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Abstract: T-cell acute lymphoblastic leukemia (T-ALL) is an uncommon, yet aggressive leukemia that
accounts for approximately one-fourth of acute lymphoblastic leukemia (ALL) cases. CDKN2A/CDKN2B
and NOTCH1 are the most common mutated genes in T-ALL. Children and young adults are treated
with pediatric intensive regimens and have superior outcomes compared to older adults. In children
and young adults, Nelarabine added to frontline chemotherapy improves outcomes and end of
consolidation measurable residual disease has emerged as the most valuable prognostic marker.
While outcomes for de-novo disease are steadily improving, patients with relapsed and refractory
T-ALL fare poorly. Newer targeted therapies are being studied in large clinical trials and have the
potential to further improve outcomes. The role of allogeneic stem cell transplant (HSCT) is evolving
due to the increased use of pediatric-inspired regimens and MRD monitoring. In this review we will
discuss the biology, treatment, and outcomes in pediatric and adult T-ALL.
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1. Introduction

Children, adolescents, and young adults comprise 70% of ALL cases [1]. The inci-
dence of ALL in United States (US) is 1.8 per 100,000 for all age groups and 5 per 100,000
for ages 0–19 [1]. While the incidence in Europe is comparable to the US, data suggest
higher incidence in Mexico and other Latin American countries [2–4]. Survival in ALL
is strongly influenced by age with five-year overall survival being 80% in <50 years and
<35% in >50 years [1]. T-ALL comprises 15–25% of ALL cases in children and adults [5–9].
Therefore, T-ALL is primarily a disease of children and young adults and rare in older
adults. Sequential accumulation of genomic lesions in the immature T cell progenitors
culminates in leukemic transformation and a high proliferative index translates clinically
to leukocytosis and extramedullary disease, including large mediastinal/thymic masses
and central nervous system (CNS) involvement. The genomic and molecular aberrations
seen in T-ALL are distinct from that of B-ALL, yet, up until recently, similar treatment
regimens were used for both diseases. The distinction between T-ALL and T-lymphoblastic
lymphoma (T-LBL) depends on the degree of bone marrow involvement, with T-ALL
cases defined by 20% or more blasts in the bone marrow, whereas T-LBL cases have less
than 20% bone marrow blasts with predominance of extramedullary disease [10]. This
review will be limited to T-ALL. Early T precursor cell ALL (ETP-ALL) is a distinct subtype
arising from immature T-cells and will be discussed in detail. As with B-ALL, outcomes
in all age groups, especially for children and young adults, have improved over the past
several decades [11,12].
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2. Genomics and Molecular Biology

We will begin this section with a discussion of normal thymocyte development,
including the role of NOTCH and MYC, followed by a description of the genomic landscape
of T-ALL.

2.1. Thymocyte Development

Thymocyte development in mice has been extensively studied using in vivo and
in vitro models [13]. Uncommitted lymphoid cells from the bone marrow proliferate
when stimulated by Interleukin-7 (IL-7) and stem cell factor (SCF) upon entering the
thymus [14,15]. These cells express the NOTCH1 receptor and are activated by NOTCH
ligands termed “delta-like” and “Jagged”, which are expressed by the thymic epithelial
cells [14,16]. NOTCH activation is required to transform lymphoid precursor cells to T-
cells and in the absence of NOTCH, these precursor lymphoid cells by default become
B cells [17]. It is important to note that these lymphoid precursor cells retain NK and
myeloid markers. Early thymocytes that lack surface CD4 and CD8, called double negative
(DN) cells, progress through four stages of differentiation labeled DN1, DN2, DN3, and
DN4. DN3 cells exhibit pre-TCR (T-cell receptor) composed of pre-Tα and a rearranged
TCRβ chain. DN3 cells have high levels of NOTCH signaling [18], which induces marked
cell proliferation as they become DN4 cells. Only those DN cells that have successfully
rearranged TCRβ chain transform to double positive (DP) cells expressing CD4 and CD8,
at which point they cease to proliferate and undergo rearrangement of the TCRα chain to
form a complete TCR that can recognize MHC (major histocompatibility complex). Only
those DP cells that are capable of recognizing MHC survive (positive selection) and become
single positive CD4 or CD8 cells. These single positive CD4 and CD8 cells then face MHC
with self-antigens and only those that do not exhibit a strong response to self-antigens
survive (negative selection). Positive and negative selection eliminate the majority of
thymocytes, leaving behind mature T cells capable of recognizing foreign antigens and
tolerant of self-antigens [14].

2.2. NOTCH and MYC

NOTCH1 is a transmembrane receptor protein that serves as a transcription factor [14,16].
Once activated by delta-like and Jagged ligands, the intracellular portion is cleaved
by gamma secretase, translocates to the nucleus, and activates expression of target
genes [14,16,19,20]. FBXW7 directs the intracellular portion of NOTCH1 for degradation,
thus terminating NOTCH signaling [14,19,21]. Activating mutations of the NOTCH gene
or loss of function mutations of the FBXW7 gene lead to constitutive NOTCH signaling
in T-ALL [22,23]. Therapeutic inhibition of this pathway has been studied with NOTCH
antibodies and gamma secretase inhibitors, albeit with little success [24,25].

