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The development of ‘‘omic’’ technologies and deep phenotyping may facilitate a systems biology
approach to understanding anxiety disorders. Systems biology approaches incorporate data from
multiple modalities (e.g., genomic, neuroimaging) with functional analyses (e.g., animal and tissue
culture models) and mathematical modeling (e.g., machine learning) to investigate pathological
biophysical networks at various scales. Here we review: i) the neurobiology of anxiety disorders; ii)
how systems biology approaches have advanced this work; and iii) the clinical implications and future
directions of this research. Systems biology approaches have provided an improved functional
understanding of candidate biomarkers and have suggested future potential for refining the diagnosis,
prognosis, and treatment of anxiety disorders. The systems biology approach for anxiety disorders is,
however, in its infancy and in some instances is characterized by insufficient power and replication.
The studies reviewed here represent important steps to further untangling the pathophysiology of
anxiety disorders.
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Introduction

Anxiety disorders, which include generalized anxiety dis-
order, panic disorder, social anxiety disorder, agorapho-
bia and specific phobia, are the most prevalent category
of psychiatric disorders.1,2 Obsessive compulsive dis-
order and post-traumatic stress disorder are no longer
classified as anxiety disorders3 and will, therefore, not be
discussed in this review. Anxiety disorders have a lifetime
prevalence of approximately 34% and incur a substantial
social burden.4 Anxiety disorders are currently the sixth
leading cause of disability worldwide, with a rate of 389.7
‘‘disability adjusted life years’’ per 100,000 people.5 Anxiety
disorders are characterized by excessive fear and antici-
pation of threats that disrupt daily function.3 These
disorders are complex, involving environmental and poly-
genic contributions to their underlying pathophysiology that
have independent and joint effects.6 The clinical picture of
anxiety disorders is further complicated by phenotypic
heterogeneity, high rates of comorbidity, and symptom
overlap with other psychiatric disorders, e.g., obsessive-
compulsive disorders and addiction disorders.1

Our current knowledge about the pathophysiology
of anxiety disorders remains incomplete and reliable

biomarkers are lacking in a clinical setting.7,8 Research on
anxiety disorders has often focused on single candidate
genes or specific environmental stressors. In more recent
years, the scientific community has begun investigating
anxiety disorders using a systems biology approach.
Systems biology is a shift from traditional reductionist
biology towards understanding more complex biophysical
networks at various scales (from a single-cell to an
organismal level)9 for a particular outcome of interest.
This more holistic approach has been given impetus by
the ‘‘omics’’ (including genomics, proteomics, transcrip-
tomics, metabolomics, etc.) and the era of computa-
tional biostatistics (e.g., machine learning, algorithms that
automatically improve through experience).9,10 This
approach may ultimately allow fine mapping of the multi-
ple mechanisms that contribute to these conditions.11

In this review, i) we provide a brief overview of current
knowledge of the neurobiology of anxiety disorders,
drawing on existing detailed reviews,12-14 ii) we investi-
gate how systems biology approaches have advanced
this work, and iii) we speculate on the future clinical trans-
lation of these findings. We have selected key examples
that demonstrate the capabilities of this avenue of
research and provide suggestions for the way ahead.
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The neurobiology of anxiety disorders

Genetics of anxiety disorders

Anxiety disorders run in families; the odds of developing
this disorder are up to six-fold higher for first degree
relatives of affected individuals.15 Twin studies indicate
heritability estimates between 32-67% across subtypes of
anxiety disorders.15 The genetic architecture is polygenic,
with influences likely from both common and rare varia-
tions.16 The environment is also known to play a sub-
stantial role in the etiology of these disorders through
epigenetic changes and gene-environment interactions.6

In the sections below we provide an overview of the
current genetic understanding of anxiety disorders.

