
Frontiers in Oncology | www.frontiersin.org

Edited by:
Daniel P. Bezerra,

Oswaldo Cruz Foudantion (FIOCRUZ),
Brazil

Reviewed by:
P. Trayhurn,

University of Liverpool,
United Kingdom

Pietro Formisano,
University of Naples Federico II, Italy

Yuqing Zhang,
Dana–Farber Cancer Institute,

United States

*Correspondence:
Min Xu

peterxu1974@163.com

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 22 April 2022
Accepted: 13 June 2022
Published: 08 July 2022

Citation:
Wang Q, Wang H, Ding Y, Wan M and
Xu M (2022) The Role of Adipokines

in Pancreatic Cancer.
Front. Oncol. 12:926230.

doi: 10.3389/fonc.2022.926230

REVIEW
published: 08 July 2022

doi: 10.3389/fonc.2022.926230
The Role of Adipokines in
Pancreatic Cancer
Qi Wang, Huizhi Wang, Yuntao Ding, Mengtian Wan and Min Xu*

Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China

In modern society, inappropriate diets and other lifestyle habits have made obesity an
increasingly prominent health problem. Pancreatic cancer (PC), a kind of highly aggressive
malignant tumor, is known as a silent assassin and is the seventh leading cause of cancer
death worldwide, pushing modern medicine beyond help. Adipokines are coming into
notice because of the role of the intermediate regulatory junctions between obesity and
malignancy. This review summarizes the current evidence for the relationship between
highly concerning adipokines and the pathogenesis of PC. Not only are classical
adipokines such as leptin and adiponectin included, but they also cover the recognized
chemerin and osteopontin. Through a summary of the biological functions of these
adipokines as well as their receptors, it was discovered that in addition to their basic
function of stimulating the biological activity of tumors, more studies confirm that
adipokines intervene in the progression of PC from the viewpoint of tumor metabolism,
immune escape, and reprogramming of the tumor microenvironment (TME). Besides
endocrine function, the impact of white adipose tissue (WAT)-induced chronic
inflammation on PC is briefly discussed. Furthermore, the potential implication of the
acknowledged endocrine behavior of brown adipose tissue (BAT) in relation to
carcinogenesis is also explored. No matter the broad spectrum of obesity and the poor
prognosis of PC, supplemental research is needed to unravel the detailed network of
adipokines associated with PC. Exploiting profound therapeutic strategies that target
adipokines and their receptors may go some way to improving the current worrying
prognosis of PC patients.
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INTRODUCTION

The poor prognosis among subsistent solid tumors due to their atypical early clinical symptoms,
high local aggressiveness, distant metastasis by the time of clinical diagnosis, and the absence of
effective treatment has rendered pancreatic cancer (PC), a kind of highly aggressive malignant
tumor, known as a silent assassin and the seventh leading cause of cancer death worldwide (1, 2). By
2025, scientific models predicted that PC would surpass breast cancer as the third reason accounting
for the mortality of tumors (3). The prevalence of PC keeps increasing, supported by comparative
analysis of data from 48 countries, and this gain in prevalence is obvious both in the population aged
50 years or older and in younger age groups (4). While medical advances have led to effective control
of the mortality of multiple cancer groups in both sexes, the latest European cancer death rate
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projections also suggest that the patient population of PC
presents the opposite trend where mortality and prognosis are
unpromising and PC is the next central public health problem
facing Europe and the world (5). A brief conclusion suggesting
that suboptimal populations with smoking, physical inactivity,
alcohol consumption, and obesity account for a large proportion
of the PC population could be summarized from a series of
epidemiological studies, and the occurrence of PC reflects, in
part, the increasing prevalence of obesity, diabetes, and alcohol
consumption (2, 6, 7).

The obese population, building on this foundation, makes up
a large part, with obese men accounting for roughly 6% of PC
cases and obese women with a proportion of 7% (8). Among the
13 malignancies for which the risk of oncogenesis in humans is
causally related to physical obesity is pancreatic cancer (9, 10).
Body mass index (BMI), an estimation of the degree of obesity,
which increases the risk of PC by 10% for every 5 of a unit
increase, appears to indicate a greater vulnerability to PC in later
life when an individual has a high BMI in adulthood (8). Obesity
is deemed as a considerable causative factor for PC at all time
periods in the human body (11, 12). As a global epidemic, obesity
is accompanied by susceptibility to various maladies (13).
Preventing obesity is as crucial as controlling tobacco intake in
controlling the morbidity and mortality of pancreatic cancer and
improving the well-being of patients.

The level of body fat in obese groups often reaches
dysfunctional levels where it may alter the physiological
regulation of adipose tissue (AT), leading to obesity-related
disorders that include cancer. It was believed that AT, as an
inert organismal storage tissue, was mainly involved in the
energy supply of the body and in the regulation of body
temperature and other basic physiological activities (14). With
a deeper understanding of the excessive fat deposition arising
from obesity and the pathological expansion of white adipose
tissue (WAT), there exists a consensus that the chronic low
inflammatory state caused by AT has a powerful link with the
recruitment of immune/inflammatory cells, the induction of
neovascularization, the regulation of tumor-associated adipose
tissue microenvironment (TAAME), as well as cancer-associated
adipocytes (CAAs), and other processes contributing to cancer
development (15, 16). AT is no longer simply a receptacle for fat
storage, but has emerged as an endocrine organ capable of
producing various hormones and factors (17, 18). The concept
of the adipokine family has evolved from the earliest known
leptin and adiponectin to the recognized omentin and chemerin,
which are the main molecular links between AT and the
regulation of metabolic syndromes, cardiovascular diseases,
and various malignancies, and are integrated with other
cytokines to form a sophisticated functional network (19).
Relying on novel proteomics techniques or methods, this
family is expanding and more novel adipokines are being
discovered, leading many scholars to pay more attention to the
relationship between adipokines and tumors (20).

Given the unique mediating functions of adipokines in the
management of physiological responses in AT, the regulation of
their secretion levels or the modulation of their corresponding
Frontiers in Oncology | www.frontiersin.org 2
receptors may be a key element in the progression of PC (Table 1).
An in-depth investigation of the mechanisms of adipokines in
relation to carcinogenesis may become an invaluable field for the
earlier clinical detection of PC and the advancement of the
prognosis of PC patients. This review summarizes the latest
insights into the dysfunction of the body brought about by the
structural and biological properties of AT and the adipokines it
produces. It also presents a review of the classical and novel
adipokines identified to act in the pathogenesis of PC.
Furthermore, this paper explores the subtle interactions between
the adipose tissue microenvironment and the tumor
microenvironment (TME), thus reflecting on possible
orientations for future studies on adipokines in tumor research,
which is vital for proposing innovative ideas in clinical treatment.
ADIPOSE TISSUE

AT, perhaps preferably called adipose organs, seems to be a
dynamic tissue complex composed of adipocytes and interstitial
vascular components, which both form an intangible portion of
the human body and comprise the TME. AT is mainly composed
of WAT, brown adipose tissue (BAT), and beige adipose tissue
(55, 56). Of these, WAT produces cytokines and chemokines that
underlie its biological function, while BAT, which is in a hyper-
metabolic state and capable of heat production, relies on a
specific metabolic pathway that is thought to be associated
with the activation of UCP1 (57).

