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Abstract

Background

Despite the sharp decline in global under-5 deaths since 1990, uneven progress has been

achieved across and within countries. In sub-Saharan Africa (SSA), the Millennium Devel-

opment Goals (MDGs) for child mortality were met only by a few countries. Valid concerns

exist as to whether the region would meet new Sustainable Development Goals (SDGs) for

under-5 mortality. We therefore examine further sources of variation by assessing age pat-

terns, trends, and forecasts of mortality rates.

Methods and findings

Data came from 106 nationally representative Demographic and Health Surveys (DHSs)

with full birth histories from 31 SSA countries from 1990 to 2017 (a total of 524 country-

years of data). We assessed the distribution of age at death through the following new

demographic analyses. First, we used a direct method and full birth histories to estimate

under-5 mortality rates (U5MRs) on a monthly basis. Second, we smoothed raw estimates

of death rates by age and time by using a two-dimensional P-Spline approach. Third, a vari-

ant of the Lee–Carter (LC) model, designed for populations with limited data, was used to fit

and forecast age profiles of mortality. We used mortality estimates from the United Nations

Inter-agency Group for Child Mortality Estimation (UN IGME) to adjust, validate, and mini-

mize the risk of bias in survival, truncation, and recall in mortality estimation. Our mortality

model revealed substantive declines of death rates at every age in most countries but with

notable differences in the age patterns over time. U5MRs declined from 3.3% (annual rate

of reduction [ARR] 0.1%) in Lesotho to 76.4% (ARR 5.2%) in Malawi, and the pace of

decline was faster on average (ARR 3.2%) than that observed for infant (IMRs) (ARR 2.7%)

and neonatal (NMRs) (ARR 2.0%) mortality rates. We predict that 5 countries (Kenya,

Rwanda, Senegal, Tanzania, and Uganda) are on track to achieve the under-5 sustainable

development target by 2030 (25 deaths per 1,000 live births), but only Rwanda and
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Tanzania would meet both the neonatal (12 deaths per 1,000 live births) and under-5 targets

simultaneously. Our predicted NMRs and U5MRs were in line with those estimated by the

UN IGME by 2030 and 2050 (they overlapped in 27/31 countries for NMRs and 22 for

U5MRs) and by the Institute for Health Metrics and Evaluation (IHME) by 2030 (26/31 and

23/31, respectively). This study has a number of limitations, including poor data quality

issues that reflected bias in the report of births and deaths, preventing reliable estimates

and predictions from a few countries.

Conclusions

To our knowledge, this study is the first to combine full birth histories and mortality estimates

from external reliable sources to model age patterns of under-5 mortality across time in

SSA. We demonstrate that countries with a rapid pace of mortality reduction (ARR� 3.2%)

across ages would be more likely to achieve the SDG mortality targets. However, the lower

pace of neonatal mortality reduction would prevent most countries from achieving those tar-

gets: 2 countries would reach them by 2030, 13 between 2030 and 2050, and 13 after 2050.

Author summary

Why was this study done?

• Under-5 mortality remains high in sub-Saharan Africa (SSA), and it is declining

unevenly across countries and age groups.

• Only a few countries in SSA met the Millennium Development Goals (MDGs) for child

mortality reduction.

• A new analysis that explores sources of variation is needed to address concerns on

whether the region would be able to reach the Sustainable Development Goals (SDGs).

What did the researchers do and find?

• Using data from full birth histories, we developed a new demographic model to assess

age patterns of mortality, fit mortality profiles across age and time, and forecast under-5

mortality.

• We found marked differences in mortality profiles by age and levels across countries

over time. The average annual rate of reduction (ARR) for under-5 mortality rates

(U5MRs) between 1990 and 2017 was 3.2%, but it varied from 0.1% in Lesotho to 5.2%

in Malawi.

• Based on our prediction model, we assessed the achievability of SDGs mortality targets

by 2030 (2050 when possible) for 31 SSA countries.

• Countries with a rapid pace of mortality decline would be more likely to meet the sus-

tainable mortality goals (e.g., Rwanda and Tanzania), as opposed to those with a slower

pace (e.g., Chad and Nigeria).
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• However, the slow pace in neonatal mortality would prevent most countries from reach-

ing the SDGs by 2030, even countries like Ethiopia that have met the MDGs before the

2015 deadline.

What do these findings mean?

• Our analytical approach aims to provide insights for the assessment of sustainable tar-

gets of child mortality and to identify the range of epidemiological situations and

trajectories.

• The acceleration of neonatal mortality decline is key to advancing the agenda for sus-

tainable development and should be considered in future programmatic assessments.

