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Abstract 

Background: The combinatorial effect of multiple genetic factors calculated as a polygenic risk score (PRS) has been 
studied to predict disease progression to Alzheimer’s disease (AD) from mild cognitive impairment (MCI). Previous 
studies have investigated the performance of PRS in the prediction of disease progression to AD by including and 
excluding single nucleotide polymorphisms within the region surrounding the APOE gene. These studies may have 
missed the APOE genotype‑specific predictability of PRS for disease progression to AD.

Methods: We analyzed 732 MCI from the Alzheimer’s Disease Neuroimaging Initiative cohort, including those who 
progressed to AD within 5 years post‑baseline (n = 270) and remained stable as MCI (n = 462). The predictability of 
PRS including and excluding the APOE region  (PRS+APOE and  PRS−APOE) on the conversion to AD and its interaction 
with the APOE ε4 carrier status were assessed using Cox regression analyses.

Results: PRS+APOE (hazard ratio [HR] 1.468, 95% CI 1.335–1.615) and  PRS−APOE (HR 1.293, 95% CI 1.157–1.445) were 
both associated with a significantly increased risk of MCI progression to dementia. The interaction between  PRS+APOE 
and APOE ε4 carrier status was significant with a P‑value of 0.0378. The association of PRSs with the progression risk 
was stronger in APOE ε4 non‑carriers  (PRS+APOE: HR 1.710, 95% CI 1.244–2.351;  PRS−APOE: HR 1.429, 95% CI 1.182–1.728) 
than in APOE ε4 carriers  (PRS+APOE: HR 1.167, 95% CI 1.005–1.355;  PRS−APOE: HR 1.172, 95% CI 1.020–1.346).

Conclusions: PRS could predict the conversion of MCI to dementia with a stronger association in APOE ε4 non‑
carriers than APOE ε4 carriers. This indicates PRS as a potential genetic predictor particularly for MCI with no APOE ε4 
alleles.
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Background
Predicting disease progression to Alzheimer’s disease 
(AD) from mild cognitive impairment (MCI) is critical 
for identifying individuals for opportune intervention 
in clinical management and for optimization of target 
participants in clinical trials. The use of individualized 
genetic profile is thriving with a pursuit of precision med-
icine and is becoming approachable with shared large 
data, which may facilitate customized risk prediction of 
disease development and progression. The heritability of 
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late-onset AD (LOAD) is high, accounting for 60%–80% 
[1], and genome-wide association studies (GWAS) have 
identified multiple genetic factors associated with AD 
including the well-known APOE ε4 allele [2, 3]. The com-
binatorial effect of these multiple genetic factors can be 
calculated as a polygenic risk score (PRS). PRS has been 
widely evaluated in AD research regarding its value in 
AD risk prediction, its relations with conventional bio-
markers of AD, and its prediction of disease conversion 
from MCI to AD [4]. In particular, the predictability of 
PRS on disease progression from MCI to AD is substan-
tially affected by the presence of APOE ε4 allele, and PRS 
excluding the APOE region may or may not predict dis-
ease progression [5–8].

In this study, we aimed to investigate the predictability 
of PRSs including and excluding single nucleotide poly-
morphisms (SNPs) within the region surrounding the 
APOE gene, on MCI progression to AD, and the interac-
tion between PRS and APOE ε4 alleles. In addition, the 
predictability of hippocampal volume on MRI and amy-
loid PET were assessed, which are well-known predictors 
of disease progression. Furthermore, we identified SNPs 
used for PRS calculation and then performed enrichment 
analysis to explore the implicated biological pathways.

Methods
Participants
Data used in this study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) data-
base (http:// adni. loni. usc. edu/). ADNI was launched 
in 2003 as a public–private partnership. The primary 
goal of ADNI has been to test whether serial MRI, PET, 
other biological markers, and clinical neuropsychologi-
cal assessment can be combined to measure the pro-
gression of MCI and early AD [9]. In this study, patients 
with a diagnosis of MCI and with available GWAS data, 
older than 60  years at baseline assessment, and having 
at least one or more follow-up visits, were included. We 
focused on the genetic risk estimation of LOAD, in which 
the threshold cutoff of 60  years is commonly used. The 
primary outcome of this study was MCI conversion to 
dementia during a follow-up period up to 5  years post-
baseline. MCI was diagnosed when there was objective 
memory impairment but without meeting the criteria 
for dementia [9]. The MCI participants had Mini-Mental 
State Examination (MMSE) scores between 24 and 30, 
memory performance scores approximately 1 standard 
deviation below expected education-adjusted norms, and 
a clinical dementia rating score of 0.5.

