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Abstract

Introduction
The World Health Organisation declared a global pandemic in March 2020. The impact of COVID-19
has not been felt equally by all regions and sections of society. The extent to which socio-demographic
and deprivation factors have adversely impacted on outcomes is of concern to those looking to
‘level-up’ and decrease widening health inequalities.

Objectives
In this paper we investigate the impact of deprivation on the outcomes for hospitalised COVID-19
patients in Greater Manchester during the first wave of the pandemic in the UK (30/12/19–2/1/21),
controlling for proven risk factors from elsewhere in the literature.

Methods
We fitted Negative Binomial and logistic regression models to NHS administrative data to investigate
death from COVID in hospital and length of stay for surviving patients in a sample of adult patients
admitted within Greater Manchester (N= 10,372, spell admission start dates from 30/12/2019 to
02/01/2021 inclusive).

Results
Deprivation was associated with death risk for hospitalised patients but not with length of stay. Male
sex, co-morbidities and older age was associated with higher death risk. Male sex and co-morbidities
were associated with increased length of stay. Black and other ethnicities stayed longer in hospital
than White and Asian patients. Period effects were detected in both models with death risk reducing
over time, but the length of stay increasing.

Conclusion
Deprivation is important for death risk; however, the picture is complex, and the results of this
analysis suggest that the reported COVID related mortality and deprivation linked reductions in life
expectancy, may have occurred in the community, rather than in acute settings.

Highlights

• Older age and male sex are predictive of longer hospital stays and higher death risk for
hospitalised cases in this analysis.

• Deprivation is associated with death risk but not length of stay for hospitalised patients.

• Ethnicity is associated with length of stay, but not with death risk.

• There is a social gradient in health, but these data would suggest that once in the care of an
NHS hospital in an acute health episode, outcomes are more equal.
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Introduction

Successive reviews of health inequality in the UK over the
past forty years [1–4], have revealed a widening gap in
health outcomes between the rich and the poor. Increasing
deprivation is typically associated with poorer health outcomes
[5–8]. The Marmot strategic review of Health Inequalities in
England conducted in 2010 concluded that the social gradient
in health identified first by Black [1], and subsequently by
Acheson [2], persists in the UK and that reducing health
inequalities is a matter of fairness and social justice. The
report showed that people in the poorest areas on average
had a life expectancy seven years below those living in the
richest areas and for healthy life expectancy - the proportion
of life lived without disability - the gap was seventeen
years.

Since the first Marmot Review, progress in addressing
health inequalities in England has been slow. A follow
up report in 2020, showed that both improvements in
life expectancy have stalled and that the social gradient
of health has become even steeper. In some groups life
expectancy has decreased in the past decade and the largest
decreases have been in the most deprived areas, with a
spatial element highlighting that deprived communities in
the North have suffered disproportionately compared with
wealthy areas of London. The gradient in healthy life
expectancy has also worsened, with the most deprived areas
experiencing more of their already shorter lives living with ill
health [4].

Marmot and Allen [9] cite this lack of progress as
a contributing factor to the poor state of health of the
population of England immediately even before the declaration
of a global pandemic in March 2020 [10]. Against this
backdrop of growing health inequality, the burden of COVID-
19 disease and mortality has also not been felt equally
across the UK. Kontopantelis et al. [11] reported geographical
and social patterns in excess mortality during the first
wave of COVID-19 in the UK (February-July 2020) with
excess mortality varying from 1 per 100,000 of population in
Wales, to 26 in 100,000 in the West Midlands. In Greater
Manchester, Marmot, et al. [12] reported that COVID-19
related mortality was 25% higher than that for England
as a whole. Life expectancy in the city region is lower
than the national average for England (GMHSCP 2015) and
indeed this spatial inequality can be found within Greater
Manchester [13]. For men, the difference in life expectancy
between the most and least affluent wards is 18 years, and
for women 13 years. This social gradient of life expectancy
is mirrored in mortality from COVID-19 with Marmot, et
al [12] reporting a stronger association between deprivation
and mortality in Greater Manchester than other areas in
England.

Background

Risk factors for severe and fatal COVID-19
infection

Evidence has emerged that there are multiple risk factors for
severe and fatal COVID-19 infection. Older age groups are

more at risk of hospitalisation and death from the disease,
and men are more likely to be at an increased risk of severe
infection [14, 15].

Drefahl et al. [16] linked recorded COVID-19 deaths in
Sweden up to May 2020 to high quality personal records.
Using individual level survival analysis, the authors showed
that being male, having lower income and lower education
levels all predict higher risk of death from COVID-19 even
after controlling for the others. They conclude that the virus
was, at that time, exerting an unequal burden on the most
disadvantaged.

Williamson et al. [17] conducted a large cohort study
of COVID-19 related deaths in England using primary care
data (N= 17,278,392 patient records, N= 10,926 deaths).
The authors found that male sex, greater age and deprivation
to be associated with increased mortality. Underlying health
conditions (diabetes, asthma and others) were also linked
with increased mortality as was ethnicity, with black and
South Asian people more likely to die. The study used only
records from one provider of general practice electronic health
record software and was conducted earlier in the pandemic.
Period effects were not examined and there was a high level
of missingness in the ethnicity characteristics of patients
included (26%). The analysis did not include any measure of
place.

Air pollution and COVID-19 have been linked in England
at the regional level [18]. Controlling for age, population
density and income, the authors showed positive association
between the concentration of air pollutants (specifically
nitrous oxides) and COVID-19 mortality. The study also
demonstrated that PM2.5 particulates were correlated with
increased case numbers.