Candidate genes

Investigations into the genetic etiology of anxiety dis-
orders began with linkage studies and candidate gene
approaches.17 Candidate genes were selected based on
the purported biology underlying the phenotype of interest
(for example, neuropeptides, monoaminergic neurotrans-
mitter systems, and the hypothalamic-pituitary-adrenal
axis) and included evidence from animal models.18

Candidate-gene association studies for anxiety disorders
have predominantly focused on polymorphisms in the
genes, SLC6A4, COMT, MAOA, ADORA2A, NPSR1,
CRHR1, and RGS213.18 The products of these genes
predominantly affect synaptic signaling by modulating
neurotransmitters. Findings from candidate-gene asso-
ciation studies have been highly inconsistent, likely due to
small effect sizes and the heterogeneous nature of
anxiety phenotypes. Therefore, there is currently a focus
on global hypothesis-free approaches to investigate the
genetic etiology of anxiety disorders. Large-scale colla-
borative efforts, such as the Psychiatric Genomics Con-
sortium (https://www.med.unc.edu/pgc/), UK Biobank
(https://www.ukbiobank.ac.uk), and iPSYCH (http://ipsych.
au.dk/about-ipsych) allow sufficient sample size and
statistical power for such unbiased analyses. Below, we
briefly review some of the omics studies that have been
conducted for anxiety disorders, including genome-wide
association studies (GWAS), epigenome-wide association
studies (EWAS), and transcriptome-wide association
studies (TWAS).

GWAS

Findings from GWASs of anxiety have not been replicated
in independent cohorts or meta-analyses. Thus far, candi-
dates that have been partially replicated include TMEM
132D (associated with panic disorder),19 GLRB (asso-
ciated with agoraphobia),20 and RBFOX1 (associated
with generalized anxiety disorder).21 In addition, a non-
coding RNA locus on chromosomal band 3q12.3, asso-
ciated with the gene CAMKMT, obtained genome-wide
significance in a meta-analysis across various subtypes of
anxiety disorders.22 These findings highlight the potential
importance of intergenic variants, which account for the
majority of the associations thus far.23 The associated
genes which have been characterized suggest that

altered signal transduction pathways play a key role in
anxiety pathophysiology.19,21 These GWAS findings,
however, have not been unequivocally replicated and
currently only account for 0.2% of the variance attribu-
table to common variation.24

EWAS

Epigenetics offers an opportunity to link genetic and
environmental risk factors for anxiety disorders and imp-
rove our understanding of the underlying mechanisms.12

EWAS studies investigating methylation patterns have
implicated mostly global hypomethylation associated with
panic disorder,25 hypermethylation of HECA in females
with panic disorder,26 and hypermethylation of ASB1
associated with generalized anxiety disorder symptoms.27

Unfortunately, EWAS studies are currently underpow-
ered, even more so than GWAS work.28

TWAS

Analysis of transcription patterns have the potential to
identify genes and pathways that either are affected by, or
increase the risk of a pathology, lending insight into its
pathophysiology. At this stage, TWAS among individuals
with anxiety disorders are scarce, have small sample
sizes, and mostly represent pilot studies. Most gene exp-
ression studies have opted for a candidate gene approach
in animal models, using expression patterns to explore
the functionality of findings from GWASs and EWASs
(e.g., Emeny et al.27). TWAS tend to be more common in
animal studies, with replication attempts of the identified
candidates conducted in humans. For example, a TWAS
of stress-exposed mice using tissue from the amygdala
and prefrontal medial cortex revealed altered expression
of Ppm1f, a protein phosphatase belonging to a family of
phosphatases that negatively regulate stress response
pathways.29 Downregulated expression of Ppm1f was
also subsequently observed in 151 human cases with
anxiety symptoms compared to 165 control subjects. Few
studies have investigated global expression patterns
associated with anxiety. One such study investigated
336 participants (157 cases and 179 controls) and
revealed differential expression of 631 genes among
male participants only.30 These genes were enriched for
immune-related pathways. However, a smaller study of
102 participants with panic disorder and specific phobia
was unable to identify significant differences in global
expression patterns based on treatment outcomes of
cognitive behavioral therapy.31 It is evident that large-
scale collaborative efforts are needed to improve the
power of these analyses to identify genes and pathways
with differential transcription in individuals with pathologi-
cal anxiety.