Genotyping and imputation
Genotyping for ADNI was performed using blood DNA 
samples and a combination of Illumina GWAS array 

platforms (Illumina Human610-Quad BeadChip, Illu-
mina HumanOmni Express BeadChip, and Illumina 
HumanOmni 2.5  M BeadChip) [10]. APOE genotyping 
was separately conducted using previously described 
standard methods to yield the APOE ε4 allele-defining 
SNPs (rs429358, rs7412) [10, 11]. Using PLINK 1.9 (www. 
cog- genom ics. org/ plink2/) [12], we performed stand-
ard quality control (QC) procedures for samples and 
SNPs as described previously [13]: (1) for SNPs: SNP 
call rate < 95%, Hardy–Weinberg P value < 1 ×  10–6, and 
minor allele frequency (MAF) < 1%; (2) for samples: sex 
inconsistencies, and sample call rate < 95%. Then, to pre-
vent spurious associations due to population stratifica-
tion, we used multidimensional scaling analysis to select 
only non-Hispanic participants of European ancestry that 
clustered with HapMap CEU (Utah residents with North-
ern and Western European ancestry from the CEPH col-
lection) or TSI (Toscani in Italia) populations (Additional 
file 1: Fig. S1) [14, 15]. After QC procedures, we imputed 
un-genotyped SNPs separately in each platform using 
MaCH with the Haplotype Reference Consortium data as 
a reference panel [16, 17]. Following the imputation, we 
imposed an r2 value of 0.30 as the threshold to accept the 
imputed genotypes [18].

Imaging biomarkers
T1-weighted brain MRI scan was processed with Free-
Surfer version 5.1 to measure hippocampal and intrac-
ranial volumes [19]. For assessment of cortical amyloid 
accumulation, we used preprocessed (coregistered, 
averaged, standardized image and voxel size, uniform 
resolution)  [18F] florbetapir PET scans [20] and calcu-
lated the mean standardized uptake value ratio (SUVR) 
using a whole cerebellum reference region as previously 
described [21]. In our analysis, amyloid burden on PET 
was dichotomized as positive when SUVR ≧ 1.17 and 
negative when SUVR < 1.17 [22].

Calculation of PRS
PRSs were calculated using the software PRSice v2.3.1.e 
[23]. The GWAS summary statistics from Jansen et  al. 
were used as a base dataset [2] and the phase 3 genetic 
data from the 1000 Genomes Project [24] for non-His-
panic participants of European ancestry were used to 
calculate the linkage disequilibrium structure. To inves-
tigate the optimal P-value threshold to select AD-asso-
ciated SNPs, we iterated P-value thresholds of 1 ×  10–6, 
1 ×  10–5, 1 ×  10–4, 1 ×  10–3, 1 ×  10–2, 0.05, and 0.5. PRSs 
were separately calculated including and excluding SNPs 
within the 1  Mb-region surrounding the APOE gene, 
which was defined as a region from 1 Mb before rs429358 
to 1 Mb after rs7412. The numbers of SNPs used for PRS 
calculation depending on the various P-value thresholds 
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are shown in Additional file 1: Table S1. In addition, PRS 
was z-transformed based on the PRS distribution among 
amyloid PET-negative cognitively normal participants 
(n = 138).

Statistical analysis
All statistical analyses were made using the R v4.0.2 
software (www.R- proje ct. org). Comparisons of demo-
graphics between stable MCI, who remained stable at 
MCI during 5 years after baseline, and progressive MCI, 
who progressed to dementia within 5  years, were made 
with Mann–Whitney U test and Chi-squared test as 
appropriate.