BAT and batokines
The distinction lies within the three categories of AT is the
content of cellular mitochondria and the higher the relative
quantity of mitochondria AT possesses, the darker color it
tends to exhibit (58). BAT, which contains multilocular lipid
droplets as well as a substantial portion of mitochondria and
expresses mitochondrial UCP1, turns out to be the central heat
generating plant of the human body (59). Beige adipose tissue is
phenotypically similar to BAT and is transformed from WAT
after exposure to cold stimulation or b3-adrenergic agonists (60,
61). The distribution of beige adipose tissue in the body differs
according to the stimulation of the location ofWAT and is highly
heterogeneous (62).

Despite the thermogenic properties of both beige adipose
tissue and BAT, which serve an instrumental function in the
adjustment of systemic energy homeostasis, beige adipose tissue
and BAT, drawing inspiration from the endocrine function of
WAT, may also be participating in the management of human
ailments through the release of batokines (62). Batokines
represent a collection of active peptides generated by BAT
under its natural or thermogenic activation state, and it is
shown that BAT is engaged in the regulation of systemic
metabolism and cardiac, hepatic, and pancreatic function via
releasing batokines, such as FGF21, BMP8b, NRG4, IL-6, and
IGF-1 (63, 64). FGF21, being the earliest discovered batokine, has
acquired attention for the delayed ventricular remodeling effect
in hypertensive heart disease (65). Nevertheless, FGF21 is equally
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protective of the pancreas, as evidenced by its capacity to halt
adipose deposition in the pancreas and chronic inflammation of
the pancreas, thereby effectively limiting the malignant
progression of PC (66). Alongside assisting BAT in
thermogenesis, batokines could reduce the local inflammatory
response by restraining immune cell activities, building upon the
established practice that the thermogenic function of BAT is
antagonistic to its pro-inflammatory properties (67). IL-6 is
known to stand out as a key contributor to inflammation,
oncology, and various metabolic disorders (68, 69). CXCL14 is
released by BAT upon its thermogenic activation and ample
proof has demonstrated its recruitment to M2 macrophages in
diverse types of AT (70). GDF15, another batokine, performs the
final loop of anti-inflammatory properties (67, 71). Relying on
these above elements, which have been well documented in the
association of tumors in previous studies, BAT communicates
with the function of the liver, heart, and immune system
frequently (63). However, a limited amount of research
remains on the linkage between BAT and beige adipose tissue
and PC, meaning that further studies are required to explore the
underlying mechanisms involved and unravel the myth of
metabolic health enhancement capabilities. The three types of
AT could be converted into each other, which is referred to as the
plasticity of AT (72). Beige adipose tissue is known to be derived
from WAT, whereas BAT also transforms into white/beige
adipose tissue when faced with elevated ambient temperature,
Frontiers in Oncology | www.frontiersin.org 3
the deficiency of leptin receptor, the impairment of b-adrenergic
signaling, and the lack of lipase (73).

White Adipose Tissue
WAT Related Endocrine Function
Regrettably, in spite of the widespread recognition of the
participation of obesity and AT in the occurrence and
development of PC, the understanding of the mechanistic
principles involved remains at a relatively low level. WAT serves
as a major agent of metabolism and inflammation, simultaneously
modulating metabolism by balancing energy expenditure,
adipocyte differentiation, and insulin sensitivity, along with the
production of pro-inflammatory and anti-inflammatory
molecules and the activation of immune signaling to regulate
inflammation (74). In addition to the meta-inflammation
attributed to WAT, the production and secretion of adipokines
account for the core function of the WAT, and furthermore, the
relationship between its endocrine properties and meta-
inflammation is well established. The identification of leptin
unlocked the floodgates of recognition of adipokines as WAT
secretagogues, and adipokines were subsequently proved to be a
sequence of heterogeneous polypeptides that participate in the
regulation of lipid metabolism, human immunity, insulin
resistance, inflammation reaction, angiogenesis, carcinogenesis,
and other pathophysiological processes (75–77). And as the
fields of metabolomics, proteomics, and genomics are being
TABLE 1 | Effect of Adipokines on PC.

Adipokines Receptor Expression Link Effect Signaling References

Leptin LEPR ↑ ↑ Proliferation (+)
Migration (+)
Invasion (+)
Durg resistance (+)

JAK2/STAT3, PI3K/AKT
Notch

(21, 22)
(23–25)

Adiponectin AdipoR1 AdipoR2 ↓ (large-scale)
↑ (small-scale)

↓ Proliferation (−)
Migration (–)
Invasion (–)
Pro-apoptotic (+)

Caspase
b-Catenin

(26–31)

Resistin TLR4
CAP1

↑ ↑ Proliferation (+)
Migration (+)
Invasion (+)
Durg resistance (+)
Pro-inflammatory (+)

STAT3 (32)

Oncostatin gp130/LIFRb
gp130/OSMRb

↑ ↑ Proliferation (+)
Migration (+)
Invasion (+)
Durg resistance (+)
Pro-inflammatory (+)
TME reprogramming (+)

JAK/STAT3
ERK2/Sp1

(33–37)

Osteopontin OPN-
integrin- CD44

↑ ↑ Proliferation (+)
Migration (+)
Invasion (+)
TME reprogramming (+)Immune escape (+)

Akt/Erk
FOXM1/
H3K4me3

(38–41)
(42–45)

Kisspeptin KISS-1R (Gpr54) ↓ (Tissue)
↑ (Serum)

↑ Proliferation (–)
Migration (+)
Invasion (+)

ERK1/p38 (46–50)

Omentin Unknown ↑ ↑ Unknown Unknown (51, 52)
(53, 54)

Chemerin Chemerin 1 Chemerin 2 CCRL2 ↑ ↑ Unknown Unknown (53)
July 2022 | Volume 12 | A
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explored, over 100 members are constantly being added to this
family. The network of adipokines relevant to neoplastic
progression is being expanded, and the list currently contains 15
adipokines (20). Distinct adipokines bound to their respective
receptors are distributed in a wide range of organs and tissues,
interfacing and regulating diverse signaling pathways in neoplastic
cells (78). Adipokines exhibit context-dependent interactions with
diverse cancers, so it is not surprising, for instance, that even
though adiponectin is proven to have a guardian angel effect in an
otherwise malignant tumor, including breast cancer, the same does
not hold true in clinical studies or mechanistic studies concerning
PC (79, 80). Alongside with the increasing acceptance of the idea
of adipokines as therapeutic targets, more in-depth research is
being conducted For instance, immunotherapy may contribute to
the increased immune response stimulated by immunotherapy in
cancer patients. There are implications of adipokines for
reprogramming of TME (78, 81).

WAT in Various Depots
Via distinct signing mechanisms, AT relates to additional
systemic components through its secreted substances. The
impact of AT at either the systemic or local scale is well
explained when considering it as a collection of depots
scattered throughout the body, with separate depots
comprising the whole being individually focused on various
features, even more precipitated diverse gradients of disease
risk (82, 83). The subcutaneous adipose tissue (SAT), located
underneath the skin, and the visceral adipose tissue (VAT),
surrounding the internal organs of the body, together
constitute the bulk of WAT. Both deposits have separate
metabolic specificity (51). VAT containing substantially more
immune cells displays increasingly active metabolic traits,
accompanied by elevated insulin resistance and expression of
inflammatory mediators or adipokines, which is considered
convincing evidence for engaging VAT in obesity-related
metabolic disorders or diseases, such as cancer (51, 84). One
compelling argument shows that VAT levels inversely correlate
with serum adiponectin, of which the anti-inflammatory and
anti-cancer functions have garnered enough attention, as shown
by the mechanisms described below (85). The direct impact
exerted by VAT on the endocrine system could consequently
induce metabolic disorders. This, moreover, could partly mirror
the assessment of disease prognosis. Not only is VAT
measurement an invaluable element in the assessment system
for estimating the effectiveness of chemotherapy in PC patients,
but it is equally applicable to patients after PC surgery, both
signifying alarming prognostic consequences (86, 87).