Neuroimaging

Neural networks that relate to fear processing, termed the
fear network, have been shown to be associated with
anxiety and anxiety disorders.14 These regions include
the bed nucleus of the stria terminalis, the amygdala, and
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the hippocampus, and their connections to cortical
regions, such as the dorsal medial and lateral prefrontal/
cingulate cortex and insula. These regions appear to be
involved across the range of anxiety disorders.14

Slight differences can, however, be observed across
anxiety disorder subtypes. A recent meta-analysis of
structural and functional magnetic resonance imaging
(fMRI) of generalized anxiety disorder revealed that the
hippocampus, anterior cingulate cortex, and amygdala
have reduced volume, and the dorsolateral prefrontal cor-
tex and anterior cingulate cortex have reduced functional
connectivity with the amygdala.32 The sensorimotor net-
work is also altered with greater pre- and postcentral
volume, reduced supplementary motor area volume, and
reduced functional connectivity in anterior and increased
functional connectivity in the posterior cerebellum.32 The
neural differences in subjects with generalized anxiety
disorder, compared to controls, appear to be widely distri-
buted. Panic disorder has been associated with reduced
bilateral dorsomedial prefrontal cortex, left dorsolateral
prefrontal cortex, right insula, right superior temporal
gyrus right middle temporal gyrus and right superior
orbital frontal cortex volumes in a meta-analysis.33 This
emphasizes the role of frontal areas and an altered top-
down control system in panic disorder. A structural MRI
meta-analysis of social anxiety disorder indicated greater
precuneus, right middle occipital gyrus, and supplemen-
tary motor area volumes, as well as lower volume in the
left putamen, compared to controls.34 This suggests that
social anxiety is associated with various networks across
the brain, extending beyond the fear network. A meta-
analysis of fMRI revealed that subjects with specific
phobia had increased activation in response to phobic
stimuli in the left amygdala/globus pallidus, left insula,
right thalamus, and cerebellum than controls.35 Specific
phobia is, therefore, mostly associated with alterations in
the fear network.

Experimental models

Animal models are a means of studying the biological
components that underlie behavior. Animal models
have aided in the identification of candidate genes and
molecular pathways pertinent to anxiety disorder patho-
physiology.12 For example, such models have implicated
dysfunctional immune pathways in the pathophysiology of
anxiety.36,37 Animal models have also supported the role
of early adversity as a risk factor for anxiety disorders,
demonstrating that this affects the hypothalamic-pituitary-
adrenal axis and leads to impaired brain maturation and
function.38 These effects may be associated with epige-
netic modifications, which can be inherited across multiple
generations.

Systems biology approaches to anxiety disorders

Systems biology research emphasizes a holistic and
interdisciplinary approach to understanding biological
systems related to pathophysiology.9 In this section, we
focus on key studies that not only used an omics app-
roach to identify anxiety-related signatures, but also

attempted to improve our understanding of these asso-
ciations and their context in anxiety through functional
analyses. The discussed studies are summarized in
Table 1.

The first study we review is a GWAS of panic disorder
with agoraphobia, which identified several significantly
associated variants (rs78726293, rs191260602, rs1703
5816, and rs7688285) within or near GLRB, a gene enco-
ding a transmembrane receptor.20 These findings were
further validated in two independent samples and their
effects were characterized using cell cultures, post-mortem
brain tissue, fMRI, and animal models.20 Although none of
the identified variants were predicted to be an expression
quantitative trait locus in the GTEx database,42 cell culture
and postmortem brain tissue showed that rs7688285 was
associated with increased GLRB expression, particularly in
the midbrain. fMRI conducted on carriers of the associated
variants revealed an increase in fear, sensory, and motor
network activation. It was also found that these carriers
had an increased startle response compared to non-
carriers. Variants within GLRB have previously been asso-
ciated with hyperekplexia, a neurological condition
characterized by an exaggerated startle response and
agoraphobic behavior.43 Lastly, partial knockout of GLRB
in mice resulted in agoraphobic behavior, demonstrated by
less time spent in the center of an open field. Taken
together, these findings suggest that these non-coding
polymorphisms in GLRB increase the risk of panic disorder
by, in part, altering the gene’s expression and resulting in
an increased startle response and agoraphobic behavior.20

Another GWAS of panic disorder revealed associat-
ions with variants within TMEM132D (rs7309727 and
rs11060369), which encodes a membrane protein involved
in the negative regulation of phosphatase activity.39 This
was replicated in three independent samples39 and again
in a subsequent meta-analysis that included five datasets
by the same group.19 The TMEM132D variants were also
associated with increased severity of panic disorder.39

mRNA expression from lymphoblastoid cell lines in the
HapMap population44 and the human postmortem cortex45

revealed a significant correlation between anxiety and
TMEM132D expression in the frontal cortex. Using a mouse
model, associations were found between these variants,
anxiety behavior, and expression of TMEM132D in the
anterior cingulate cortex, a region involved in processing
fear-related stimuli.39