Introduction

Under-5 mortality analysis has been critical in evaluating progress toward the Millennium

Development Goal 4 (MDG-4) that called for a reduction of under-5 mortality rates (U5MRs)

by two-thirds between 1990 and 2015 [1] and more recently toward the Sustainable Develop-

ment Goal 3 (SDG-3), which aims to reduce neonatal mortality rates (NMRs) to fewer than

12 per 1,000 live births and U5MRs to at least as low 25 per 1,000 births by 2030 [2]. The moni-

toring of child survival is conducted by the United Nations Inter-agency Group for Child

Mortality Estimation (UN IGME) [1], which has adopted a methodology for child mortality

estimation [3,4] and regularly updates the resulting mortality levels and trends around the

world [4].

The most recent estimates from UN IGME revealed outstanding progress, as the total num-

ber of under-5 deaths dropped from 12.6 million in 1990 to 5.4 million in 2017. Yet progress

was uneven among and within countries. In particular, 50% of under-5 deaths occur in sub-

Saharan Africa (SSA) [4], a region that concentrates 24% of the worldwide under-5 population

[5]. In addition, despite the impressive reduction of 58% of under-5 deaths in SSA between

1990 and 2017 (annual rate of reduction [ARR] = 3.2%), the region continues to have the high-

est under-5 mortality in the world (with 76 deaths per 1,000 live births in 2017). Uneven prog-

ress across ages also persists in the region, with nearly 1 million neonatal deaths still occurring

every year from 1990 to 2017 (0% decline) and increasing relative to the total under-5 deaths

(from 26% in 1990 to 37% in 2017) [4]. This disparate progress in neonatal relative to under-5

mortality decline is observed even in countries that have succeeded in reducing under-5 deaths

during the same period; for instance, Ethiopia reached the MDG-4 target 3 years before the

2015 deadline [6,7], yet the share of neonatal to total under-5 deaths increased from 31% in

1990 to 50% in 2017 [4].

Recent evidence reveals uneven trends in the reduction of child mortality rates in low- and

middle-income countries (LMICs) across specific population subgroups: by sex [8,9]; by

wealth status, with absolute disparities in mortality declining between the poorest and richest

households but with persistent relative differences [10,11]; over space, with substantial spatial

heterogeneity within countries [12] but some convergence at subnational levels [13]; and for

causes of death [14–16]. Methodological work has addressed the inadequacy of traditional life

table models applied to child mortality in SSA [17] and small area smoothing with data from

sample surveys and demographic surveillance systems [18]. But little attention has been paid
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to the age distribution of deaths, although recent studies [19–21] do report differences in some

causes of death between neonates and older children.

It is well documented that the reduction in child mortality was a key factor for the change

in the age distribution of mortality and the increase of life expectancy experienced in the devel-

oped world during the 20th century [22,23], as life expectancy is particularly sensitive to mor-

tality reductions at younger ages [24]. With subsequent declines in child mortality over time,

we expect that infant deaths in SSA countries will tend to concentrate in the first month of life

as postneonatal conditions improve due to the eradication of exogenous mortality causes (e.g.,

infectious or parasitic diseases, accidental injuries), and then endogenous causes (those associ-

ated with genetics, congenital malformations, or injuries connected to birth) would persist

[25,26]. This change relates to the classical epidemiological transition model [27], which states

that childhood survival (particularly at ages 1–4) benefits the most from the shift of disease pat-

terns and the increase in life expectancy as infectious diseases are progressively displaced by

“degenerative and man-made diseases,” although the duration, pace, timing, and determinants

have been subject to criticism [28–30].

The main purpose of this study is 3-fold: 1) contribute to filling the gap in modeling fine-

grained mortality patterns for under-5 children, 2) the analysis of trends in the age at death

distribution for under-5 children, and 3) the forecasting of age patterns and mortality levels by

country in SSA.

Methods

This study follows the guidelines in STrenthening the Reporting of OBservational studies

in Epidemiology (STROBE) for reporting observational cross-sectional studies as well as

the REporting of studies Conducted using Observational Routinely-collected health Data

(RECORD) [31,32]. The analysis is based on information collected from unidentified

individuals who provided informed consent prior to the survey interview. Ethical

approval for Demographic and Health Surveys (DHSs) was obtained by the ORC Macro

Institutional Review Board and by individual review boards within each participating

country.

Data sources

Data are birth histories from 106 DHSs from 31 SSA countries from the period between 1990

and 2017. The DHS program collects health and demographic information mostly for women

in reproductive age (15–49 years old) and their children. The survey design is based on a prob-

abilistic, stratified 2-stage sampling plan that defines strata by administrative regions (e.g.,

states, provinces) and by rural–urban areas within each region. The first-stage sampling frame

consists of a list of primary sampling units (PSUs) or enumeration areas (EAs) that covered

the entire country and usually were obtained from the latest national census—when available.

