of tumors. (A) Total number of SNVs and INDELS identified in

each of the 15 tumors analyzed. (B) Average proportion of SNVs and INDELs found in R26+/
+Cd19+/CreUng-/- and R26+/AIDCd19+/CreUng-/- tumors. (C) CNV analysis of tumors from WES

data. Heatmap of the genomic distribution of CNV alterations in R26+/+Cd19+/CreUng-/- and

R26+/AIDCd19+/CreUng-/- tumors. Upper panel depicts number of CNV regions per tumor,

with colors encoding copy number gain (red) or loss (grey). (D) Number of translocations

identified in R26+/+Cd19+/CreUng-/- and R26+/AIDCd19+/CreUng-/- tumors by Manta analysis of

WES data (two-tailed t-test, p = 0.852; tumor vs healthy tissue, see methods for details).

(TIF)

S1 Table. Whole Exome Sequencing (WES) metrics of the 16 samples analyzed.

(XLSX)

S2 Table. Tumors samples analyzed by WES.

(XLSX)

S3 Table. Variants identified in AID KI UNG KO and AID WT UNG KO tumors.

(XLSX)

S4 Table. Traslocation analysis of AID KI UNG KO and AID WT UNG KO tumors.

(XLSX)

S5 Table. List of cancer-related genes mutated in AID KI UNG KO and/or AID WT UNG

KO tumors.

(XLSX)

S1 Appendix. Mutation analysis of PCR-seq data at the IgH Sμ region from GC and naïve

B cells.

(XLSX)

AcknowledgmentsAckowledgments

We thank all members of the B cell biology lab for scientific discussion, JM Ligos and the

CNIC Cellomics Unit for flow cytometry assistance, CNIC Genomics Unit for assistance with

whole genome sequencing and PCRseq experiments, CNIC Histology Unit for assistance with

immunohistochemistry stainings and Carlos Torroja for helpful advice with whole exome

sequencing data analysis.

Author Contributions
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nandez, Fátima Sanchez-Cabo, Marta Cañamero, Antonio de Molina, Laura Belver, Vir-
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