The MYC oncogene encodes for transcription factors that regulate genes involved
in cell cycle progression, ribosome synthesis, protein translation, and metabolism [26].
MYC plays an important role in the self-renewal and differentiation of hematopoietic stem
cells [27] as well as in the development of B and T lymphocytes [28,29]. Deregulated
MYC signaling has been implicated in several tumor types including B and T cell malig-
nancies [30,31]. MYC expression is increased in the developing thymic precursor T cells
and loss of MYC is associated with severely decreased numbers of thymocytes [14,32].
Several preclinical studies of T-ALL have demonstrated high levels of MYC expression,
which is required for the growth and proliferation of leukemic T-cells [14,33–35]. MYC is
shown to be downstream of NOTCH1 in the signaling cascade [33]. NOTCH1 mutations
are associated with increased level of MYC RNA and conversely NOTCH1 inhibition de-
creases MYC RNA levels [14]. Additionally, retroviral expression of MYC has been shown
to rescue leukemic cells from growth arrest induced by NOTCH1 or gamma secretase
inhibitors [36]. NOTCH1 activates MYC expression via the DNA enhancer sequence NMe
(NOTCH MYC enhancer) [34]. Enhancer sequences when bound by transcription factors
increase the transcription of an associated gene. NMe is occupied by NOTCH1 and directly
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interacts with the MYC promoter and induces MYC expression in developing thymocytes
and T-ALL cells [34]. NMe knockout mice demonstrate severely decreased thymic cellu-
larity with reductions in immature and mature T cells [34]. In addition, isogenic immune
deficient mice fail to develop T-ALL when transplanted with NMe knockout hematopoietic
progenitors with retrovirally driven constitutive activation of NOTCH1 [34]. In addition,
NMe deletion after leukemia induction resulted in antileukemic effects and improved
survival [34]. Proteosomal degradation of MYC protein which has a short half-life, is
mediated by FBXW7 [35]. Therefore, T-ALL cases with FBXW7 mutations have increased
levels of MYC protein [14,35].

2.3. Genomic Landscape of T-ALL

T-ALL arises from maturational arrest during thymocyte development with subse-
quent proliferation, survival, altered metabolism, and enhanced homing. These events are
triggered by sequential accumulation of multiple genetic aberrations. Each case of T-ALL
has on an average, more than ten genetic aberrations, which disrupt distinct intracellular
pathways [23,37], including activation of oncogenic transcription factors, loss of tumor
suppressor genes, increased kinase signaling, epigenetic lesions, and defective ribosomal
proteins and RNA translation [23,37]. Table 1 enlists pathways and genes involved with
the frequency and distribution among children and adults. CDKN2A/CDKN2B tumor
suppressor genes and NOTCH1 transcription factor gene are the most common altered
genes in T-ALL [23,37,38]. Mutations in NOTCH1 were identified in 50% of the 150 children
with T-ALL treated on the ALL-Berlin-Frankfurt-Munster (BFM) 2000 study, and among
them, 60% were in the heterodimerization domain, ~20% in the PEST domain, and ~20%
in both domains [39]. NOTCH1 mutational status correlates with the common cortical
immunophenotype [39]. Similarly, among 212 adult patients with T-ALL treated on the
GRAALL-2003 and -2005 trials, NOTCH1 and FBXW7 mutations were identified in 67% [40].
Genome-wide sequencing techniques have identified more than 100 different genes that
are mutated or rearranged in T-ALL [23,41]. Important among them are dysregulated
expression of transcriptional factor genes. T-ALL subgroups that correlate with the intra-
thymic stage of differentiation have been identified based on the unique and mutually
exclusive transcriptional factor involved [23].

IL7R and JAK mutations are present in 20–30% of T-ALL cases leading to increased
JAK/STAT signaling downstream of the IL7 receptor. These mutations are mostly observed
in early cortical (TLX3/TLX1) and ETP-ALL (HOXA, LMO2/LYL1) subgroups [37,42–45].
Increased IL7R signaling is also noted in cases without these mutations, indicating the
presence of other factors activating the IL7R pathway [37,46,47]. Episomal modifications
are present in more than 50% of T-ALL cases and include DNMT3A, EED, EZH2, KDM6A,
PHF6, and SUZ12 [37,48,49]. Non-germline somatic mutations in ribosomal protein genes
RPL5, RPL10, and RPL22 are seen in 20% of T-ALL cases [37,50]. Oncogenic microRNAs can
downregulate tumor suppressor genes such as IKZF1, PTEN, and FBXW7 [37]. Relapsed
T-ALL exhibits NT5C2 enzyme gene mutations leading to increased nucleotidase activity
and resistance to maintenance chemotherapy drugs 6-MP and 6-TG [37]. The cryptic fusion
NUP214-ABL1 resulting in epigenetic amplification of ABL1 has been described in 5–10%
of T-ALL cases [51,52] rendering them sensitive to inhibition by tyrosine kinase inhibitors
Imatinib, Nilotinib, and Dasatinib [53]. NUP214-ABL1-mediated proliferation is SRC family
kinase LCK-dependent and therefore dual ABL1/SRC kinase inhibitors Dasatinib and
Bosutinib may be better suited for the treatment of this subtype of T-ALL [54]. Rare cases
of BCR-ABL1 fusion have also been described [55,56].
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Table 1. Altered pathways, genes, and their frequencies in T-ALL [23,37,41].