Each EA was further subdivided into standard size segments of about 100–500 households per

segment. In this stage, a sample of predetermined segments is selected randomly with proba-

bility proportional to the EA’s measure of size (number of households in EA). In the second

stage, DHS survey personnel select households systematically from a list of previously enumer-

ated households in each selected EA segment, and in-person interviews are conducted in

selected households to target populations: women aged 15–49, men aged 15–59 (15–54 or 15–

49 in some surveys), and children under 5. The number of selected households per EA is vari-

able but ranges from 30 to 40 households/women per rural cluster and from 20 to 25 house-

holds/women per urban cluster [33].
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Full birth histories and retrospective mortality data

Full birth history (FBH) data are available for individual women in DHSs, including up to 20

previous births for every eligible woman—usually women 15–49—for which the respondent

mother is asked about the date of birth of each of her ever-born children and the age at death if

the child has already died [34].

FBH data permits the estimation of death rates for up to 25 years before the survey [34]. We

used retrospective information from FBH data, following the statistical guidelines from Peder-

sen and Liu [35]. We selected the time periods recommended by those authors for the estima-

tion of infant mortality rates (IMRs) and for the countries and survey years considered in their

study that matched our sample; for subsequent survey years that were available after their pub-

lication, we considered the time interval used in the latest survey included in that study or a

5-year period for countries that were not included. For each country, we then estimated NMRs

(death during the first 28 days of life), IMRs (death during the first 12 months of life), and

U5MRs (death during the first 59 months of life) retrospectively, starting with year 1990 (or

later for some countries) to focus on the period 1990 to 2017 (a complete list of countries/years

is in S1 Table).

Demographic methods

We built our demographic model as follows: 1) we computed conditional life-table age distri-

bution of under-5 deaths from survey data; 2) we adjusted our mortality profiles to match

NMRs, IMRs, and U5MRs from UN IGME estimates; and 3) we smoothed out the resulted age

mortality profiles and fit and forecast them using a modified version of the Lee–Carter (LC)

model. Details for each step are described in what follows.

1) “Conditional” life table age distribution of under-5 deaths. We constructed life-table

age distributions of death based on estimated death rates obtained from death reports by

households and birth history data from DHSs [34]. We assigned deaths and exposure time

across each calendar year on a monthly basis. Estimates of age-specific death rates m[x] ([x]
stands for age in months) considered the contributions of children in the survey to the number

of events and total time to event [34]. We computed period life table probabilities of dying, q[x]

(probability of dying between month x and month x + 1), assuming that deaths are distributed

uniformly across every single month age range.

q½x� ¼
m½x�
12

1þ
m½x�
24

� � ð1Þ

We derived Eq 1 from a conversion formula (developed by Greville [36] and Chiang [37])

of a set of period age-specific death rates (nmx, with n measured in years) to a set of age-specific

probabilities of dying (nqx), but modified the formula to consider that we measure n in months

(n = 1/12)—details of this conversion are in S1 Text. We estimated NMRs, IMRs, and U5MRs

using this methodology and the following formulas [34].

NMR ¼ q½0�; ð2Þ

IMR ¼ 1 �
Q11

x¼0
ð1 � q½x�Þ; ð3Þ

U5MR ¼ 1 �
Q59

x¼0
ð1 � q½x�Þ: ð4Þ
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2) UN IGME neonatal, infant, and under-5 mortality adjustment. Direct estimates of

under-5 deaths based on FBH are prone to measurement errors, as the information is reported

directly by living mothers (survivor bias) or due to an upper age limit that is usually considered

as an eligibility criterion for surveyed women (truncation bias: eligible women are usually in

the age range 15–49) [34,38]. Survivor bias is particularly relevant in countries with extended

periods of high HIV prevalence [39].

Because of the lack of high-quality vital registration systems for the countries in our sample,

we used mortality estimates from the UN IGME group [1,4] that are designed to mitigate bias

and error [3] to validate and adjust our mortality estimates. Specifically, a) we adjusted our

raw monthly death rates to match the UN IGME estimates for the neonatal (<1 m), post neo-

natal (1–11 m), and childhood periods (12–59 m); and b) we used the UN IGME rates to vali-

date the age-adjusted trajectories obtained after smoothing and fitting our model (more details

in the following section). For (a), the monthly probabilities of surviving in Eqs 2–4, p[x] = [1

−q[x]], were adjusted proportionally to match UN IGME estimates of NMRs, IMRs, and

U5MRs exactly, resulting in 3 measurement errors, dM = 1-fM (M = nmr, pmr, cmr), in which

fM stands for the adjustment factor applied respectively to [1]p[0], [11]p[1], and [59]p[12] ([a]p[x] is

the probability of surviving from the age month x to x + a).