Given that SAT and VAT, described above, appear to be
indirectly and teleologically regulated in the case of PC, scholars
are increasingly focusing on intrapancreatic fat within the setting
of PC, a pancreas-specific fat storage reservoir (19). Therefore,
AT may prefer to interact in a somewhat direct and paracrine
mode to promote carcinogenesis. AT-related inflammation and
metabolic disorders of paracrine secretion are followed by the
over-fat deposit in the pancreas, which exceeds a certain
common threshold (88). The pathological accumulation of AT
in the pancreas or replacement of pancreatic alveolar cells by
Frontiers in Oncology | www.frontiersin.org 4
adipocytes following unnatural death both facilitate the
progression of fatty pancreas (89). Intrapancreatic adipose
concentrations have recently been recognized as a risk factor
for early PC lesions and could shape the macroscopic or even
microscopic environment of PC, with the potential of being a key
criterion for early cancer detection (90, 91). Infiltration of
adipocytes and an increase in adiposity are detectable in PC
tissue, which suggests a poor prognosis (88, 92).

The distinct localization of VAT or intrapancreatic fat might
determine how its secreted adipokines act on PC, which may
involve an endocrine pattern or a paracrine manner to generate
local tissue inflammation or, more likely, a combination of these
two heterotypic signaling (89, 93). Adipocytes constitute a
central stromal component of the tumor microenvironment
with the ability to interact with cancer cells through cellular
autonomous signaling together with paracrine messaging by
secreting multiple regulatory molecules, notably adipokines
(94). Such signaling mechanisms are seen to be involved in
KRAS-mediated reprogramming of TME metabolism, which in
turn subtly alters the proliferative efficacy of pancreatic cells (95).
OSM in TME is mainly secreted by tumor-associated
macrophages (TAM) and AT with the capacity to induce
VEGF production and angiogenesis, together with being a
potent chemotactic agent for neutrophils, which consequently
promotes inflammation-associated tumor progression (96). The
pro-inflammatory properties of adipokines derived from the AT
paracrine routes could contribute bidirectionally to the fibrotic
and inflammatory condition of the pancreas and be a prospective
contributor to the chemoresistance of PC (15). Another rather
intuitive and intricate mechanism involves the secretion of
adipokines by distantly located AT away from the tumor,
which undergoes turnover in circulation and flow to reach the
target organ, like the pancreas, for effect (94). Straightforward
proof of this model is that existing sufficient studies to show
adipokines such as leptin, resistin, and omentin are increased or
even varied in serum of PC patients (21, 32, 52). For example, by
interacting with its receptors, leptin acts as an endocrine agent
via activating key molecules such as JAK2, STAT3, and PI3K and
engaging in a wide range of signaling pathways, including JAK2/
STAT3, PI3K/AKT, and Notch (97). The complex side of the
endocrine approach, however, resides in the fact that at the
macroscopic level of the human body, the over-secreted
adipokines by AT carry with them metabolic disturbances,
such as insulin resistance or glucose metabolism disturbances,
which likewise impinge on PC (98, 99). Certainly, both endocrine
and paracrine forms of adipokine action could operate on PC,
more likely as a synergistic effect.

WAT Related Chronic Low-Grade Inflammation
Complicated chronic low-grade inflammation in WAT is
triggered and maintained as a result of a dysfunctional
secretion of inflammatory factors, cytokines, and chemokines,
which is dependent on an immune response with a range of
immune cells, and such ongoing inflammatory responses are
thought to underlie tumorigenesis or other illnesses (100–102).
Despite the recent suggestion that variation in mitochondrial
function underpins the inflammatory effects of adipose tissue,
July 2022 | Volume 12 | Article 926230
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one cannot ignore the contribution of immune cells to this
pattern of inflammation (103). Macrophages are believed to be
the primary regulators of WAT-associated chronic inflammation
via playing major roles, including initiating the recruitment of
additional immune cells and secreting cytokines to adjust the
inflammatory signaling cascade in host organisms (74, 104).
Stress-related involvement of NK cells and secreted cytokines
engage closely in the inflammatory polarization of macrophages
in AT (105). Glycolysis is seen as a major contributor to the pro-
inflammatory properties of macrophages in AT, activating the
release of adipokines from macrophages (106). CD11c (+) ATM
(AT macrophages) in WAT induces the accumulation of
macrophages in the liver and the subsequent persistence of
inflammation, which is facilitated by the recruitment
of CXCL14-expressing neutrophils (107). The translocation of
monocytes to AT by monocytes themselves allows the
maintenance of obesity-specific chronic inflammation to be
possible (108). Neutrophils have also been shown to maintain
the inflammatory process by the production of large amounts of
IL-1b and induction of macrophage clustering and infiltration
(109). An increase in AT T cells was clearly observed after high
fat intake, and the increased T cells were characterized by high
expression of IFN-g, highly expressed immune mediators in AT,
and IL-17 (74, 110). While the effects of T cells and their diverse
isoforms on WAT-related chronic inflammation vary,
intriguingly, it has been verified that obese individuals, often
accompanied by insulin resistance, have remarkably reduced
natural Tregs, which means that Tregs restrict the
proinflammatory environment and hence reduce chronic
inflammation in adipose tissue (74, 104, 111, 112). CD8(+) T
cells are recognized to precede macrophage activation and to
provoke alteration in their phenotype in order to launch the
inflammatory response inflammation (74, 113). CD8(+) T cells
have the capacity to amplify the scope of the inflammation
following an inflammatory response. Kiran et al. (113)
discovered an increase in the proliferation of activated CD8(+)
and CD69(+) T cells following WAT expansion, together with
enhanced CXCR3 receptor expression, alongside the observed
recruitment and increased numbers of pro-inflammatory M1
macrophages, which maintained a low degree of chronic
inflammation. Notably, this process probably also produces
adipokines such as osteopontin and resistin, which are in
tandem with the endocrine capabilities of WAT itself, as
discussed further below (114, 115).