Pathway Genes Frequency
(Children)

Frequency
(Adults)

NOTCH signaling NOTCH1
FBXW7

75%
~25%

>50%
11%

Cell cycle,
tumor suppression

CDKN2A/CDKN2B
CDKN1B, CCND3, RB1 >70% ~45–55%

Transcription TAL1, TLX1, TLX3, LMO2, LYL1,
HOXA, NKX2-1, BCL11B and others >90% >90%

Intracellular
signaling

JAK1, JAK3, STA5B, IL7R, KRAS,
NRAS, PTEN, PI3KCA, FLT3, ABL1 >60% >60%

Epigenetic
modification

DNMT3A, EZH2, TET2, IDH1, IDH2,
SUZ12, EP300, MLL2, WHSC1 >35% >60%

Ribosomal
function RPL5, RPL10, RPL22 >10% >10%

RNA translation mTOR, CNOT3 ~9% ~9%

PICALM-MLL10 is the most common fusion protein in T-ALL and is seen in 6–7% of
pediatric and adult T-ALL [57]. This fusion results in upregulation of HOXA genes [58] as
do MLL-AF6, SET-NUP214, and TCRB-HOXA [59,60]. It is interesting to note that PICALM
and HOXA aberrations are also seen in AML [61,62].

2.4. Prognostic Significance of Genomic Aberrations in T-ALL

NOTCH1 mutations correlate with good prednisone response, favorable MRD kinetics,
and long-term outcomes in pediatric patients treated on ALL-BFM protocols [39]. In the
FRALLE2000T study, among 220 children with T-ALL, the favorable prognostic signifi-
cance of NOTCH1/FBXW7 mutations was restricted to patients without RAS/PTEN muta-
tions [63]. In the UKALL2003 trial, among 162 pediatric T-ALL patients, outcomes correlated
with the number of mutations, with five-year OS 82, 88, and 100% for NOTCH1/FBXW7
wildtype, NOTCH1 mutated/FBXW7 wildtype, and NOTCH1/FBXW7 double mutated,
respectively [64]. However, in the UKALLXII/E2993 trial, among 88 adult T-ALL patients,
there was no significant difference in disease response based on NOTCH1 and FBXW7
mutations [65]. In the GMALL 05/93 and 06/99 trials, among 126 adult T-ALL patients,
NOTCH1 and FBXW7 mutations were associated with favorable outcomes but only with
low expression of ERG and BAALC [66]. High expression of ERG and BAALC has been
associated with an immature leukemic phenotype and the above result could indicate
a more differentiated leukemia that is susceptible to combination chemotherapy. In the
GRAALL-2003 and -2005 trials with 212 adult T-ALL patients, RAS/PTEN mutations
conferred poor prognosis and NOTCH1/FBXW7 mutations conferred favorable progno-
sis but only in the absence of RAS/PTEN abnormalities [40]. Other studies have also
shown high-risk disease and poor prognosis with PTEN mutations [67–69]. Mutational
loss of PTEN has been linked to resistance to pharmacological inhibition of NOTCH1 with
γ-secretase inhibitors [70].

3. Immunophenotypic Classification

The immunophenotypic characteristics of T-ALL lymphoblasts reflects the intra-
thymic stage at which differentiation arrest takes place. The WHO 2008/2016 criteria
for T-lineage assignment uses strong cytoplasmic (Cy) or surface (S) CD3 [10]. The EGIL
classification similarly defines T-ALL by Cy or S expression of CD3 and subgroups T-ALL
as follows [71]:

1. Pro-T: CD7+, CD2−, CD5−
2. Pre-T: CD2+, CD5+/−, CD8+/−
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3. Cortical-T: CD1a+
4. Mature-T: sCD3+, CD1a−

Another classification was based on immunophenotype of patients treated in three
consecutive GMALL studies, 05/93, 06/99, and 07/2003. T-ALL was defined by the
presence of cyCD3 and CD7 and was subclassified as follows [8]. Figure 1 depicts the
distribution of cases in these three studies.

1. Early T-ALL—sCD3−, CD1a−
2. Thymic T-ALL—sCD3−/+, CD1a+
3. Mature T-ALL—sCD3+, CD1a−

Although the latter classification is more commonly used for immunophenotypic
subtyping, the prognostic impact of either system is limited, with the exception of Early
T-ALL, the prognostic significance of which is described below.
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altered across different subtypes.