Our direct unadjusted estimates of neonatal mortality differ by as much as 2% from the UN

IGME values, in contrast with the postneonatal and child periods that were highly concordant

(i.e., with practically no adjustment required) for the majority of year periods. Our unadjusted

estimates of neonatal rates were noisy over time, as we expected from our use of retrospective

data, and the noise would have been greatly reduced for many countries by a moving average

(no average is used in the analyses reported here). In S1 Fig, we show the magnitude of the

error (dM) after the adjustment we made to neonatal rates (fnmr) and the much smaller adjust-

ments we made to postneonatal (fpmr) (period between ages 1 and 11 months) and child mor-

tality (fcmr) rates (between ages 12 and 59 months) to exactly fit the UN IGME estimates.

3) Fit and forecasting of mortality trajectories. We used a two-dimensional P-Spline

smoothing and generalized linear model (GLM) to smooth our calibrated mortality profiles

over ages and years, assuming that the number of deaths at a given rate are Poisson distributed

[40]. Following Camarda (2012), [40] the number of deaths and the number of exposures are

arranged in mxn matrices D and E, with rows indexed by age and columns indexed by year,

respectively—in the one-dimensional case (age dimension), we have a vector of death counts

(d), exposures (e), and mortality hazards (μ). The P-Splines consist of a combination of

B-Spline basis with roughness penalization (or regularization) on the basis coefficients [41,42],

with equally spaced B-Splines used as regression basis and adjusted to our Possion data as fol-

lows:

logðEðyÞÞ ¼ logðeÞ þ logðμÞ ¼ logðeÞ þ Bα; ð5Þ

in which E(y) = e�μ (as y~Poi(e�μ)). Eq 5 represents a GLM with B-Splines as regressors and a

log link function of the poisson death counts. With P-Splines, this model is adjusted using an

iteratively reweighted least squares (IRWLS) algorithm, but the solution includes a penaliza-

tion matrix P that controls the tradeoff between smoothness and model accuracy (tuning of 1

or 2 smoothing parameters is performed during the optimization process). Although the same

model specification in Eq 5 and estimation approach can be applied to both one- and two-

dimensional data (age and time dimensions), a generalized linear array model (GLAM) [41] is

used to adjust the model in two-dimensional settings as the problem may become computa-

tionally intractable with large age and time intervals. We used the R package MortalitySmooth,
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which is tailored to model mortality data in one- and two-dimensional settings with P-Splines

[40].

A variant of the LC model (Li–Lee–Tuljapurkar [LLT] [43]) is applied to the age mortality

profiles after smoothing. In contrast with the standard LC model [44], the modified version is

suitable for mortality profiles using data sets that contain multiyear gaps and provides various

measurement errors (95% unbiased, narrow, and wide error bounds) if data are available at

least for three periods (S1 Text). This characteristic is particularly relevant for this study

because our DHS life histories contain year gaps for some countries even after we augmented

the periods of analysis using the retrospective information when trying to fill those gaps (as

shown in S1 Table). This augmentation did allow us to overcome the requirement of the 3

years of data in the LLT approach [43]. For age [x] and year t, the LC model that we fit has the

form,

log m½x�t ¼ a½x� þ b½x� kt þ e½x�t; ð6Þ

in which the first 2 terms on the right are estimated in a singular-value decomposition step,

and the last term is an error term whose variance is estimated, as described by Li and col-

leagues [43]. The term a[x] represents the average age distribution for each country, kt tracks

mortality changes over time, b[x] determines how much the age group [x] mortality changes

with a unit change in kt, and e[x]t represents age-period disturbances not captured by the

model. We measured the goodness-of-fit of the LC model as the percentage of the variance

explained of the mortality profile m[x]t (after the adjustment to match UN IGME estimates) by

the first principal component of the singular-value decomposition (details in S1 Text) [45].

For most countries, the LC model captured more than 90% of the total variation of under-5

mortality (S1 Table).

The resulting fits were used to generate smoothed-point estimates (the median LC values)

of age-specific death rates within the 1990–2017 period and NMR, IMR, and U5MR mortality

rates. These estimated rates fell within the 90% credible intervals reported in the latest revision

of the UN IGME model (see Fig 1). The dots in that figure represent mortality estimates from

our LLT model, and the dark gray lines the limits of credible intervals reported by UN IGME.

Around 97%, 84%, and 88% of our neonatal, infant, and under-5 mortality estimates fell within

those credible limits, respectively (we dropped Rwanda estimates from the period between

1990–1993, as the resulted mortality rates looked unrealistically high).