A molecular pathway analysis, correlating phenome
and transcriptomic data, is another useful example of a
systems biology approach.40 Global disruption of path-
ways linked to anxiety disorders were investigated by
correlating broad phenotype data with publicly available
transcript data from human and animal model databases
across tissue types.46 The phenotype criteria included
phenotypic states of anxiety and were not restricted to an
anxiety disorder diagnosis, allowing for the incorporation
of larger datasets. Further, the inclusion of transcriptome
data from model organisms allowed for the identification
of significantly enriched pathways across experiment
types. Anxiety phenotypes were significantly associated
with upregulated carbohydrate metabolism, including gly-
colysis and the tricarboxylic acid cycle; dysregulated tight
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junctions and phosphatidylinositol signalling.40 Phospho-
fructokinase, the rate-limiting enzyme of glycolysis that
produces lactate, was upregulated; this is notable given
that panic disorder has been linked to elevated brain
lactate levels, perhaps due to increased phosphofructo-
kinase activity, and that panic attacks are induced by
lactate infusions.47 Speculatively, dysregulation of energy
metabolism-related pathways contributes to lactate level
imbalance, mediating anxiety-like phenotypes.40 Further,
variants affecting tight junctions, vital blood-brain-barrier
(BBB) transporter proteins, and various other entities
affecting the BBB have previously been found to influence
antidepressant drug uptake and response.48 Alterations in
the BBB transport system may lead to dysregulation of
metabolites and influence anxiety-like behaviors. Inositol
has also previously been shown to have anxiolytic effects
in animal models49 and clinical trials in humans have been
initiated.50

An EWAS for panic disorder identified significant
differential DNA methylation at 40 CpG sites.25 These
sites were predominantly hypomethylated among panic
disorder patients compared to controls. Pathway analysis
revealed an enrichment of genes involved in the lym-
phocyte activation pathway. A comparison of the relative
proportion of leukocyte subsets between panic disorder
patients and controls revealed significantly increased
CD4+ T cells in panic disorder patients. This suggests
that the risk of panic disorder may be influenced by
immune dysfunction.25

An EWAS of dimensional anxiety also suggested the
involvement of the immune system.27 Significant hyper-
methylation of the Asb1 promoter was associated with
severe anxiety and was significantly correlated with panic
severity in an independent cohort. Asb1 appears to be a
stress-responsive gene, since exposure to extreme stress
is significantly associated with hypermethylation in adult
mice compared to controls. Members of the Asb protein
family have previously been shown to interact with
proinflammatory cytokines,51 and Asb1 gene expression
correlated with upregulation of the neuroimmunomodulat-
ing cytokine interleukin-1 beta (IL-1b) in a mouse model.27

This suggests that Asb1 may be influenced by environ-
mental risk factors, such as stress, leading to anxiety via
neuroimmune pathways.27

Alterations in sleep patterns have also been linked to
anxiety disorders.52 A study of polymorphisms in PER3, a
gene previously associated with sleep and mood dis-
orders, revealed a significant association with anxiety.41

Further, an ordinary differential equation model with other
clock genes was developed that can predict circadian
phenotypes in individuals with mood and sleep-related
disorders. The model was trained on genetic knockout
conditions previously identified in mice and various cell
lines. Although this study utilizes a limiting candidate gene
approach, it is an example of how mathematical modeling
combined with biological associations can be used to
make predictions and inform our understanding of the
mechanistic underpinnings of disease. This model has the
potential to guide future studies of mood disorders and
their relationship with circadian rhythms.41

Machine learning may translate systems biology findings
of anxiety disorders to clinical practice

As potential contributors to anxiety disorder pathophysiol-
ogy are discovered and validated, methods to translate
these findings into clinical practice are needed. Signa-
tures of anxiety could improve individual predictions of
diagnosis, prognosis, treatments, and treatment out-
comes as we move towards a precision medicine app-
roach.53 Machine learning approaches, a discipline of
computer science that utilizes mathematical and statis-
tical assumptions to identify patterns from data, may be
the key components to achieving this goal.54 Given that
large-scale data is becoming more widely available in the
field of biology, machine learning may contribute to the
systems biology approach by generating models of
disease and new hypotheses.55 Here we will present
examples of studies that aim to identify robust signatures
of anxiety and tools for more precise medicine models.
The studies discussed here are summarized in Table 2.