Early T Precursor Cell ALL (ETP-ALL)

ETP-ALL is a subtype of T-ALL with distinct genetic and immunophenotypic char-
acteristics. It comprises 12–20% of T-ALL cases in children and adults [72,73]. The im-
munophenotype of ETP-ALL is defined as CD1a−, CD8−, CD5−/weak along with the
expression of one or more myeloid or stem cell markers such as CD117, CD34, HLA-DR,
CD13, CD33, CD11b, and CD65 [72]. The leukemic cells derive from immature thymocytes
that retain stem cell and myeloid lineage characteristics. Defects in transcriptional factors
LMO2, LYL1, and HOXA and mutations in IKZF1 and MED12 and rearrangement of
NUP98 as well as myeloid malignancy mutations such as FLT3, WT1, EZH2, RAS, RUNX1,
and NPM1 are also seen [23,46,74–76]. In the GRAALL-2003 and -2005 studies, HOXA
overexpression was associated with poor prognosis in adults with ETP-ALL. The five-year
OS was 31% and 74% in HOXA positive and negative cases, respectively [77]. In this study,
among the non-ETP cases, there was no difference in outcomes, with five-year OS being
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66% and 57% in HOXA positive and negative patients, respectively. Compared to non-ETP,
ETP leukemic cells tend to lack molecular markers for polymerase chain reaction (PCR)
detection of minimal/measurable residual disease (MRD), be steroid resistant, and patients
are more likely to present with CNS and extramedullary disease and have poor response to
induction [78]. However, the use of response-based risk stratification and therapy intensifi-
cation was shown to abrogate the poor prognosis of adult ETP-ALL in the GRAALL-2003
and -2005 studies [79]. On the other hand, adults with ETP-ALL treated on the HyperCVAD
protocol had poor outcomes [73]. In children and young adults with ETP-ALL, although
earlier studies reported poor outcomes compared to non-ETP-ALL [72], with the current
use of intensified pediatric regimens, outcomes are comparable in both groups [80].

4. Risk Stratification and Measurable Residual Disease (MRD)
4.1. Children’s Oncology Group (COG) Risk Groups

The COG risk stratifies pediatric T-ALL as depicted below [81]. M1, 2, and 3 marrow
indicate <5%, 5–25%, and >25% blasts, respectively. CNS1 indicates <5 WBC/µL with no
blasts in CSF. MRD was determined by flow cytometry at a central lab.

Standard risk—Day 29 M1 marrow and MRD < 0.01%, CNS1, no testicular disease
and no steroid pretreatment

Intermediate risk—Day 29 M1 or M2 marrow and MRD >/= 0.01%, end of consolida-
tion MRD < 0.1%, any CNS/testicular disease status, any steroid pretreatment status

Very high risk—Day 29 M3 marrow or end of consolidation MRD >/= 0.1%

4.2. UKALL Risk Stratification

The UKALL 2003 study risk stratified ALL patients ages 1–24 years using three parameters [82]:

1. National Cancer Institute (NCI) risk criteria—NCI standard risk—age < 10 years and
WBC < 50,000/µL, NCI high risk—age ≥ 10 years and WBC ≥ 50,000/µL

2. Cytogenetics—MLL gene rearrangement, hypodiploidy and iAMP21 were considered
high risk

3. Response to induction therapy in age < 16 years—day 8 or 15 bone marrow with < or
>25% blasts

Based on above parameters, three clinical risk groups were identified:

1. Clinical standard risk—NCI standard risk with <25% blasts at day 15 after induction
and without high-risk cytogenetics

2. Clinical intermediate risk—NCI high risk with <25% blasts at day 8, all patients ≥ 16 years
irrespective of day 8 or 15 marrow response

3. Clinical high risk—high-risk cytogenetics as noted above, NCI high risk with >25%
blasts at day 8, NCI standard risk with >25% blasts at day 15

Clinical standard and intermediate risk patients were further stratified based on MRD
response (determined at 10−4 range as assessed by PCR of Ig or TCR gene rearrangement),
at the end of induction and consolidation.

1. MRD low risk—MRD undetectable before start of interim maintenance, with unde-
tectable or detectable at <0.01% MRD at the end of induction

2. MRD intermediate risk—MRD could not be measured or MRD positive at <0.01%
before start of interim maintenance

3. MRD high risk—MRD at least 0.01% at the end of induction

4.3. MRD

Although clinical risk factors such as age, WBC at presentation, presence of CNS dis-
ease [11], and genetic abnormalities such as RAS and PTEN mutations [40] have prognostic
significance, MRD remains the single most important prognostic indicator in pediatric and
young adult T-ALL as demonstrated in multicenter cooperative group trials [83,84]. MRD
can be measured by multi-color flow cytometry or polymerase chain reaction (PCR) of
clonal T-cell receptor (TCR) gene rearrangements with a sensitivity of 10−4 for both method-
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ologies [85]. Unlike B-ALL where a high percentage of pediatric and young adult patients
achieve early MRD negativity, more than 80% of T-ALL patients remain MRD positive
at the end of induction as demonstrated in the AIEOP-BFM-ALL 2000 study [86]. In this
study, the seven-year EFS was 91, 80, and 50% with negative MRD after induction, negative
MRD after consolidation, and persistent MRD after consolidation, respectively [86]. In
the UKALL 2003 study, there was no significance reduction in the five-year EFS in low
MRD-risk patients who received one versus two delayed intensification regimens, suggest-
ing that treatment reduction is feasible in this risk subgroup [82]. While end of induction
MRD may help identify patients eligible for reduced intensity therapy, end of consolidation
(EOC) MRD can identify patients at high risk of relapse who would benefit from allogeneic
stem cell transplant (HSCT) [86–89].