Results

Trends and forecasts of age-specific mortality patterns

Under-5 mortality has declined for most countries in SSA between 1990 and 2017, but the

pace of decline has been uneven and with marked differences across age and countries. That is,

U5MR decreased by 3.3% (annual rate of reduction [ARR] 0.1%) (the formula to estimate

ARR is in S1 Text) in Lesotho, 59.4% (median) (ARR 3.3%) in Burkina Faso, and 76.4% (ARR

5.2%) in Malawi. By 2017, only 10 countries in our sample had reached/outpaced the MDG-4

target: Ethiopia, Liberia, Malawi, Mozambique, Niger, Rwanda, Senegal, Uganda, the United

Republic of Tanzania (Tanzania hereafter), and Zambia. Meanwhile, the decline of NMRs

were smaller than U5MRs for all countries, with the lowest, median, and largest declines

observed in Lesotho (1.8%, ARR 0.1%), Ghana (42.5%, ARR 2.0%), and Guinea (60.9%, ARR

3.4%), respectively (Table 1). The complete list of countries (31) and years (524) of study are in

S1 Table.

Mortality rates and number of deaths from 1990 and 2017 are official estimates from UN

IGME [4], while values from 2030 and 2050 were estimated using the LLT model.
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We used our LLT model to fit and forecast U5MRs for every country. The forecasts of tra-

jectories were for the years 2030 and 2050 (predictions for Lesotho were precluded by the poor

quality of data and great uncertainty in the estimates and uncertainties). Most countries dis-

play a monotonic decline of death rates at every age, but there are notable differences in the

age patterns over time. Death rates by age for all countries are in Fig 2, including fitted

(between 1990 and 2017) and predicted (2030) age-specific mortality trajectories. For instance,

Chad, Nigeria, Rwanda, and Tanzania are representative countries with different trajectories

of mortality reduction. Chad and Nigeria are countries with low ARR (below 3.2%, the ARR of

SSA between 1990 and 2017 [4]), whereas Rwanda and Tanzania represent countries with high

ARR (above 3.2%). For Chad, mortality fell most rapidly at ages between 1 and 3 years, leading

to a decidedly uneven pattern (by age) in 2015 and persisting to 2030. However, in Nigeria,

although death rates during the second year of life decreased more rapidly in the initial period,

mortality at all ages eventually declined at similar proportional speeds, and the mortality pro-

file remains linear with age to 2030. Our prediction model for both countries indicates an

improvement in the mortality levels at all ages by 2030 but with more uncertainty in Chad.

Mortality patterns in Rwanda and Tanzania are similar; the transition from high to low mor-

tality across the under-5 period starts with a sharp decline in infant (2–11 m) and child (12–59

m) mortality, followed by a less rapid decline in neonatal (<1 m) mortality. In both countries,

however, the mortality profile is steepest during the infant period compared to the child period

across time. Our model also predicts significant declines of mortality by 2030 at all ages, the

mortality curve in Rwanda becoming increasingly rectangular, i.e., concentrating near birth

and then falling sharply and rapidly with age.

Our forecasting model revealed that countries that experienced a low pace of under-5 mor-

tality decline in the past would most likely fall short in achieving the SDG-3 target for under-5

mortality by 2030, in contrast with those experiencing more substantial or accelerated reduc-

tions. However, the lower pace of neonatal mortality decline observed in the region during our

period of investigation may prevent most countries from reaching both the neonatal and

under-5 SDG-3 target by 2030 (fewer than 12 or at least as low 25 deaths per 1,000 live births

for neonatal and under-5 targets, respectively), including countries with a higher pace of

under-5 mortality reduction. For example, the ARR for neonatal and under-5 mortality in

Nigeria between 1990 and 2017 of 1.6 and 2.7, respectively, would remain the same or decrease

between 2017 and 2030 (and 2050), and that would prevent the country from achieving the

SDG-3 targets—neither in 2030 nor in 2050 (Table 1, S2 Fig). In contrast, the ARR of neonatal

and under-5 mortality in Guinea and Rwanda would increase or remain high (above 3.2%)

after 2017, and as a consequence, these countries would likely reach those targets (Table 1, S2

Fig). Rwanda and Tanzania, 2 countries that have achieved MDG-4 [46], would likely meet the

SDGs of neonatal and under-5 mortality reduction by 2030, according to our predictions.

However, although Ethiopia has also reached MDG-4 since 2013 and experienced reductions

of 51% and 71% in neonatal and U5MRs between 1990 and 2017, respectively, the country

would likely fall short of SDG-3 because of its slower rate of neonatal decline—the ARR was

2.6% between 1990 and 2017, and it is expected to remain at that level (approximately 2.5%)

afterwards (Table 1).