Such chronic low-grade inflammation complicated with
WAT has the potential to form a closed loop above the
mechanism that leads to an inflammatory cycle, maintaining
or amplifying the inflammation of AT. Chronic inflammation
with a high level of CRP or TNF-a receptor 2 prove to initiate the
original of PC and make progression to the metastasis, pre-
diagnostic proficiency of inflammatory biomarkers provably
correlates negatively with pancreatic cancer survival (116). This
meta-inflammation caused by obesity or WAT has been accepted
to be related to the pancreas and its inflammation. Existing
experimental testimony shows highly penetrant PC with a
mutant KRAS gene, a critical oncogene in the initiation,
Frontiers in Oncology | www.frontiersin.org 5
proliferation and metabolic reprogramming of PDAC, develops
fast when faced with food-induced obesity and inflammation
(117). Chronic inflammation of the pancreas as a consequence of
obesity is consistently regarded as a life-long hazard factor for
increasing the morbidity of PC (118). The necessity in
transformation of gene and the susceptibility to tumorigenesis
of the mutation of KRAS brought with could be enhanced when
hit by HFD and WAT-inflammatory, which will make PC more
invasive (117). Gupta et al. (119) newly noted Endothelin-1 (ET-
1), which is correlated with PC, can be upregulated in pancreatic
tissue when come across the activation of KRAS, an oncogene
that shows great effect in obesity, no matter chronically or acutely
inflamed pancreas.
ADIPOKINES AND PANCREATIC CANCER

Previous studies in other cancer contexts, like BC and CRC,
placed leptin, resistin, adiponectin, oncostatin, and osteopontin
in the spotlight. Despite the acknowledged interactions of these
five adipokines with PC, there remains no review to
systematically cluster and analyze their contributions to PC.
While leptin boosts the progression of PC through diverse
signaling pathways, adiponectin could exert a protective effect
that is rarely seen in other adipokines. Resistin serves as an
essential biomarker in the pathophysiological progression of PC
and is highly correlated with diagnosis and prognosis. However,
research on oncostatin and osteopontin is more focused on the
mechanisms of TME regulatory manipulation.

Leptin
Leptin was initially discovered in 1994 by Zhang et al. (120) using
a mouse cloning technique. Subsequently it was discovered that
the protein was encoded by the obesity-related gene (OB Gene)
and secreted by WAT (Figure 1). Following the advanced
research on the mechanism of action of leptin, its functions
were no longer constrained to the control of appetite and
governance of energy balance by acting as a regulator of fat
metabolism in the body, but more often as an adipokine to
perform immune regulation, angiogenesis and intervention in
the governance of tumor cell growth. Recently, it was shown that
the modulation of tumor cell growth by leptin is related to the
genesis and development of various tumors, among which PC is
a current clinical hotspot given its poor prognosis and difficulty
in diagnosis. White et al. (22) observed the relationship between
leptin levels and PC growth in mice by controlling their body
weight, suggesting that increased body weight significantly
accelerated the growth of PC in mice and that the consequent
increase in leptin levels was a potential mechanism by which
obesity could affect the growth of PC. Stolzenberg-Solomon et al.
(21) identified a significantly increased risk of occurrence of PC
in patients followed for more than 10 years (OR = 2.55,95% CI =
1.23, 5.27; P = 0.004) by following up 731 cases of pancreatic
adenocarcinoma that occurred between 1986 and 2010, which
confirmed that leptin increased concentrations correlated with
pancreatic carcinogenesis.
July 2022 | Volume 12 | Article 926230
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The mechanism of action of leptin occurs mainly through
interaction with its specific receptors. Leptin receptor (LEPR,
also known as ObRs), is a single transmembrane glycoprotein
encoded by the LEPR gene and consists of six different isoforms
of LEPR (a–f), which are widely distributed in the choroid
plexus, hypothalamus, cardiovascular, liver, kidney, pancreas,
and other organs throughout the body (121). Combination of
LEPR with leptin invokes cancer progression by inducing
molecular biological behaviors in normal tissue cells through
EMT, cell–extracellular matrix interactions and extracellular
matrix protein hydrolysis, which interrelate closely with tumor
cell genesis, proliferation, distant migration, and apoptosis (122).
Fan et al. (123) identified that leptin upregulates MMP-13 by
mediating the JAK2/STAT3 signaling pathway, while the MMP
family was previously proven to degrade various components of
the extracellular matrix (e.g., basement membrane and
fibronectin) in mutated cancers (ovarian, breast, etc.) with
consequent promotion of tumor metastasis. In addition, it has
been shown that MMP-13 positively relates to LEPR expression
levels and that increased expression correlates substantially with
lymph node metastasis in pancreatic cancer patients (123).
Mendonsa et al. (124) identified LEPR short and LEPR long
Frontiers in Oncology | www.frontiersin.org 6
isoforms from PC tissues as well as confirmed that leptin
specifically binds LEPR and activates the PI3K/AKT pathway
to promote PC cell migration. Furthermore, the application
of the AKT signaling pathway inhibitor LY294002 to PC cells
significantly counteracted the effect of leptin on the proliferation
of tumor cells, while the corresponding application of the AKT
pathway activator IGF-1 counteracted the effect of leptin
silencing, which similarly supports the notion that leptin can
promote the migration and growth of PC by activating the PI3K/
AKT signaling pathway (23). Notch receptors, ligands, and
Notch-targeting molecules (Notch1-4, DLL4, JAG1, etc.) were
highly expressed in PC cells cultured in leptin, while Notch
expression levels were significantly reduced after administration
of Notch inhibitory factor (DAPT) and leptin signaling inhibitor
(IONP-LPrA2), indicating that Notch is required for leptin-
induced PC proliferation (24). Also, the antigen expression of
PC in the treated group was detected and remarkable expression
of PCSC markers CD24/CD44/ESA, ALDH, CD133, and Oct-4
were found, suggesting that the leptin/Notch axis also affects PC
stem cell progression (24). Notably, in a follow-up study,
Harbuzariu et al. (25) found that leptin attenuated the
cytotoxic effects of 5-fluorouracil (5-FU) on PC by increasing
FIGURE 1 | Wide range of adipokines released by white adipose tissue, including leptin, adiponectin, resistin, oncostatin, kisspeptin, omentin, and chemerin, impact
on the biological traits of pancreatic cancer.
July 2022 | Volume 12 | Article 926230
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the expression of Notch signaling pathway transcription factors
and eliciting increased expression of the drug efflux proteins
ABCC5 and ABCC11, of which 5-FU retards chemoresistance
precisely by decreasing ABCC5 and ABCC11, suggesting that the
therapeutic sensitivity of 5-FU in PC patients could be
strengthened clinically by targeting the leptin/Notch
axis (Table 1).

Adiponectin
Since its identification in 1995, adiponectin has attracted
considerable attention due to its unique cancer-suppressive
effects on common tumors such as colorectal, ovarian, and
cervical cancers (125). Adiponectin is another endogenous
bioactive product secreted by WAT and resides in the body
chiefly in the form of low molecular trimers (LMW), medium
molecular hexamers (MMW), and high molecular multimers
(HMW), where the HMW exhibits the most intense activity as
the main form of adiponectin activity (126). In the circulating
blood, adiponectin exerts its activating effects on insulin
sensitization, prevention of cardiovascular disease, diet
regulation, and mediation of signal transduction pathways
through binding with adiponectin receptors, including
AdipoR1 (adiponectin receptor-1), expressed highly in skeletal
muscle and liver, AdipoR2 (adiponectin receptor-2), localized to
the liver, and T-cadherin, which is abundantly expressed in
endothelial cells and smooth muscle cells (127) (Figure 1).
Due to the specificity of the distribution of adiponectin
receptors, current studies suggest that T-cadherin is
participatory in atherogenesis, whereas AdipoR1 and AdipoR2
enriched in the liver, mainly moderating the role of signal
transduction, are closely associated with procedures regarding
insulin secretion and tumor metabolic reprogramming
(128, 129).