5. Frontline Treatment

While multiagent chemotherapy regimens remain the cornerstone of first line therapy
in children and adults, the regimens used, and the outcomes observed in T-ALL differ
between the two age groups and will therefore be discussed separately. Until the advent of
Nelarabine, B-ALL and T-ALL patients were treated similarly in clinical trials. For pediatric
ALL as a whole, five-year overall survival (OS) has improved from <20% in the 1960s to
>90% since 2000, and for T-ALL the 5-year OS reached ~80% in 2000 [11].

5.1. Children, Adolescents, and Young Adults (AYAs)

The past several decades has seen a steady improvement in the survival of children
and AYAs with T-ALL primarily due to incremental and strategic changes in multiagent
chemotherapy regimens in children and the adoption of pediatric-inspired protocols in
young adults [11,90]. We will discuss treatment in this age group in the context of the
following advances which are depicted in Figure 2. Table 2 summarizes the recent studies.

1. Intensification of induction and consolidation—This includes using a four-drug
induction regimen containing a steroid (dexamethasone or prednisone), anthracycline,
vincristine, and asparaginase and an augmented Berlin-Frankfurt-Munster (BFM)-
based consolidation regimen using cyclophosphamide [9,87,91–93].

2. Use of dexamethasone (DEX) instead of prednisone (PRED) during induction—Both
DEX and PRED as the steroid of choice during induction in pediatric ALL have been
studied in several trials. DEX being more potent and capable of CNS penetration, has
been shown to decrease overall and CNS relapse. In the AIEOP-BFM ALL 2000 study,
a significant survival benefit was observed with DEX for T-ALL patients [94]. Similarly,
in the UK MRC ALL97 and ALL97/99, DEX demonstrated a lower risk of isolated
CNS relapse and improved EFS compared to prednisolone [95,96]. Subsequently, the
UKALL 2003 used only DEX and the T-ALL patients had superior outcomes with
three-year EFS 86% and OS 90% [97]. The use of DEX was shown to have a higher risk
of infections and other toxicity [94] and warrants careful monitoring of these patients.
Although the COG AALL0434 reported excellent outcomes using PRED in T-ALL,
in this study, all intermediate risk (IR) and high risk (HR) patients received cranial
radiation, which confounds the lack of CNS relapse with PRED.

3. Omitting routine prophylactic cranial radiation (CRT)—In order to decrease tox-
icity and yet maintain efficacy, several cooperative group studies in the US and
Europe omitted prophylactic CRT and intensified systemic and intrathecal therapy
in pediatric ALL and have shown this strategy to be effective with low rates of CNS
relapse between ~3–8% in T-ALL patients and comparable to those who received
CRT [98–103]. The intensification strategies used varied between the different trials
and included combinations of triple intrathecal therapy, high dose methotrexate,
higher asparaginase doses, and use of DEX, but nevertheless, demonstrated that
prophylactic CRT can be safely eliminated in most pediatric patients with T-ALL.

4. In the context of using DEX and minimizing CRT, the COG AALL1231 combined
both these strategies [104]. This was a phase three trial that randomized T-ALL/LL
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patients ages 1–30 years, to a modified augmented BFM backbone with or without
Bortezomib during induction and delayed intensification (DI). Only the very high
risk (VHR) patients as defined by day 29 M3 marrow, EOC MRD > 0.1% or overt CNS
leukemia (CNS3), received cranial radiation. Following the MRC strategy, DEX was
used instead of PRED and an extra dose of PEG-ASP was added to induction and DI.
While standard risk (SR) and intermediate risk (IR) patients had improved three-year
EFS with Bortezomib (>90% vs. 85% for both groups, p < 0.05), VHR patients did
worse with Bortezomib with three-year EFS of 37% vs. 6% (p = 0.03) [104]. However,
the study closed early (when Nelarabine was shown to improve DFS in AALL0434),
and it was not sufficiently powered to determine the effect of adding Bortezomib to
chemotherapy backbone to the entire T-ALL cohort irrespective of risk status.

5. Nelarabine is a purine nucleoside analog, a prodrug of Ara-G, and cytotoxic to T
lymphoblasts. It has been shown to have single agent activity in relapsed T-ALL with
high CNS penetration and therefore has potential to decrease CNS relapse, but this
comes with the risk of CNS toxicity [105]. Therefore, Nelarabine should not be used
with IT chemotherapy and cannot be used in patients with active CNS disease, as
these patients will be receiving IT chemotherapy.