Fig 1. Mortality rates estimated using fitted age profiles from the LLT model and 90% CI from UN IGME

estimates for selected year time periods (between 1990 and 2017) in 31 SSA countries. (a) NMRs, (b) IMRs, and (c)

U5MRs. Country years represented in the x-axis were sorted on the basis of mortality levels. We retrieved UN IGME

estimates from [4]. CI, credible interval; IMR, infant mortality rate; LLT, Li–Lee–Tuljapurkar; NMR, neonatal

mortality rate; SSA, sub-Saharan Africa; U5MR, under-5 mortality rate; UN IGME, United Nations Inter-agency

Group for Child Mortality Estimation.

https://doi.org/10.1371/journal.pmed.1002757.g001
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In summary, we predict that only five countries are on track to achieve the under-5 mortal-

ity target of SDG-3 by 2030 (Kenya, Rwanda, Senegal, Tanzania, and Uganda) (Fig 3), but only

Rwanda and Tanzania would also meet the neonatal mortality target by 2030. If the observed

pace of mortality reduction continues, and considering the uncertainty predicted by our

model (based on our estimated unbiased error bounds), we predict that only 13 countries

would achieve the neonatal and under-5 goals between 2030 and 2050 (Angola, Burundi, Cam-

eroon, Congo, Ethiopia, Ghana, Kenya, Liberia, Malawi, Mozambique, Niger, Togo, and Zam-

bia), and 13 more would make it after 2050 (Benin, Burkina Faso, Chad, Cote d’Ivoire,

Democratic Republic of the Congo [DR Congo], Gabon, Gambia, Lesotho, Mali, Namibia,

Nigeria, Sierra Leone, and Zimbabwe) (Fig 3).

Discussion

This paper describes 3 novel findings. First, we advanced the modeling of age patterns of

under-5 mortality for detailed age groups using FBH data from SSA, providing important

information on under-5 mortality patterns and representing a step forward in the analysis of

changes in age patterns of mortality across time and by country. We used the latest refine-

ments in the estimation of child mortality based on full birth histories from survey data and

Fig 2. LLT fit and prediction of age patterns of death rates for under-5 children in 31 SSA countries. Author’s estimates using the LLT model [43] with data

from the DHS program. CI, credible interval; DHS, Demographic and Health Survey; LLT, Li–Lee–Tuljapurkar; SSA, sub-Saharan Africa.

https://doi.org/10.1371/journal.pmed.1002757.g002

Age distribution, trends, and forecasts of under-5 mortality in 31 sub-Saharan African countries

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002757 March 12, 2019 12 / 21

https://doi.org/10.1371/journal.pmed.1002757.g002
https://doi.org/10.1371/journal.pmed.1002757


Fig 3. Forecasts of NMRs and U5MRs by 2030 and 2050 based on the LLT model and assessment of SDG-3 targets in

31 SSA countries. (a) NMRs and (b) U5MRs. Predictions for Lesotho were precluded by the poor quality of data and great

uncertainty in the estimates and uncertainties. We report unbiased error bounds for our prediction models for 2030 and

2050. LLT, Li–Lee–Tuljapurkar; NMR, neonatal mortality rate; SDG-3, Sustainability Development Goal 3; SSA, sub-

Saharan Africa; U5MR, under-5 mortality rate.

https://doi.org/10.1371/journal.pmed.1002757.g003
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adjusted and validated our rates using official estimates of U5MRs that are derived from a

robust model [1,3]. Second, we made probabilistic projections of age patterns of mortality by

2030 (and where possible to 2050) in order to assess progress toward the SDGs of child mortal-

ity reduction. In making that assessment, our use of probabilistic methods allowed us to

account for different degrees of uncertainty. Our predictions are consistent with estimates

from UN IGME, as we found discrepancies for only four countries in the timing where SDG-3

would be achieved. Third, we predict that Kenya, Rwanda, Senegal, Tanzania, and Uganda are

on track to achieve SDG-3 for under-5 mortality reduction, but only Rwanda and Tanzania

would meet the neonatal target as well, and 13 countries would achieve both targets only after

2050.

This study is in line with previous findings of under-5 mortality reduction in SSA [4] but

goes further by showing the reductions in age-specific death rates on a monthly basis for the

majority of countries in the region. It also identified heterogeneities in the trends and age pat-

terns of mortality decline across countries, with important lags in most countries that would

prevent them to reach the SDG targets. Although a complete assessment on the specific deter-

minants of mortality decline across ages requires further research, recent evidence suggests

that more rapid rates of decline of communicable, maternal, neonatal, and nutritional diseases

than noncommunicable diseases have had different impacts across ages in early mortality [16].

However, heterogeneous effects of the observed transition, between and within regions, can be

attributable to differences in the successful introduction and implementation of programs and

policies, social determinants, and persistent causes of mortality (preventable or from regions/

countries with conflicts/civil unrest/high HIV prevalence) [12,46,16,11,47]. Further progress

toward the achievement of SDGs in SSA would require accelerated rates of decline of noncom-

municable diseases and to attend the underlying determinants of heterogenous effects across

and within countries.