To assess the predictability of PRS, hazard ratio (HR) 
of PRS in z-scores was obtained with Cox regression 
analysis. PRSs including and excluding SNPs within the 
1 Mb-region surrounding the APOE gene were analyzed 
and represented as  PRS+APOE and  PRS−APOE, respectively. 
PRS analyses were performed in all MCI patients, MCI 
carrying the APOE ε4 alleles, and MCI not carrying the 
APOE ε4 alleles, separately. Cox regression analyses of 
PRS are presented as Kaplan Meier curves. The inter-
action between PRSs and APOE ε4 carrier status was 
also assessed. To evaluate the predictability of MRI hip-
pocampal volume, the hippocampal volume was divided 
by the intracranial volume and z-transformed based on 
the distribution of values within amyloid PET-negative 
cognitively normal older adults. The HR of APOE ε4 car-
riers was compared to APOE ε4 non-carriers, and the HR 
of amyloid PET-positive MCI was compared to amyloid 
PET-negative MCI. All analyses were adjusted with age 
and sex, and additionally with MRI field strength in hip-
pocampal volume analysis. Statistical significance was set 
at P < 0.05.

Functional interpretation of SNPs used for PRS calculation
Functional mapping and annotation of SNPs used for 
PRS calculation was performed with the FUMA v1.3.6a 
software [25]. The GWAS summary statistics of SNPs 
were obtained from Jansen et al. [2]. All known SNPs that 
had r2 ≥ 0.6 with one of the independent significant SNPs 
used for PRS calculation, were also included for gene 
mapping using FUMA. Gene mapping was conducted 
by three methods, including positional mapping, expres-
sion quantitative trait loci (eQTL) mapping, and chro-
matin interaction mapping. In the positional mapping, 
SNPs were mapped to genes with a maximum distance 
of 10 kb. eQTL data from the eQTL catalogue (BrainSeq 
brain) [26], the Blood eQTLs (Westra et al. (2013) Blood 
eQTL Browser [27], Zhernakiva et al. (2017) BIOS QTL 
Browser [28]), the BRAINEAC (averaged expression 
of 10 brain regions including frontal cortex, hippocam-
pus, occipital cortex, temporal cortex, cerebellar cortex, 

inferior olivary nucleus, putamen, substantia nigra, thala-
mus, and intralobular white matter) [29], and the GTEx 
v8 Brain (cortex, frontal cortex BA9, hippocampus)[30] 
datasets were used for eQTL mapping, and only signifi-
cant SNP-gene pairs with a false discovery rate (FDR) 
cutoff of 0.05 were used. The chromatin interaction map-
ping was performed with data from the HiC (GSE87112) 
dorsolateral prefrontal cortex and hippocampus [31] with 
FDR cutoff of 1 ×  10–6 and promotor region window of 
250  bp up- and 500  bp down-stream of the transcrip-
tion start site. The possible biological processes (BP), 
molecular functions (MF), and involved cellular compo-
nents (CC) of mapped genes were explored by gene set 
enrichment analysis using data from the gene ontology 
(GO) [32, 33]. Statistical significance was set at adjusted 
P-value < 0.05.

Results
A total of 907 MCI participants from the ANDI cohort 
were assessed for study eligibility. After excluding 48 
participants younger than 60  years, 68 without follow-
up visit, and 59 without available GWAS data, 732 par-
ticipants were finally included for the analysis. Of the 732 
MCI participants, 270 MCI patients (36.8%) were con-
verted to dementia within 5  years (“progressive MCI”) 
and 462 MCI patients remained at MCI (“stable MCI”). 
There was no significant difference in age, sex, or edu-
cation level at baseline between the two groups. The 
progressive MCI group had a significantly higher propor-
tion of APOE ε4 allele-carriers, lower MMSE scores and 
higher clinical dementia rating sum of boxes (CDR-SB) 
scores at baseline (Table 1).

We examined seven P-value thresholds to find the opti-
mal threshold for selection of AD-associated SNPs, and 
the model with threshold P < 1 ×  10–5 showed the best 
predictability and was used for further analysis (Addi-
tional file 1: Table S2).