6. Addition of Nelarabine and comparison of high dose (HD) versus Capizzi (esca-
lating doses) methotrexate (C-MTX) were tested in a randomized fashion in the COG
AALL0434 study. Prior to COG AALL0434, the COGAALL0232 had demonstrated
that in B-ALL, HD-MTX and DEX improved outcomes compared to C-MTX and
PRED [106]. Since disease sensitivity to MTX can vary between B and T-ALL, the
COG tested these two strategies in T-ALL in the AALL0434 trial [80]. In addition,
since Nelarabine was shown to have superior activity in the relapsed/refractory
setting, use of Nelarabine in the upfront setting was tested in a randomized fashion.
As a result, AALL0434 had a 2 × 2 factorial design comparing HD-MTX to C-MTX
with and without Nelarabine added to the BFM backbone. From 2007 to 2014, this
study enrolled 1562 patients with T-ALL, ages 1–31 years, and used an augmented
BFM regimen with PRED as steroid and with a 2 × 2 randomization to receive either
an escalating dose of MTX (C-MTX) or HD-MTX. All patients with IR and HR disease
also received prophylactic CRT and were randomized to receive or not receive Nelara-
bine. In contrast to the B-ALL results from the COG AALL 0232, where HD-MTX
had improved outcomes, C-MTX produced better outcomes in T-ALL with five-year
DFS of 91% vs. 83%, p = 0.04 and OS 93% vs. 89%, p = 0.04 [107]. While the addition
of Nelarabine improved five-year DFS (88% vs. 82%, p = 0.03), the improvement
in five-year OS (90% vs. 88%, p = 0.168) did not reach statistical significance [80].
Overall, the five-year DFS was highest with C-MTX with Nelarabine and lowest
with HD-MTX without Nelarabine (91% vs. 78%, p = 0.01). Another significant
finding from this trial was the decrease in CNS relapse rate with Nelarabine (1.3%
vs. 6.9%, p = 0.0001). In the context of Nelarabine, the UKALL 14, is an ongoing
randomized phase III trial, where adult T-ALL patients are randomized to receive
standard chemotherapy with or without Nelarabine (NCT01085617). In addition, the
GRAALL-2014/T is a multicenter study of risk-adapted treatment for T-ALL in young
adults ages 18–59 years, evaluating the efficacy of a Nelarabine-based consolidation
and maintenance in high-risk patients (NCT02619630).

7. Role of allogeneic hematopoietic stem cell transplant (HSCT) in children with T-
ALL—with the high rates of long-term progression free and overall survival achieved
with contemporary, intensive pediatric regimens described above, the indications for
HSCT in children with T-ALL is decreasing. Persistence of MRD at 10−3 or 10−4 post
consolidation remains the primary indication for HSCT. While HSCT remains an
option in very high-risk (VHR) disease (Day 29 M3 marrow, CNS3) [103], many
experts recommend using EOC MRD as the primary indication for HSCT [108]. ETP-
ALL alone is not considered an indication for HSCT in children as long as they can
achieve MRD negativity post consolidation [108].
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8. Incorporating precision medicine strategies—ALLTogether1 is a prospective obser-
vational study designed by seven cooperative groups in Europe (NOPHO, UKALL,
DCOG, COALL, BSPHO, SHOP, and SFCE) using a common treatment protocol based
on a novel personalized algorithm using clinical characteristics, genetic changes, and
response to treatment for patients ages 1–45 years with newly diagnosed B and T-ALL
(NCT03911128). Total Therapy XVII is the equivalent study in the US enrolling B
and T-ALL patients with the objective of using novel precision medicine strategies
based on genomic features of the leukemia and tailoring treatment for individual risk
groups. The T-ALL cohort would receive, in addition to combination chemotherapy,
a targeted agent such as Dasatinib, Bortezomib, or Ruxolitinib depending on the
respective aberration detected (NCT03117751).
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Table 2. Recent studies in pediatric and AYA T-ALL.

No. Name of Trial
Years of Enrollment

No. of
T-ALL Patients
Age Range (y)

Steroid
Used Cranial Radiation Novel Agent

Used

DFS and OS
in T-ALL
Patients

Ref

1. CALGB 10403
2007–2012

71
17–39 y Pred * Yes—in all T-ALL None 3 y DFS 66%

3 y OS 73% [7]

2. COG AALL0434
2007–2014

1562
1–31 y Pred Yes—in IR and

HR groups ** Nelarabine 5 y EFS 83%
5 y OS 89% [80]

3. COG AALL1231
2014–2017

847
1–30 y Dex Only in VHR †

group
Bortezomib 3 y EFS 83%

3 y OS 86% [104]

4. NOPHO ALL2008
2008–2014

231
1–45 y Dex No None 5 y EFS 74%

5 y OS 75% [109]

5. Total therapy XVI
2007–2017

104
0–18 y Pred No None 5 y EFS 81%

5 y OS 87% [103]

* Pred–prednisone, Dex–dexamethasone ** IR—intermediate risk, HR—high risk † VHR—very high risk: Day 29 M3 marrow,
EOC MRD > 0.1%, CNS3.
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5.2. Use of Pediatric-Inspired Regimens in Young Adults