Although adiponectin inhibits tumor progression by
suppressing cell proliferation or inducing apoptosis in
carcinomas of the cervix and breast, there is still much
controversy regarding the relevance of adiponectin to PC and
the underlying mechanism by which it impacts the PC.
According to Dalamaga et al. (26), 81 cases of PC and 81
control healthy patients were included between 2000 and 2007
in the follow-up and it was concluded that high levels of
adiponectin in the body were positively associated with the
incidence of PC. Similarly, another clinical study, which
measured serum adiponectin concentrations in 72 patients
with PC, 39 patients with chronic pancreatitis, and 290 control
patients, determined that median adiponectin levels were
statistically higher in the PC group than in the control group
(27). Both the above studies had relatively small sample sizes,
yielding discrepancies in results after large sample studies. After
6 years of follow-up of 468 patients with PC and 1,080 healthy
patients, Bao et al. (28) found that the median plasma
adiponectin level of 6.2 µg/ml was lower in the PC group than
in the control group at 6.8 µg/ml, implying a possible negative
association between plasma adiponectin and PC risk. Based on
the European Prospective Investigation into Cancer and
Nutrition (EPIC cohort), Grote et al. (29) conducted a case–
control study involving 452 PC patients and 452 healthy cases
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and confirmed that elevated adiponectin levels in never-smokers
were negatively associated with PC risk (Table 1).

According to large-scale clinical studies, low concentrations
of plasma adiponectin may be a risk factor for the pathogenesis
of PC, which might be related to the activation of caspases by
adiponectin to promote apoptosis and the attenuation of the b-
catenin signaling pathway to restrain tumor cell proliferation
(30, 31). The tendency of cancer cell growth was inhibited by the
treatment of Pan02 mouse PC cells with adiponectin, whereas
caspase-3 and caspase-7 activities were significantly augmented
in the treated group, thus implying that adiponectin can promote
apoptosis in cancer cells (Table 1) (30). Transplantation of
Pan02 cells into the pancreas of adiponectin knockout mice
resulted in a significant increase in the volume of tumors and a
decrease in dUTP nick end-labeling (TUNEL) positive cells,
indicating that adiponectin represses the proliferation of PC in
mice (30). The downregulation of AdipoR expression was
identified by Jiang et al. (31) to eliminate the anti-cancer cell
proliferative effect of adiponectin and markedly boosted tumor
growth in mice, and further demonstrated that adiponectin
reduced cyclin D1 expression by interfering with GSK-3b
phosphorylation to prevent its inactivation and degraded b-
catenin to inhibit b-catenin accumulation in cells, ultimately
blocking PC growth in the G0–G1 phase. This process was
coupled with reduced expression of the b-catenin-related
transcription factor TCF7L2, providing further evidence that
adiponectin can weaken b-catenin signaling and play a critical
role in the inhibition of PC growth (31).

Resistin
First named for its unique ability to induce mice to generate
insulin resistance, resistin is otherwise known as adipocyte-
specific secretory factor (ADSF) (130) (Figure 1). Resistin,
which is a peptide hormone encoded by the RSTN gene,
belongs to the RELM family along with three types of proteins,
RELM-a, RELM-b, and RELM-y (131). Thanks to genetic
sequencing, differences between mouse and human resistin,
has been demonstrated at the genomic and protein levels.
Genomically , the RSTN gene is located on human
chromosome 19p13 and mouse chromosome 8A1; at the
protein level, human and mouse resistin share only 59%
homology, where human resistin is a mature 12.5 kDa
molecule consisting of 108 amino acids, while mouse resistin is
an 11 kDa polypeptide consisting of 94 amino acids (132). It was
initially thought that resistin, like leptin and adiponectin, was
mainly secreted by WAT, yet subsequently it emerged that only
about one-third of resistin is secreted by WAT in the human
body but more often by monocytes and macrophages, which in
turn spurs the production of inflammatory factors such as TNF-
a, thereby linking adipose tissue to the inflammatory response
(133). In this regard, it might be possible that resistin functions
as an immunomodulatory factor in the immune response of the
TME (134).

Resistin couples four different functional receptors, including
adenylylcyclase-associated protein 1 (CAP1), toll-like receptor 4
(TLR4), an isoform of decorin (DCN), and receptor tyrosine
kinase-like orphan receptor 1 (ROR1), where DCN and ROR1
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bound mainly to murine-derived resistin, while TLR4 and CAP1
were of special interest given their involvement in multiple
signaling pathways in humans and their close relationship with
the immune response in TME (132, 135). Tarkowski et al. (136)
first reported the ability of resistin to interact with TLR4 on the
surface of monocytes and epithelial cells as well as to promote the
generation of inflammatory factors IL-6, IL-1b, IL-8, and TNF-a,
which in turn mediated NF-b and MAPK signaling engaged in
the inflammatory response. Following the response of TLR4, it
exerts its biological effects mainly through the transcription and
secretion of pro-inflammatory cytokines via the MyD88 protein-
dependent pathway and INF-1 via the TRIF-dependent pathway
(136). TLR4 has been demonstrated to interact extensively with
growth factors such as VEGF, PDGF, and EGF and chemokines
such as CXCR7, fulfilling multiple roles in tumor cell apoptosis,
metastasis, and microenvironmental immune escape (137).
Binding to CAP1, resistin upregulates cAMP concentration in
monocytes, which in turn enhances PKA activity as well as
promotes transcription of NF-kB-related inflammatory factors
(138). Moreover, CAP1 is far from being the only receptor
known to bind directly to human resistin, which relates to the
CAP1/CAMP/PKA signaling pathway and regulates monocyte
function, leading to chronic inflammation (138). The chronic
inflammation inspired by TLR4 and CAP1 is involved in the
malignancy process, as is the overexpression of TLR4 and CAP1
in the TME, contributing to the progression of cancer. Yamazaki
et al. (139) identified overexpression of CAP1 in PC tissues with
reduced motility, invasive ability, and lamellar phospholipid
formation in cells following knockdown of CAP1, further
analyzing that overexpression of CAP1 enhanced nerve
infiltration and lymph node metastasis (Table 1). The study by
Yamazaki et al. illustrated the correlation between resistin
receptors and PC, and the correlation between resistin itself
and PC, as was subsequently demonstrated by Jiang et al. (32)
showing that patients with poorly histologically graded PC were
often accompanied by resistin(+) with resistin being an
independent prognostic factor affecting recurrence-free survival
in patients with PDAC.

Oncostatin
Amember of the IL-6 cytokine family, Oncostatin M (OSM), was
identified as being able to be produced by AT and was engaged in
glucose and lipid metabolism (140) (Figure 1). The members of
the IL-6 cytokine family all share a common transmembrane
subunit, glycoprotein 130 (gp130), in their corresponding
receptor complexes, which is why the IL-6 cytokine family is
termed the Gp130 cytokine family (141, 142). Oncostatin M,
encompassing 252 amino acids and folded into a 4-helix bundle
structure, is a special member of the Gp130 family of cytokines in
that it features two different receptor complexes compared to
others, the gp130/LIFRb complex and the gp130/OSMRb
complex (141). The gp130/OSMRb complex represents the
main effective receptor of OSM, with the current research in
PC focusing on it. In the presence of OSMRb, OSM could
activate specific signaling pathways from STAT5, STAT6,
AKT, and PKC-d, which were unable to be activated by other
Frontiers in Oncology | www.frontiersin.org 8
Gp130 cytokine family members. Upon binding to the gp130/
OSMRb complex, OSM induces transcription of relevant target
genes through signaling pathways such as JAK/STAT, MAPK/
ERK, and PI3K/AKT with a crucial role in inflammation and
hematopoiesis and could act in direct ways as growth inhibitory
or growth promoting factors impacting the expansion of tumor
cells or indirectly on angiogenesis through the recall of
inflammatory cells (141, 143).