In the Cox regression analysis to assess the predict-
ability for the conversion of MCI to AD,  PRS+APOE (HR 

Table 1 Baseline demographics of  participants

Data are presented as median (interquartile range) unless otherwise specified
* Data unavailable for 1 subject

Stable MCI (n = 462) Progressive 
MCI (n = 270)

P-value

Age, years 73 (67–79) 74 (69–79) 0.109

Female, n (%) 179 (38.74) 105 (38.89) 1.000

Education, years 16 (14–18) 16 (14–18) 0.481

APOE ε4 carrier, n (%)* 196 (42.52) 182 (67.41) < 0.001

MMSE 28 (27–29) 27 (26–28) < 0.001

CDR‑SB 1 (0.5–1.5) 2 (1.0–2.5) < 0.001

http://www.R-project.org
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1.468, 95% CI 1.335–1.615) and  PRS−APOE (HR 1.293, 95% 
CI 1.157–1.445) both presented a significant association 
with the risk of disease progression (Table 2).  PRS+APOE 
showed significantly increased HRs in both MCI with 
and without APOE ε4 alleles. In particular, the risk asso-
ciation in MCI with no APOE ε4 alleles was stronger 
(HR 1.710, 95% CI 1.244–2.351) than MCI with APOE 
ε4 alleles (HR 1.167, 95% CI 1.005–1.355) (Table 2). The 
interaction between  PRS+APOE and APOE ε4 carrier sta-
tus in Cox regression analysis was also significant, with a 
coefficient of − 0.372 (Table 3).  PRS−APOE also presented 
stronger risk association in MCI with no APOE ε4 alleles 
(HR 1.429, 95% CI 1.182–1.728) than in MCI with APOE 
ε4 alleles (HR 1.172, 95% CI 1.020–1.346). However, the 
interaction between  PRS−APOE and APOE ε4 carrier sta-
tus was not significant, with a coefficient of − 0.174. HRs 
of  PRS+APOE and  PRS−APOE in MCI with and without 
APOE ε4 alleles are presented with Kaplan Meier curves 
(Fig. 1).

Next, we performed Cox regression analysis to assess 
the predictability of AD-related biomarkers such as amy-
loid PET positivity and hippocampal volume on MRI, 
separately, for the conversion of MCI to AD, using imag-
ing biomarkers as independent variables. The MCI par-
ticipants carrying the APOE ε4 allele showed increased 
HR (2.678, 95% CI 2.066–3.470) compared to the MCI 
not carrying the APOE ε4 allele. The hippocampal vol-
ume on MRI was related to a decreased risk of disease 
progression (HR 0.563, 95% CI 0.502–0.632), and the 
amyloid PET positivity predicted disease progression 
with HR of 7.449 (95% CI 4.199–13.215) (Table 2).

For gene mapping, all SNPs (n = 4967) that had 
r2 ≥ 0.6 with one of the independent SNPs (r2 < 0.05, 

n = 204) used to calculate PRS at a selection threshold 
of P < 1 ×  10–5, were mapped on 424 genes. Among the 
4967 SNPs, 3551 SNPs were used for positional map-
ping of 316 genes, 2898 SNPs for eQTL mapping of 264 
genes, and 73 SNPs for chromatin interaction mapping of 
19 genes. Among a total of 424 mapped genes, 133 genes 
were mapped by multiple independent significant SNPs. 
The mapped genes are listed in Additional file 2: Table S3. 
Gene set enrichment analysis yielded 16 significant GO 
BP pathways, 11 significant GO CC pathways, and no sig-
nificant GO MF pathways (Fig. 2).

Discussion
In this study, we demonstrated that  PRS+APOE was sig-
nificantly associated with an increased risk of progres-
sion to dementia in MCI.  PRS−APOE was also related to 
an increased risk of progression, albeit less pronounced. 
Notably, the association of PRS with progression risk was 

Table 2 Association of PRS, APOE ε4 status, hippocampal volume on MRI, and amyloid PET positivity with disease progression to 
dementia according to z‑scores in all MCI participants, MCI with APOE ε4, and MCI without APOE ε4

PRS+APOE: PRS including SNPs within the 1 Mb-region surrounding the APOE gene;  PRS−APOE: PRS excluding SNPs within the 1 Mb-region surrounding the APOE gene

Cox regression analysis of all variables were adjusted with age and sex, and additionally with MRI field strength in hippocampal volume analysis

Data unavailable for * 3 subjects, † 1 subject, †† 2 subjects, § 343 subjects, ∥191 subjects, and ¶ 152 subjects

HR (95% CI), P-value

All MCI
(n = 732)

MCI with APOE ε4
(n = 378)

MCI without APOE ε4
(n = 353)