Machine learning approaches to predicting anxiety dis-
order diagnosis may be able to utilize a range of measures,
including physiological and psychological variables.54

Visually inferred heart-rate measurements70 paired with
the Virtual Human Distress Assessment Interview Corpus
for anxiety analysis, which aims to quantify nonverbal
behavior descriptors indicative of anxiety,71 were used to
predict generalized anxiety disorder using several statis-
tical models.56 From this, a Bayesian network approach
was the most significant method, able to distinguish
between cases and controls with an efficiency of 73%.56

A longitudinal study of self-esteem in adolescents and
young adults was used to predict adult onset of anxiety
disorders.72 An artificial neural network approach com-
bined several attributes (select DSM-5 questions, age,
gender, occupation, and working hours) to predict general-
ized anxiety disorder diagnosis.58 This approach had an
accuracy of 96% when including sensitivity analysis, with
select questions from the DSM-5 carrying the most weight
in the model.58

Machine learning approaches have also been applied
to brain imaging data. Grey matter volumes and linear
support vector machine (SVM) methods have been able
to distinguish between individuals who have major
depression and those who have depression with comor-
bid generalized anxiety disorder with an accuracy of
82%.59 Resting-state fMRI was used in conjunction with
multivariate pattern analysis to distinguish social anxiety
disorder patients from controls with an accuracy of 83%.60

This approach revealed that altered intra- and inter-
network connectivity among the default mode network,
visual network, sensory-motor network, affective network,
and cerebellar regions were largely responsible for the
classification accuracy. This finding was subsequently
supported in several studies.61,62,73 One such study found
that functional analysis of the fear network alone was
more accurate (72%) and that grey matter volume alter-
ations across the whole brain (85%) are even more
accurate.61 This approach was also able to distinguish
social anxiety disorder and panic disorder patients with an
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accuracy of 82%.62 fMRI and a random under-sampling
tree ensemble in a leave-one-out cross-validation frame-
work were also able to predict comorbidity between
depression and panic disorder with agoraphobia with an
accuracy of 73%.63 Several such approaches have been
unable to make successful predictions using the same
neuroimaging signatures.64,65

Studies have also combined multiple biological measures
for the validation of anxiety disorder diagnoses. Binary
SVMs were used in a nested leave-one-out cross-validation
framework to estimate the capacity for the joint and indi-
vidual effects of various modalities (clinical questionnaires,
cortisol release, grey and white matter volumes) to distin-
guish generalized anxiety disorder from healthy controls
and subjects with major depression.66 The clinical ques-
tionnaires were able to distinguish cases from controls most
efficiently, although cortisol and neuroimaging were better
suited to refining the diagnosis between generalized anxiety
disorder and major depression. Combining all measures
allowed for an overall improved classification (case classi-
fication accuracy of 90% and disorder classification accu-
racy of 67%).66 Replication attempts and larger sample
sizes are still needed to validate this promising result.

The predictive capacity of neurobiological markers to
determine treatment outcomes has also been explored.74

Such approaches have employed neuroimaging, genetic,
and clinical predictors.74 For example, resting-state fMRI
and diffusion tensor imaging have been used to predict
treatment response to cognitive behavioral therapy in social
anxiety disorder patients with an accuracy of 84%.67 This
approach resulted in a five-fold improvement in the ability to
predict treatment response compared to measures of
clinical severity and single connectomic measures.67 How-
ever, most studies of this nature remain fragmentary.74

Recent efforts utilizing biological variables associated
with anxiety disorders and computational modeling have
also begun to suggest novel targets for drug development
and potential repositioning of known medications to treat
these disorders. One such example compared GWAS data
for anxiety and depression with gene sets from all drugs in
the Drug SIGnatures DataBase.68 This approach added
support for anxiolytics already used in clinical practice and
also suggested potential applications of antipsychotic medi-
cations and cardiovascular agents, e.g. fendiline, which
has some evidence of antidepressant activity in animal
models.75 Another such study investigating various machine
learning approaches and gene expression data provided
additional evidence for the use of certain antipsychotics,
antihistamines, anti-inflammatories, and histone deacety-
lase inhibitors to treat anxiety disorders and depression.69

Many of the findings from this study are in agreement with
evidence from animal models and current clinical trials,
providing support for this approach.69 These studies
currently form the first steps in a systems biology approach
that could ultimately lead to new treatments. However, they
require further validation and functional evidence.