Recent studies for countries that achieved the MDG-4 targets revealed important insights

into the determinants of change, coverage, intervention, and implementation of policies that

have succeeded in specific contexts. Ethiopia has developed multisectoral policy platforms that

integrate child survival and specific health goals within macrolevel policies and programs

[48,6,7]. Niger has developed policies intended to increase access to child health services, the

use of mass campaigns, and programming for nutrition [49]. Tanzania put high political prior-

ity on child survival, with consistent increases in funding, and focused on the implementation

of high-impact interventions at lower levels of the health system, although to the detriment of

mothers and neonates [50]. After the Rwandan genocide in 1994 that led to the death of more

than 1 million people and the devastation of the health system [51], the country embarked on

ambitious programs to provide equitable health services that resulted in the improvement of

health equity and child survival. The rebuilding of the health system included notions of ready

access, accountability, and solidarity, as well as the implementation and scale-up of commu-

nity-based health insurance and performance-based financing systems [52]. However, the

progress of maternal and neonatal outcomes has been slower in general, mainly due to low

coverage to intrapartum interventions, lower political commitment, less financing, health sys-

tem constraints, and low or unequal rates of health facility delivery [46,53]. These experiences

should guide policies and interventions for the majority of countries expected to fall short in

achieving the SDG-3 targets but particularly for those that would not meet them before 2050,

as predicted by our model.

Disparities in socioeconomic and regional factors also have the potential to generate or pre-

serve heterogeneities in mortality risks across under-5 age groups, as interventions, accessibil-

ity, timing, and quality of health services may generate inequalities in the exposure to

mortality risk. Recent evidence suggests that absolute disparities in mortality reduction
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between the poorest and richest households have declined in SSA [11,54], but persistent rela-

tive differences remain [11]. Similarly, the urban advantage in under-5 mortality over time

prevails in SSA, and the growth of urban populations predicts the magnitude of under-5 dis-

parities [55]. Regional differences in mortality risk can be observed in both countries with

slow [56] or rapid gains in child survival or that have met the MDGs [48–50,55,57,58]. In Nige-

ria, for example, wide variations in under-5 mortality are observed across states over time,

with higher levels in northern regions. Subnational health trends, further stratified by socio-

economic status, region, and age, can improve our understanding of the health challenges in

the region and should inform further efforts to reduce the mortality risk and the successful

achievement of SDG-3.

Despite the accelerated progress in the reduction of under-5 deaths observed in some coun-

tries, the mechanisms and underlying factors leading to improvements in child survival, which

could undermine or decelerate progress in mortality reductions for specific age groups, require

further examination. For instance, the global mortality rank in pneumonia and diarrhea deaths

in under-5 children, the 2 diseases responsible for about 25% of all of the deaths that occurred

in under-5 children in 2015, reveals that 72% of the global burden of pneumonia and diarrhea

child deaths occurred in just 15 countries [59]. Seven countries in our study sample (Angola,

Chad, DR Congo, Ethiopia, Niger, Nigeria, and Tanzania) are among them, but only Chad

and Nigeria have registered ARR below 3.2% (Table 1). That is, countries that have achieved

significant progress in the reduction of mortality in the past (i.e., Ethiopia, Niger, and Tanza-

nia) still face significant challenges with the potential to affect the age distribution of deaths. In

addition, although previous studies did not attribute the emergence of HIV as the leading

cause of modifying preexisting patterns of under-5 mortality in some SSA regions [17], our

findings indicate that countries largely affected by the HIV/AIDS epidemy showed signs of

poor data quality and unreliable fit and predictions (Lesotho, Namibia, and Zimbabwe) but

also substantive progress in child mortality reduction during the previous 2 decades (Malawi).

Our model differs in the way to approach mortality estimation from 2 leading models in

the literature, that we refer here as the UN IGME model [3] and the Institute for Health Met-

rics and Evaluation (IHME) model [60,61]. First, our method only uses complete birth histo-

ries as the main source of information, as opposed to UN IGME and IHME that additionally

consider further data sources, including direct recall of household deaths, summary birth his-

tories, sample surveillance (only IHME), and Vital Registration. Second, both models apply a

data synthesis approach after a detailed data quality assessment; however, they differ in their

data and modeling assumptions: UN IGME is based on a Bayesian penalized B-Spline regres-

sion (and multilevel) model, and IHME is based on a Gaussian process regression (GPR)

model that incorporates covariates [62]. Third, our method generates detailed age-specific

death rates for both sexes combined, whereas UN IGME and IHME are age–sex models that

break down into ages 0 and 1–4 (UN IGME) or yearly birth cohorts divided into 52 birth-

week cohorts and followed to age 5 (IHME) [62]. Although there is room for improvement in

our model by incorporating further data sources and disaggregation by sex, our methodologi-

cal approach is simpler and our assessment of SDG-3 progress is in line with estimates from

both UN IGME and IHME in the majority of countries in our sample. That is, we identified

only 4 countries with discrepancies in both neonatal and under-5 mortality predictions from