PRS+APOE 1.468 (1.335–1.615)
2.30 ×  10–15

1.167 (1.005–1.355)
4.16 ×  10–2

1.710 (1.244–2.351)
9.30 ×  10–4

PRS−APOE 1.293 (1.157–1.445)
5.19 ×  10–6

1.172 (1.020–1.346)
2.47 ×  10–2

1.429 (1.182–1.728)
2.19 ×  10–4

APOE ε4 carrier status 2.678 (2.066–3.470)
9.70 ×  10–14†

NA NA

Hippocampal volume on MRI 0.563 (0.502–0.632)
 < 2.00 ×  10–16*

0.538 (0.461–0.628)
3.55 ×  10–15†

0.536 (0.435–0.660)
4.44 ×  10–9††

Amyloid PET positivity 7.449 (4.199–13.215)
6.61 ×  10–12§

5.011 (1.966–12.764)
7.31 ×  10–4∥

6.500 (2.914–14.495)
4.77 ×  10–6¶

Table 3 Cox regression analysis of interaction between PRS and 
APOE ε4 carrier status in association with disease progression 
from MCI to AD

PRS+APOE: PRS including SNPs within the 1 Mb-region surrounding the APOE 
gene

Coefficient Standard error P-value

Age 0.034 0.009 1.94 ×  10–4

Female 0.116 0.127 3.57 ×  10–1

PRS+APOE 0.531 0.162 1.10 ×  10–3

APOE ε4 carrier status 0.681 0.176 1.14 ×  10–4

PRS+APOE × APOE ε4 carrier 
status

− 0.372 0.179 3.78 ×  10–2
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stronger in APOE ε4 non-carriers than in APOE ε4 car-
riers in MCI, showing a significant interaction between 
 PRS+APOE and APOE ε4 carrier status on the conversion 
of MCI to dementia.

A previous study showed that the higher PRS, exclud-
ing chromosome 19 SNPs to avoid the APOE effect, 
could predict clinical progression to MCI/AD from non-
demented status, with unstandardized β value of 0.49 in 
logistic regression analysis. PRS including chromosome 
19 has also shown similar results with unstandardized β 

value of 0.43 [5]. In another study, while PRS with APOE 
is significantly associated with the progression risk from 
MCI to AD with HR of 1.59 (95% CI 1.31–1.78), PRS 
without APOE could not predict the progression with 
HR of 1.03 (95% CI 0.79–1.34) [6]. In the current study, 
we found comparable HRs for PRS with and without 
APOE and additionally confirmed different predictability 
between APOE ε4 carriers and non-carriers of the MCI 
participants.

Fig. 1 Kaplan Meier curves for disease progression from mild cognitive impairment to dementia of the lowest PRS group (1st quartile) and the 
highest PRS group (4th quartile).  PRS+APOE in MCI with (a) and without APOE ε4 (b).  PRS−APOE in MCI with APOE ε4 (c) and without APOE ε4 (d) are 
presented
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Here,  PRS−APOE showed less prominent association 
with disease progression risk than  PRS+APOE, which sug-
gests that APOE is the strongest known risk gene for 
LOAD and affects the predictability of PRS. The APOE 
ε4 carriers show a  three- to four-fold increase of risk of 
AD development compared to the APOE ε4 non-carriers 
[34]. In addition to the effect of APOE alone, other AD-
associated genes can interact with APOE to affect the 
disease course. A previous study has revealed that the 
SNP variants at FYN and RNF219 loci are associated 
with decreased LOAD age-of-onset in APOE ε4 non-
carriers but not in APOE ε4 carriers [35]. The RNF219 
variant is also related with the beta-amyloid (Aß) load 
in APOE ε4 non-carriers, but not in APOE ε4 carriers 
[35]. Alleles of the CETP gene could alter AD risk in an 
APOE-dependent manner [36]. In a meta-analysis, CLU 
is associated with AD only in APOE ε4 non-carriers and 
PICALM only in APOE ε4 carriers [37]. The SNPs used 
for PRS calculation in our study also included SNPs of 
CLU and PICALM, and the integrated effect of interac-
tion between genes containing SNPs of PRS and APOE 
could manifest as a stronger progression risk in APOE ε4 
non-carriers of our MCI cohort.