Discussion

Early work on the pathophysiology of anxiety disorders
focused on specific mechanisms and particular candidate

genes; this seems like an overly simplistic approach
given the complex nature of these conditions. Convergent
models that incorporate a range of omics-derived associa-
tions across multiple datasets (including animals and
humans) and at various stages of life, offer an alternative
approach.76 Such work can potentially combine pheno-
type, genotype, and environome data. Systems biological
approaches borrow principles from, and may contribute to
the Research Domain Criteria approach, which aims to
classify mental illness according to its relevant neurobiol-
ogy and which focuses on continuous biological dimen-
sions.77 Currently, there are gaps in our knowledge and
methodologies that should be refined.

Animal models have been useful in anxiety disorder
research, including work using a systems biology app-
roach (e.g., Erhardt et al.39). However, experimental
models may have important limitations. First, many
current models measure ‘‘normal’’/adaptive and non-
specific anxiety (e.g., exposure to predators), which may
be fundamentally different from pathological/maladaptive
anxiety in humans.78 Paradigms that better model specific
aspects of human anxiety disorders, such as impaired
fear extinction, are therefore needed.79 Furthermore,
coordinated efforts utilizing multiple models and species
could identify common pathways that mediate risk and
resilience.80

Omics research in anxiety disorders lags behind work
on other areas of psychiatry, such as schizophrenia. First,
although the few GWAS, EWAS, and TWAS studies
report genome-wide significant findings, they lack suffi-
cient power and have not consistently replicated. There is
a need for very large (meta-)analyses to be conducted by
consortia to identify unambiguous findings. Second, a
range of diagnostic tools and symptom measures are
used across studies. Cross-site studies would benefit
from the use of more standardized batteries. Third, lever-
aging of genetic covariance with other disorders, at equal
power, is necessary in such a highly comorbid set of
disorders. Additional well-powered comparisons across
anxiety disorder subtypes may highlight unique patho-
physiologies. Commonalities and disparities across anxi-
ety disorders should be investigated using a range of
methodologies. Fourth, longitudinal data are not widely
available in anxiety disorder research and may provide a
greater understanding of the trajectory of these conditions
and their relationship with comorbid conditions.72 And
finally, since anxiety disorders are a result of both environ-
mental risk and genetic risk, more emphasis on studies
integrating both risk types may be useful. This will require
deep phenotyping and adequately powered EWAS and
gene-by-environment interaction studies. Genome-wide
attempts of gene-by-environment studies in anxiety dis-
orders have yet to be undertaken, and it is estimated that
at least 10,000 samples are required to detect a mode-
rately strong association.81

Overall, however, the field is still far from real clinical
application and a personalized medicine approach,
and much work has to be done to improve power, data
processing, model optimization, validation, and tools
that can integrate data from multiple biological variables.
The machine learning models discussed above support
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the importance of a holistic approach by improving pre-
dictions from systems biology data. Associations of bio-
logical variables with anxiety-related symptomatology
may ultimately have the potential to refine aspects of
diagnosis and treatment (Table 2). These models have
indicated that the immune, endocrine, and cardiovascular
systems all play a key role in underpinning anxiety
disorders (e.g., Emeny et al.27) and data from these sys-
tems may improve specificity and power in predictive
models (e.g., Camacho et al.55). Further, the accuracy of
predictive tools may improve when multiple biological
measures are combined (e.g., Boeke et al.65), reinforcing
the complexity of anxiety disorders and the possible
benefit of using multiple biological measures in future
research. This is also a limitation for clinical applications,
since multiple measurements are costly and time-con-
suming. While much hope has been put on the potential
utility of a systems biology approach, time is still needed
for the availability of big data and the development of new
methods for its analysis.

In conclusion, current approaches to systems biology
research in anxiety disorders serve as a proof-of-concept.
The majority of the data collected thus far stem from
research that is still exploratory, and that is underpowered
and unreplicated. These findings do, however, inform
potential next steps in this field. We have learned a great
deal from experimental models, neurogenetics and neu-
roimaging about the role of processes such as fear
conditioning and extinction in anxiety disorders. The
development of systems biology approaches to anxiety
is timely, and may help integrate different available data
sources, working across different levels. This more
complex approach may ultimately further our understan-
ding of anxiety pathophysiology and development of
treatments.
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