As a consequence, different roles are played by OSM in
distinct pathological contexts. Comparing the serum
expression of 507 cytokines in PC patients and healthy
volunteers, five cytokines, including OSM, showed sensitivity
ranging from 69 to 77% and specificity of 75% with a highly
discriminatory diagnosis of PDAC and exhibited potential as
new diagnostic biomarkers of the efficacy of gemcitabine and
erlotinib (33). Increased circulating OSM suggests of increased
severity of PC and currently understood mechanisms involve
the promotion of EMT, regulation of stem cell plasticity,
reprogramming of fibroblasts and reinforcement of
chemotherapy resistance in PC. Tan et al. (34) were the earliest
to report that OSM could induce EMT along with more
elongated, fibroblast-like cells, a mechanism that may involve
JAK/STAT signaling (Table 1). The phenotype-driven effects of
OSM on mesenchymal and cancer stem cells (CSC) were further
investigated by Smigiel et al. (35). Upon exposure to OSM,
additional PC cells expressed mesenchymal/CSC properties,
and increased tumor metastasis, enhanced tumorigenicity, and
resistance to gemcitabine were observed (35). This induction of
the MSC/CSC cellular state is maintained by a positive feedback
effect resulting from activation of the OSMR/JAK/STAT3
pathway induced by OSMR binding and inhibition of OSM
function would prevent PC cells from acquiring and
maintaining MSC/CSC properties, thereby preventing cancer
cells from participating in a favorable escape mechanism (35).

A tumor-inflammatory microenvironment that promotes
tumor growth and metastasis could be established by OSM to
affect the prognosis of PC patients, which is achieved by
reprogramming inflammatory cancer-associated fibroblasts
(iCAF) (36). CAF itself has become the mainstay of PC with
an abundance of desmoplastic reactions during tumorigenesis.
CAFs with high OSMR expression frequently have a release of
inflammatory signals such as CXCL1, CCL2, CCL7, and IL6 (36).
Additionally, OSMR was found to contribute to the
immunosuppressive microenvironment of PC, with classical
monocytes in OSM (−) PC showing attenuated differentiation
towards TAMwith immunosuppressive properties and increased
expression of CD40 and CD86, co-stimulatory molecules
expressed by antigen-presenting cells (APCs), contributing to
effective activation of T cells (36). LLGL1 augments the
sensitivity of PC to gemcitabine and this sensitizing effect has
been shown to be related to the induction of an anti-apoptotic
effect and CSC by LLGL1 through the regulation of the ERK2/
Sp1/OSMR axis (37). Intervening in OSM-OSMR signaling to
regulate the iCAF reprogramming process and targeting OSMR
to enhance the therapeutic effect of gemcitabine would be novel
directions for treating PC (Table 1).
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Osteopontin
Osteopontin (OPN), a multifunctional adipokine protein, holds
the promise of being complementary to CA199 as an early
clinical diagnostic marker (38) (Figure 1). This is in part, owing
to the specific elevated expression of osteopontin in the serum
or tissues of PC patients. Chen et al. (39) showed that
osteopontin could uniquely discriminate healthy people from
cancer. Adding to this, Poruk et al. (40) noticed that serum
osteopontin significantly differed in PC patients compared with
normal subjects in which elevated osteopontin was positively
associated with patient mortality. What is of interest is that in
the study by Collins (41), although osteopontin was also
detected to be elevated, it was also noted that osteopontin has
a protective effect independent of tumor stage. Also, OPN was
elevated in PC tissues compared with healthy subjects and the
relationship between PC clinicopathological parameters and
osteopontin immunoscore was well explained, whereby its
expression was indicative of clinicopathological stage level
(144) (Table 1).

Leukocytes and mesenchymal stem cells (MSCs) could be
recruited by osteopontin from either peripheral blood or bone
marrow (145). Tumor-localized fibroblasts could be
reprogrammed by osteopontin to become CAF, as could be
M1 anti-tumor macrophages, which are reprogrammed to
become TAM (145–147). Osteopontin may also be referred
to as secreted phosphoprotein 1 (SPP1) (148). It also belongs to
the SIBLING family, which stands for “small integrin binding
ligand N-linked glycoproteins” and was initially recognized as
being present in bone and dentin, where it fulfills the duties of
extracellular matrix (ECM) formation and mineralization
(149, 150). Members of this cytokine family enable the
regulation of cell signaling by forming a functional complex
with multiple integrins and CD44. The binding of integrin
receptors during the action of osteopontin depends on the
RGD domain (Arg-Gly-Asp) as well as a thrombin-cleaved
epitope SVVYGLR (also known as the non-RGD domain),
while the cell surface hyaluronan receptor CD44 subtype
CD44v (6–15) binds to the calcium binding domain and acts
in an RGD-independent manner (151, 152). The OPN–
integrin complex activates key downstream molecules such
as ERK2, (NF)-kB, IKKb, and PI3K, while the OPN–CD44
complex is extensively involved in MAPK, FGFR2, PI3K, RAS,
Wnt/b-catenin, and Hippo-YAP signaling pathways (151,
153). There may be more potential signaling, transcriptional,
and therapeutic sites independent of these signaling pathways
in the development process of PC.

Osteopontin promotes metastasis of PC and inhibition or
reduction of osteopontin expression effectively inhibits liver
metastasis of PC, a function that is exclusive to osteopontin
compared to the structurally comparable osteopontins of the
same family of SIBLINGs (154–156). The need to effectively halt
early metastasis of PC is paramount considering that the high
mortality rate of PC is inextricably linked to the early stages of
metastasis. Additional causative factors of death from PC that
leave clinicians at the end of their wits include the complex
hyperplastic connective tissue of PC and, furthermore, increased
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desmoplasia hyperplasia is a key mechanism by which obesity
contributes to the progression of PC, to which pancreatic stellate
cells (PSCs) contribute in large part (157). Upon stimulation
with TNF-a/b, IL-1/2/10, etc., PSCs can be activated into CAF
isoforms like iCAF and myCAF, which participate in the
desmoplastic reaction to remodel the mesenchyme of PC (158,
159). Hypoxia in solid malignant tumor cells such as PC is a
pivotal ingredient for intensified aggressiveness, metastasis, and
angiogenesis. PSCs are capable of being activated at hypoxia with
the assistant of ROS and accompany of increased production of
osteopontin, which proceeds to bind to integrin avb3 and
activates Akt/Erk signaling and then both regulating EMT
processes in PC cells (PCCs) and regulates the expression of
CSC-like properties, simultaneously inducing the malignant
phenotype in PCCs (42). FOXM1, a proto-oncogene, serves as
a downstream effector molecule in the osteopontin regulatory
axis (42). In the context of CAF-PCC co-culture, CD44+ cells
were significantly increased along with other stemness markers
such as ALDH+ and AF+ (43). Moreover, the expression of
osteopontin was also increased in the system and a reduction in
stemness and tumorsphere formation ability was observed when
either osteopontin or CD44 was knocked out, suggesting a role
for osteopontin-CD44 in the regulation of stemness (43)
(Table 1). H3K4me3, an essential modification of histone
during the process of immune checkpoint inhibitor (ICI)
immunotherapy, can act as a promoter to increase osteopontin
expression and amplify osteopontin/CD44 axis signaling, thus
making osteopontin a novel immune checkpoint that could
complement classical PD-1 immune escape and weaken the
effect of anti-PD-1 immunotherapy (44). The multiple
functions of osteopontin are also manifested by the fact that
the expression of osteopontin is elevated in the presence of
increased glucose and insulin levels, together with an increased
proliferation of pancreatic ductal epithelial cells (45).
POTENTIAL ADIPOKINES AND
PANCREATIC CANCER