How the AD-associated genes impact AD pathology 
is not completely elusive, although the exact mechanism 

of the well-known APOE ε4 allele for amyloid clearance 
and aggregation and its association with AD-associated 
genes remain unclear [38]. Recent studies have found 
that the APOE ε4 allele is associated with Aß elevation 
and accumulation on PET, whereas PRS is more associ-
ated with faster cognitive decline in amyloid-positive 
status [39, 40]. This implies that APOE ε4 contributes to 
the initiation of amyloidopathy in an early stage, while 
other genetic variants are involved in disease progres-
sion. In addition, pathway analysis has shown that a large 
proportion of the AD-related pathways is associated 
with the APOE region. Furthermore, pathways such as 
the protein-lipid complex subunit organization and pro-
tein-lipid complex assembly have also been found to be 
involved in the AD risk independent of the APOE region 
[24, 39]. Again, these pathways were confirmed in our 
GO BP results. Another study investigating the contribu-
tion of five pathway-specific PRSs to AD risk has shown 
that the most involved pathway is Aß metabolism (29.6%) 
when the analysis included APOE variants, and immune 
response (45.5%) when the analysis excluded APOE vari-
ants [41].

However, the pathways related to APOE and PRS can-
not be distinguished clearly, and a complex interaction 
of Aß, tau metabolism, cholesterol/lipid metabolism [42, 

Fig. 2 Gene ontology biological pathways and cellular component pathways
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43], endosomal–lysosomal processing [44], neuroinflam-
mation [45, 46], cerebrovascular integrity [47, 48], and 
susceptibility to infectious agents [49] should be consid-
ered. We also observed that the genes corresponding to 
the SNPs used for the PRS calculation in this study were 
involved in diverse pathogenesis of AD, such as cho-
lesterol metabolism (APOE, CLU, ABCA7), tau toxic-
ity (BIN1, CD2AP, FERMT2, CASS4, PTK2B), immune 
response (CR1, CD33, MS4A, TREM2), and endocytosis 
(BIN1, PICALM, CD2AP, SPHA1, SORL1) [3, 50].

Another finding in our study was that  PRS+APOE and 
 PRS−APOE had relatively lower predictability for the con-
version of MCI to AD, compared to MRI and amyloid 
PET biomarkers, which implies a limitation of PRS use in 
disease stages when abnormalities on MRI and amyloid 
PET biomarkers have fully developed. However, PRS as a 
non-modifiable risk factor given at birth could offer early 
prediction, independent of the disease stage.

Limitations and strengths
There are a few limitations in the current study. The 
sample size was small, so replication in an independ-
ent cohort would be desirable. With a longer follow-up 
period, some stable MCI participants might convert to 
AD. There are several challenges for PRS utility in clini-
cal practice. Although the predictive utility of PRS has 
been validated in clinically well-defined and biomarker-
confirmed cohorts, the PRS risk estimation in clinical 
populations from the community could be affected by 
variables such as ethnicity, environmental factors, and 
mixed pathologies. In addition, PRS as an additive indi-
cator should be interpreted with caution to avoid ethical 
issues such as genetic determinism [51, 52]. Furthermore, 
bioinformatics tools for fast and simple data processing 
are needed for clinical PRS application in patients. With 
these issues being solved, PRS would be a useful bio-
marker based on the important genetic contributions in 
diseases and improve the cost and accessibility.

PRS is also an emerging tool for genetic risk estimation 
in AD. The predictability of PRS for disease progression 
has been reported with inconsistency depending on the 
inclusion or exclusion of APOE ε4 [4]. In this study, we 
not only investigated the predictability of PRS with and 
without APOE ε4, but also analyzed, for the first time, the 
interaction between PRS and APOE ε4. In addition, we 
present, for the first time, a comparison of the predict-
ability of PRS for disease progression, with conventional 
imaging AD biomarkers including PET-based amyloid 
deposition and MRI-based brain atrophy.

Conclusions
In summary, we demonstrated that PRS could predict 
conversion of MCI to dementia, showing a significant 
interaction between PRS and APOE ε4 carrier status, 
particularly stronger association in APOE ε4 non-carriers 
than in carriers. These results support that PRS can pre-
dict disease progression in MCI patients with no APOE 
ε4 allele, which has so far been the primary genetic risk 
factor used for clinical assessment. Furthermore, indi-
vidualized risk estimation with PRS may allow timely 
interventions such as life style modification for disease 
prevention, which may reduce the dementia risk despite 
high genetic risk [53].
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