Inspired by the superior outcomes achieved in childhood ALL with intensive multia-
gent chemotherapy regimens, adult oncology groups adopted and prospectively studied these
regimens in young adult ALL and demonstrated both feasibility and efficacy [110–113]. The
Cancer and Leukemia Group B (CALGB) 8811 used a five-drug induction regimen similar
to CCG-192P and a BFM-based consolidation [111] with higher doses of cyclophosphamide
and earlier and more extensive use of L-asparaginase. Patients with T-ALL comprised
22% of the cohort and achieved a comparable three-year DFS (57%) to B-ALL patients.
Other groups including GRAALL and PETHEMA have shown similar outcomes using
pediatric regimens in young adult patients [114–117]. Encouraged by these positive results
demonstrating feasibility and efficacy, the CALGB 10403 sought to further demonstrate
that pediatric protocols can be safely administered to young adults by oncologists treating
adult patients [7]. From 2007 to 2012, CALGB 10403 enrolled 318 adolescent and young
adults (AYAs) ages 17–39 years, with B- and T-ALL, with the latter constituting 24% of
the cohort and used a regimen that was identical to the C-MTX arm of COG AALL0232
with four intensive courses that included induction, consolidation, interim maintenance,
delayed intensification, and a prolonged maintenance. PRED was used during induction
and DEX during delayed intensification and maintenance. Patients with T-ALL received
24 Gy prophylactic cranial irradiation. There were no significant differences in the out-
comes between B and T-ALL, with three-year DFS and OS being 66 and 73%, respectively,
for the whole cohort [7]. Most experts recommend a pediatric-inspired regimen as the
preferred choice in AYAs with Ph-negative B-ALL and T-ALL [118].

5.3. Older Adults with T-ALL

Clinical data on the outcomes of older adults with T-ALL are sparse. The largest study
of older adults with ALL was conducted by GMALL, in which 268 patients 55–85 years
with ALL were enrolled and treated with pre-phase, induction, consolidation, reinduction,
and prolonged maintenance, along with triple chemotherapy CNS prophylaxis. T-ALL
comprised 15% of the cohort. OS at five years was 23% for the whole cohort and im-
munophenotype did not correlated with OS [119].

HyperCVAD is commonly used in adults with ALL. In a study from MDACC,
40 patients with T-ALL, ages 18–78 years were treated with hyperCVAD + Nelarabine,
and three-year OS was 62%. Outcomes were not analyzed by age. When sub-grouped by
immunophenotype, ETP-ALL (n = 15), appeared to have worse outcomes with three-year
OS of 50%, although this difference was not statistically significant (p = 0.59), likely due
to low sample number [120]. Two studies published outside MDACC have reported poor
outcomes in adult T-ALL with hyperCVAD [121,122].

In the UKALLXII/ECOG2993, 356 out of 1643 ALL patients (22%), ages 15–59 years,
were designated as T-ALL based on intracytoplasmic CD3. T-ALL comprised 38 and 10%
of ALL in patients ages 20–29 years and >50 years, respectively, demonstrating the rarity of
this disease in the older patients [113]. The five-year OS was 48% for T-ALL of all ages and
not statistically different from B-ALL. However, in patients older than 50 years, five-year
OS was only 27% compared to >50% for <30 years.

In conclusion, older patients with T-ALL fare worse likely due to a combination of
adverse risk disease biology and higher complications from treatment related to underlying
comorbidities. More studies in this subgroup are required to tailor treatment to fit disease
and patient profile.

5.4. Role of Allogeneic Stem Cell Transplant in Adults with T-ALL

While persistent MRD is the primary indication for HSCT in children with T-ALL,
adults with high-risk T-ALL fare poor and therefore have a lower threshold to transplant.
Indications for HSCT in adults include high-risk disease at presentation (WBC > 100 k/µL,
CNS or other extramedullary disease, ETP-ALL, complex karyotype), poor response to in-
duction, persistence of MRD, and of course, relapsed disease with CR2 or beyond [123,124].
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The UKALLXII/ECOG2993 trial studied 356 T-ALL patients, of which, 110 had a sibling
donor. HSCT was associated with lower relapse (25% vs. 51%, p < 0.0001), higher non-
relapse mortality (22% vs. 12%, p = 0.02), and improved five-year OS (61% vs. 46%, p = 0.02).
Among 57 patients with ETP-ALL treated in the GMALL studies (05/93-07/03), ~60%
received HSCT in first CR and derived benefit with OS being comparable to non-ETP pa-
tients [75]. Intensity of conditioning regimen in older patients has been studied extensively.
The increased toxicity and NRM of myeloablative conditioning needs to be considered
against the potentially increased relapse rate with reduced intensity conditioning [125].

6. Relapsed/Refractory (R/R) Disease and Targeted Therapies

Both children and adults with relapsed disease have poor outcomes. OS rates in
children are ~25% [126,127] and similar in adults as well [128].

In children with relapsed disease, re-induction is recommended followed by HSCT
if the patient achieves remission [129]. The UKALL R3 multidrug reinduction regimen
produced better outcomes with Mitoxandrone compared to idarubicin with three-year PFS
and OS of 65 and 69%, respectively [130]. NECTAR (NCT00981799) was a phase 1 study
of Nelarabine with etoposide and cyclophosphamide in patients 1–21 years of age with
T-ALL and T-LL in first relapse. Among nine patients with T-ALL, 44% had a response rate.