UN IGME: Cameroon, Togo, Tanzania, and Zimbabwe. In Cameroon, Togo, and Tanzania,

the difference is that we predict an early transition toward the SDG-3 targets (S2 Fig). Further

comparisons with predictions from the IHME model revealed that our estimates (and those

from UN IGME) are less optimistic in general, although we found an overlap in 26 and 23

countries (out of 31) for neonatal and under-5 estimates, respectively (i.e., IHME predictions

are within our estimated error bounds or ours within IHME error bounds). Furthermore, our
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point estimates for NMRs and U5MRs coincide almost exactly with those of the IHME model

for 11 and 12 countries, respectively (S3 Fig).

Our study builds on previous research that examines patterns of mortality as a way to under-

stand the sources of error or true epidemiological patterns that are not captured by model life

table approaches for SSA [17,18,63–65] and stress the importance of using new methodological

approaches and complementary sources of data [18]. In addition, we complement previous

studies that analyze trends and prediction of mortality rates worldwide [4,14,19,20].

To the best of our knowledge, our study is the first to construct under-5 mortality patterns

from narrow-age groups using an LLT model for the assessment of trends and prediction of

under-5 mortality in SSA with uncertainty. Specifically, we made predictions of mortality rates

by 2030 for the assessment of the SDG-3 targets and by 2050 to evaluate which countries in

our predictions would meet the SDG-3 targets by then if they fall short to do so by 2030. Our

mortality patterns provided evidence of an acceleration of mortality decline and substantive

changes in age mortality patterns in countries with higher rates of child survival. In particular,

we observed in certain countries that the distribution of deaths would follow a pattern that is

becoming increasingly rectangular, having an increasingly flat down and sharp upslope. We

refer to this phenomenon as the “early rectangularization” of the under-5 mortality curve, a

phenomenon similar but very distinct in nature from the hypothesized rectangularization at

old ages, extensively studied in the literature for older populations [66–68]. Further analyses of

compression and convergence of early mortality would provide more insights about this

phenomenon.

This study has a number of limitations. First, the gold standard for the analysis of mortality

in more developed countries relies on the existence of high quality vital registration systems,

but those systems are inexistent or deficient in the countries included in our study [69]. Sec-

ond, this study relies on self-reported information from life histories available in nationally

representative surveys, which are subject to several sources of error; estimates for specific

countries (i.e., Lesotho and Malawi) may be affected by these data limitations across time, and

these need to be taken with caution. Third, because of the nature of the survey data, we are not

able to make a detailed assessment of the underlying causes of mortality reduction across the

under-5 period.

Conclusion

This study contributes to the development of detailed age patterns of mortality for under-5

children and stresses their importance in the monitoring of child survival of specific age

groups to identify distinct patterns of mortality decline at early ages in most countries of SSA.

Our estimates and forecasts relied on a robust LLT model that was suitable for our data with

year gaps, providing different degrees of uncertainty and capturing most of the variation of

under-5 mortality in the SSA region. Its accuracy could be refined if further reliable sources of

information become available, such as the development of new vital registration systems. It

should also be considered in the design and scale-up of targeted interventions intended to

accelerate progress toward achieving the SDG-3 targets for child mortality reduction. Future

research should explore a detailed assessment of age inequality in early mortality, compression,

and convergence, as well as the true relationships between age patterns of mortality and epide-

miological trajectories.
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S2 Fig. Assessment of the SDG-3 targets for NMRs and U5MRs by 2030 and 2050 based on

estimates from the LLT model and from UN IGME for 31 countries from SSA. In the LLT,

we report wide error bounds for our prediction models for 2030 and 2050. We retrieved UN

IGME estimates online from http://data.unicef.org/topic/child-survival/child-survival-sdgs/#.
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S3 Fig. Assessment of the SDG-3 targets for NMRs and U5MRs by 2030 based on estimates

from the LLT model and from the IHME for 31 countries from SSA. (a) NMRs and (b)

U5MRs. In LLT, predictions for Lesotho were precluded by the poor quality of data and great

uncertainty in the estimates and uncertainties, and we report unbiased error bounds for our

prediction models for 2030. We retrieved IHME estimates online from https://vizhub.

healthdata.org/sdg/. IHME, Institute for Health Metrics and Evaluation; LLT, Li–Lee–Tulja-

purkar; SDG-3, Sustainability Development Goal 3; SSA, sub-Saharan Africa; U5MR, under-5

mortality rate.
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