Certainly, additional adipokines involved in the malignant
progression of PC will be confirmed in coming years. With
their diverse cancer-related profiles, three adipokines, kisspeptin,
omentin, and chemerin, stand out from the crowd of adipokines,
but research in the PC context remains limited. The specific
suppressive role of kispeptin demonstrated in other malignancies
against tumor migration is similarly seen in PC. Omentin and
adiponectin, the previously mentioned unique protective factor,
possess parallels in their secretory patterns, opening up the
potential for underexplored protective adipokine features of
omentin. Chemerin, being a recent star adipokine, might
probably possess the type of relationship with tumor immunity
and metabolism proven in PC and in other malignancies.
Regardless of kispeptin, omentin, or chemerin, in the future, all
could present a direction for further reflection on the mechanics
of the adipokine role in the context of PC.
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Kisspeptin
As a member of the adipokine family, kisspeptin was originally
referred to as metastatic owing to its unique inhibitory ability on
tumor migration (Figure 1). KISS-1 is a pre-peptide containing
145 amino acids, which are terminally amidated by the serum
proprotein convertase Furin to generate numerous bioactive
peptides, namely, kisspeptin, including KP-13, KP-54, KP-14,
and KP-10 isoforms, among which KP-54 is currently the most
studied. On the one hand, these isoforms (KPs) function as
regulators of malignant migration, and on the other hand, they
are positive regulators of the mammalian reproductive
neuroendocrine axis (160). Located on the long arm of
chromosome 1, KISS-1 is regulated by TXNIP, CRSP3, and
TCF21 and is mainly expressed in tissues such as the placenta,
kidney, pancreas, and hypothalamic arcuate nucleus, where
it exerts vital roles in the suppression of native tumor
metastasis (161) (Figure 1). Ongoing studies confirm that the
KISS-1 expression pattern significantly overlaps matrix
metalloproteinases (MMP), a central mechanism by which the
MMP family is involved in the metastatic process of malignant
tumors, which explains the tumor metastasis inhibitory role of
kisspeptin in an array of tumors (162, 163). KISS-1R, the natural
receptor for kisspeptin, also called Gpr54, belongs to a family of
seven transmembrane G protein-coupled receptors consisting of
a, b, and g subunits of which are highly distributed in the
pancreas, placenta, pituitary gland, and spinal cord and similarly
closely associated tumor metastasis (164, 165). Of these, the a
subunit contains four initiation signals, including GaS, Gai/
Gao, Gaq/Ga11, and Ga12/Ga13. Both KISS-1R can bind to
Gaq/Ga11 and separately activate the small G protein RhoA,
thereby linking to downstream tumor-related signaling pathways
like EGFR, CXCL12/CXC4, TNFa, NFkB, PI3K, TGFb,
etc. (163).

While kisspeptin was initially shown to suppress metastasis in
melanoma, subsequent studies have found that KISS-1/
kisspeptin could boost metastasis in malignancies ranging from
liver to breast cancer, suggesting a dual identity for kisspeptin in
cancer (166). Kisspeptin still remains to play a cancer metastasis
inhibitory role in PC. McNally et al. (167) found that mice
implanted with S2VP10L-KISS, PC cells overexpressing KISS-1,
had fewer liver and lung metastases from pancreas but showed
no significant difference in tumor cell proliferation. Similarly,
Masui et al. (46) showed that though exogenous kisspeptin did
not inhibit the proliferation of PC cells, it did exhibit a significant
influence in reducing the migration ability of PC cells in vitro,
presumably related to the activation of ERK1 and p38 by
kisspeptin (Table 1). Wang et al. (47) observed that PC cells
PANC-1 with high KISS-1R expression exhibited similar tumor
migration inhibition to BxPC-3 cells with low KISS-1R
expression after transfection with KISS-1, implicating that
KiSS-1 overexpression-mediated invasion inhibition was not
dependent on the receptor expression level. Multiple current
studies confirmed that although KISS-1 is less expressed in PC
tissues than in normal, PC patients with high KISS-1R expression
in their tumors tend to have higher survival rates and better
prognosis. Contrary to the diminished expression of kisspeptin
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in tumor tissue, the current clinical studies revealed a significant
increase in serum kisspeptin expression (48). Likewise, Katagiri
et al. (49) came to this conclusion and explained that serum
kisspeptin may be secreted by normal body tissues as a “self-
defense mechanism” against cancer progression. As a result,
serum kisspeptin levels can be of translational medical value as
a non-invasive prognostic indicator for patients with PC.
Additionally, the exploitation of antibiotic agents targeting the
KISS-1/Kispeptin/KISS-1R axis may be a viable strategy for
adjuvant PC treatment. Examples include alpha-bisabolol, an
effective inhibitor of tumor aggressiveness in PC, whose cancer-
suppressive effects were previously proved relevant to the
activation of KISS-1R, giving rise to new ideas for the clinical
treatment of PC (50).

Omentin
Omentin is an accepted hydrophilic adipokine with two highly
homologous isoforms (20), omentin-1 and omentin-2, which
share 83% amino acid homology (168) (Figure 1). Omentin-1
is the predominant circulating form of omentin, originally
identified in small intestinal Paneth cells and endothelial
cells as intelectin-1, which is abundant in human plasma
and referred to as the galactofuranose binding lectin,
intestinal lactoferrin receptor, and endothelial lectin (169).
As demonstrated by experimental evidence, omentin-1
preserves body metabolism as well as enhances insulin
sensitivity and exerts anti-inflammatory, anti-atherogenic,
and tumor growth-regulating effects through AMPK, AKT,
NF-kB, MAPK, ERK, JNK, and p38 signaling. Remarkably, the
level of omentin-1 in plasma was positively correlated with
adiponectin, which has been shown to inhibit the growth of
many malignancies as an adipokine with reduced levels in
obese people, suggesting that there might be a similar form of
regulation between omentin-1 and adiponectin, all of which
provide directions for further dissection of the mechanisms
underlying the regulation of PC growth by omentin (51). For
instance, omentin-1 inhibits the proliferation and promotes
the apoptosis of colon CSCs through the PI3K/Akt pathway,
which is apparent depending on the duration and
concentration of exposure (170). There are no binding
receptors for omentin identified, and some scholars
speculate that it might be a non-protein component of the
cell surface, such as a carbohydrate or glycolipid (168).
Contemporary research on omentin and PC has been
limited to clinical studies. Karabulut et al. (52) analyzed
serum samples from 33 PC patients and found PC patients
had significantly higher baseline levels of serum omentin
compared to controls (p <0.001) and that an identical result
was seen in patients with larger pathological tumor volumes.
Kiczmer et al. (53) also detected a significant increase in
omentin-1 levels in patients with PDAC. Arjmand et al. (54)
stated that omentin levels were markedly associated with the
risk of PC and that increased serum levels of omentin-1 may
result from the response of body to the tumor, although the
exact mechanism by which omentin regulates PC is still
unclear (Table 1).
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Chemerin
The function of chemerin to activate signaling within tumor
cells, enhance natural and acquired immune defense against
tumors and promote endothelial angiogenesis has made
deciphering the relationship between chemerin and various
malignancies a hot topic of research in oncology (171)
(Figure 1). Chemerin, also known as tazarotene inducible gene
2 (TIG2) or retinoic acid receptor response protein 2
(RARRES2), is produced by C-terminal processing of pro-
chemokines secreted by the liver and WAT (172). To a large
extent, human chemerin isoforms include chemerin 156,
chemerin 157, and chemerin 158, of which vhemerin 157
represents the most dynamic variant (173).