The BCL2 inhibitor Venetoclax has been studied in combination with the BCL-X and
BCL-2 inhibitor Navitoclax in a phase 1 study in children and adults with relapsed/refractory
ALL, of which, 19 patients had T-ALL [131]. The overall CR was 60% and 28% pro-
ceeded to transplant or CAR-T cell therapy [131]. There are case reports of Veneto-
clax with Decitabine [132,133] and a case report of Venetoclax with chemotherapy [134]
demonstrating efficacy in patients with relapsed ETP-ALL allowing for consolidation
with HSCT. The authors themselves have successfully treated a young adult patient with
ETP-ALL who relapsed after myeloablative double umbilical cord transplant, achieved an
MRD negative remission with Venetoclax and Decitabine, and has proceeded to a second
HSCT with reduced intensity conditioning and a haploidentical donor. The combina-
tion of Venetoclax and Bortezomib was shown to be effective in a case series of three
patients, with two of them achieving cytogenetic remission and proceeding to HSCT at the
eight-month follow-up [135].

The COG AALL07P1 was a phase 2 trial in children with relapsed ALL and LL, of
which, 22 were T-ALL. Reinduction regimen included chemotherapy with Bortezomib.
CR2 rate was 68% in T-ALL [136]. Following this encouraging response, the COG
AALL1231 added BOR to induction in a randomized fashion and the results are as de-
scribed in Section 5.1.

Daratumumab and Isatuximab, monoclonal antibodies directed against CD38, have
safety profile in humans based on clinical studies in multiple myeloma [137,138]. Preclinical
models and case reports have demonstrated the efficacy of DARA in T-ALL. Based on these
data, a phase 2 study is underway to evaluate the safety and efficacy of Daratumumab
added to standard chemotherapy in patients ages 1–30 years with relapsed/refractory B
and T-ALL and LBL (NCT03384654). Primary endpoint is complete remission after one
cycle for T-ALL and two cycles for B-ALL. Isatuximab is being studied with chemotherapy
in phase 1/2 study (NCT03817320).

NUP214-ABL1 fusion resulting in ABL1 amplification has been described in 5–10%
of T-ALL cases [51,52], rendering them sensitive to tyrosine kinase inhibitors Imatinib,
Nilotinib, and Dasatinib [53]. The first case report of a young adult with NUP214-ABL1
positive T-ALL achieving complete remission with single agent Dasatinib was reported in
2009 [139]. Another case report of a pediatric T-ALL with ABL1 amplification achieving
complete remission after the addition of Dasatinib to chemotherapy was reported in
2012 [140]. Although rare, a single case was reported of a young adult with ETP-ALL with
NUP214-ABL1 fusion successfully treated with Dasatinib added to chemotherapy [141].
There are also case reports of T-ALL with BCR-ABL1 fusion [55,56].
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Given the preclinical efficacy of targeting cell cycle regulators CDK4 and 6 [142],
the COG launched AINV18P1 (NCT03792256). Patients aged 1–30 years with relapsed
B or T-ALL or LL receive the CDK4/6 inhibitor Palbociclib initially as a single agent
and subsequently with chemotherapy. Preliminary results demonstrate safety and the
expansion phase of this trial is ongoing [143]. Last but not the least, chimeric antigen
receptor (CAR) T cell therapy has now entered the realm of T-ALL. A phase 1 pilot study
of CD7 targeting CAR-T has demonstrated lack of fratricide and CR in five out of eight
enrolled patients with minimal toxicity [144].

Preclinical data demonstrate activation of the JAK/STAT signaling pathway in ETP-
ALL and the efficacy of the JAK inhibitor Ruxolitinib in xenograft models of ETP-ALL [45].
The PI3K/AKT/mTOR pathway is shown to be activated in T-ALL due to PTEN inacti-
vation, and inhibition of this pathway has demonstrated efficacy in preclinical models of
T-ALL [145]. Combined targeting of CDK and mTOR is being studied in a phase 1 trial of
Ribociclib with Everolimus and DEX in patients ages 1–30 years with relapsed/refractory
B and T-ALL (NCT03740334). While the development of non-specific γ-secretase inhibitors
was hampered by toxicity, the presenilin-1 (PSEN1) subunit γ-secretase inhibitor has
demonstrated activity in preclinical models of NOTCH-mutated T-ALL with minimal
toxicity and may have therapeutic potential [25].

7. Conclusions

Tremendous progress has been made in uncovering the genetic underpinnings of T-
ALL. Yet, several more defects remain to be discovered. Comparable progress in outcomes
has been achieved with combination chemotherapy regimens especially in children and
young adults, and yet, toxicities of these regimens remain significant. MRD has emerged
as the most prominent risk factor to act upon. As we enter the era of targeted therapies,
one can hope to improve outcomes further especially in older adults and decrease toxicity
and improve long-term quality of life for children and young adults. Attempts to increase
enrollment in clinical trials and eliminate racial and geographic disparities in access to high
volume centers are essential for improving outcomes and should be emphasized.
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