The dual role of chemerin in cancer development is that high
serum chemerin levels may indicate increased survival in
patients with tumors such as breast cancer, ovarian cancer,
hepatocellular carcinoma (HCC), and adrenocortical
carcinoma (ACC), while high chemerin expression suggests
poor prognosis in patients with gastric cancer and non-small
cell lung cancer (NSCLC) (171). For PC, Kiczmer et al. (53)
evaluated serum chemerin levels in 27 patients with PC, 10
patients with CP, and 36 control volunteers and found that
chemerin levels were significantly elevated in patients with PC
(Table 1). Unfortunately, the current study did not disclose the
expression of chemerin in PC tissues and did not further
investigate the relationship between chemerin expression and
the prognosis of PC patients. The mechanisms by which
chemerin exert their cancer suppressing or promotive effects
differ, with recruitment of immune cells causing them to inhibit
tumor growth, and induction of neovascularization allowing
chemerin to facilitate tumor growth (174). There exist three
known receptors for chemerin, namely chemokine-like receptor
1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C
chemokine receptor-like 2 (CCRL2) (175) (Figure 1). The
former two are capable of transmitting signal transduction and
have been respectively named Chemerin1 and Chemerin2 (172).
Additionally, CMKLR1 has also been referred to in other
literature as ChemR23. CCRL2 is thought to be a non-
signaling receptor with a high affinity towards chemerin and,
while unable to transmit signals via any known signaling
pathway, CCRL2 is able to bind and deliver chemerin to
establish concentration gradients and thus get involved in
various functions (172, 176). Recently, Delbany et al. (177)
reported the role of chemerin as a negative regulator of
tumorigenesis in a skin cancer model, where the rate
of papilloma development was significantly elevated upon loss
of CCRL2 and this effect was abolished in the absence of
CMKLR1, suggesting that the biological function of CCRL2 is
closely dependent on CMKLR1. Also in this study, tumor cells
overexpressing CCRL2 were found to aggregate chemotactic
proteins, condensing chemerin on the cell surface, thus
promoting activation of CMKLR1-expressing cells (177). To
further demonstrate that these anti-tumor effects of CCRL2 are
mediated by local concentrations of chemerin. In contrast, unlike
other tumors, chemerin is able to inhibit the generation of skin
cancer vessels, thereby inducing cell death and delayed
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proliferation (177). Chemerin is involved in the regulation of
the TME through recognition of cell surface CMKLR1 displayed
by macrophages, NK cells, endothelial cells, myeloid and
plasmacytoid dendritic cells, smooth muscle cells, and
adipocytes that express CMKLR1, a subpopulation of cells
present in the TME (178, 179). Moreover, chemerin has
recently been linked to tumor lipid metabolism and ferroptosis.
Tan et al. (180) found that deregulation of chemerin expression
inhibited tumor growth and significantly reduced intracellular
lipid deposition in CcRCC cells. Further analysis revealed that
lipid metabolism was reprogrammed in cancer cells after
inhibition of chemerin expression and enhanced lipid
oxidation resulted in increased susceptibility to ferroptosis in
CcRCC cells (180). Concurrently, it was observed that lipid
coenzyme Q and mitochondrial complex IV were both reduced
following chemerin inhibition, leading to lipid reactive oxygen
species production and further promoting ferroptosis (180).
Taking these mechanisms together into account could provide
a breakthrough idea to explore the rationale for chemerin in PC.
CONCLUSION

Concurrently, obesity serves as a recognized risk factor for
cancer. Despite the increasing knowledge of obesity-related
malignancies, the specific mechanisms underlying the
interconnections seem to be complex. Deciphering the
mechanisms involved and finding the value of translational
medicine is an increasingly critical topic in oncology.
Adipokines are of increasing interest as key mediators
influencing the pathophysiology ascribed to cancer.

Hence, throughout this review, we highlight the important
role of AT and adipokines in the pathology of PC (Table 1). As
demonstrated in Table 1, with the exception of adiponectin, all
the representative adipokines listed in this review at the present
time have the ability to promote malignant progression of PC.
Although adiponectin has shown divergent results in clinical
studies, in vivo or in vitro studies have all confirmed its
antagonistic impact on PC. Such a distinct oncogenic effect of
adiponectin is interesting, yet this mechanism is currently not
well documented in PC. Furthermore, through the review, we
found that although all being members of the adipokine family,
the various adipokines mentioned above induce different
pathophysiological processes in PC through a diverse range of
mechanisms, ultimately altering the results of tumor as well as
the prognosis of tumor patients. Hence, we pose the question of
whether classical adipokines including resistin and adiponectin
interfere equally profoundly with the course of PC by regulating
TME, tumor metabolic reprogramming, and other pathways,
which needs to be further determined by future studies.

We also found that many other adipokines that show
regulatory effects in other GI cancers, like visfatin and apelin,
have a gap in research in the context of PC and need to be
expanded by further studies, both in clinical studies and in an in-
depth exploration of the mechanisms involved. As Table 1
collated, several adipokines are mentioned in the review, such
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as chemerin and omentin. There are still lots of gray areas that
exist in the mechanism of their action in PC, and it may be
possible to look at the mechanisms listed above, in other
malignancies, for ideas as well as directions. This is notable
since we conjecture that adipokines act as a bridge between
obesity and cancer, while often acting as an endocrine hormone
involved in the metabolic regulation of the body. It is likely that
multiple distinct adipokines cascade with each other to form a
feedback mechanism and thus a web of interactions. Identifying
this complex and variable matrix of associations is likely to yield
specific endocrine therapeutic avenues that are critical to
improving the clinical malignancy treatment landscape.

Furthermore, the translational medical value of adipokines
includes being a diagnostic marker of specificity. We have seen
this potential in osteopontin, leptin, and others. With further
exploration of multiple adipokine combination diagnostic
modalities in the future, this role may be maximized.
Additionally, such values can be reflected in accurate
screening, specifically for early-stage cancers in the obese
population, which is likely to significantly improve disease
prognosis in them. In addition to the role of diagnostic
markers, bringing together multiple adipokines for use as a
grading scale and tailoring different treatment protocols for
obese patients at different stages may significantly improve
their survival rates. Simultaneously, there is mounting support
for the idea that the adipocyte-rich microenvironment plays an
instrumental role in the development of various tumors.
Adipokines can act locally within AT and systemically, equally
regulating the TME, which means future exploration of such
Frontiers in Oncology | www.frontiersin.org 12
mechanisms is of equal value. And, we conjecture that, as an
endocrine factor, adipokines are most likely also engaged in
tumor metabolic reprogramming, as they regulate metabolism
systemically, but unfortunately, although we currently see this
role in newly identified adipokines, this is currently limited and
further in vivo and in vitro experiments are needed to validate
this. In summary, adipokines have great potential to become
reliable targets for neoadjuvant tumor therapy, and the prospect
of such applications is compelling.
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