Length of stay

Evidence regarding the predictors of length of stay in hospital
of COVID19 patients is mixed. Shryane et al. [19] investigated
the length of stay of patients admitted to intensive care (ICU)
between March and May 2020 using data from the COVID-
19 hospital surveillance system (CHESS) in England. Changes
in admission policy were found to be confounders of clinical
knowledge of the disease in this early stage of the pandemic
and the earliest admitted patients spent significantly longer in
ICU than those admitted after April. Sex and ethnicity were
not found to be related to the length of stay and there was
a non-monotonic association with age (noting that the study
also included patients who died in hospital which will have
impacted the length of stay for older patients given their higher
mortality risk).

Vekaria et al. [20] used four variables to predict length
of stay for hospital admissions in a hospital in Manchester
using different methods to model pathways to outcomes
(discharge/death). In addition to sex and age, the authors
found that the stage of the pandemic was predictive of the
total length of stay, and that patients admitted to ICU who
survive, have longer hospital stays.

Female sex, and kidney or liver disease were associated
with longer lengths of stay in a retrospective cohort analysis
of patients with COVID-19 in Hefei, China, in the earlier stage
of the pandemic, excluding patients who died [21].
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Research questions and motivation for this
research

Given the literature cited above linking deprivation with
poorer health outcomes, the documented excess mortality
experienced by the population of Greater Manchester and the
indications of within Manchester variation, there is a need
for further research to explore the social gradient of COVID-
19 health outcomes within GM and whether the nationally
researched picture of the determinants of COVID-19 outcomes
are relevant to the Greater Manchester context. The authors
secured access to administrative hospital data for the GM
population covering the course of the pandemic which provides
us with a valuable opportunity to study this issue in depth.
In this paper, we examine the effects of risk factors on
the outcomes of hospitalised COVID-19 patients in Greater
Manchester to assist in service planning as we transition to
the disease becoming endemic, and to inform policy targeted
at ‘levelling up’ between the most and least disadvantaged
communities.

We address the following research questions:

1. Was deprivation associated with the risk of death from
COVID-19 in Greater Manchester hospitals for patients
admitted between 30/12/19 and 02/01/21?

2. Was deprivation associated with COVID death rates
when measured at the local authority level for patients
admitted to Greater Manchester hospitals between
30/12/19 January and 02/01/21?

3. Did deprivation predict the length of stay for cases of
COVID-19 for patients admitted to Greater Manchester
hospitals between 30/12/19 and 02/01/21?

To answer these questions, we use NHS administrative data
to investigate severity of disease and death for patients
hospitalised with COVID-19 in 2020 in Greater Manchester.
We hypothesise that patients from more deprived areas who
survived hospitalisation were more likely to spend longer in
hospital, and that the risk of death would be associated
with deprivation and other demographic factors. In Data and
Methods we introduce the dataset used and the methods
applied. Following this the results are presented and the
findings discussed. Finally we appraise the strengths and
weaknesses of the work and draw conclusions.

Data and methods

Secondary uses service data repository

The data are drawn from the Secondary Uses Service (SUS),
a single repository for English healthcare data. The SUS data
are the source for the hospital episode statistics (HES). When
first produced the data quality is lower, however the data
are cleaned over time and retrospective samples such as ours
should be of the same quality as the equivalent HES data.
The information collected for SUS is used by commissioners
and providers of NHS care for non-clinical purposes including
healthcare planning, service commissioning, tariff payment and
policy development. Data Access was facilitated through the

Greater Manchester Health and Social Care Partnership1, the
devolved body responsible for health and social care in the
ten boroughs of the GM city region (see Figure 1). These data
contain records of all hospital spells (admissions to a hospital).
Each hospital spell is built from tables of hospital episodes (for
example a move from intensive carte to standard ward would
create a new episode). A single spell may relate to multiple
hospital episodes for the same patient.

The data contain only completed spells and so any patients
admitted during the study time frame who remained in hospital
past 24/06/2021 (the end of the data made available for this
work) are excluded.

We selected only those episodes for which the primary
diagnosis code is related to COVID-19, i.e., where the primary
diagnosis for the episode is either U071 or U072 in the ICD
coding system (suspected or confirmed COVID- 19 illness)2.
Where a unique patient ID re-occurred, the latest admission
was selected, and earlier admissions excluded. The final dataset
included N = 10,372 hospital spells. See Table 1 for the
breakdown of spells by district The dataset creation path is
shown in Figure 2 Descriptive statistics for the final sample
are presented in section 3.5.

When a patient was readmitted for a further spell within
the dataset time- frame, we selected only the latest spell
relating to that unique ID; this removed 2361 (13.7%) of
cases.3

To summarise, the inclusion criteria for the sample were
in-patient spells which were:

1. for patients who were hospitalised within the Greater
Manchester region between 30.12.2019 and 02.01.2021.

2. for patients who were registered with a general
practitioner within Greater Manchester.

3. for patients who had a primary diagnosis of COVID-19
signified by diagnostic codes U072 or U071.

4. for patients aged 18 or over on admission.

5. the final spell of any patient admitted multiple times for
COVID-19.

From this analytical sample of 10,372 spells, 3,268 resulted
in a death. Of the surviving 7,104 patients, we are unable
to determine if there were subsequent admissions for these
patients during which they died, or if they died outside of

1https://www.gmhsc.org.uk/. Greater Manchester (GM) is the second
biggest city region in the UK after London. It is divided into ten boroughs
of which the City of Manchester is one. GM contains some areas of
great affluence and others of strong deprivation; it is ethnically diverse.
Although we could not claim that GM is representative of the UK, it does
contain enough diversity to allow testing of the variables of interest.

2The data do not contain information on which variant of COVID
the patient has so we were not able to include such information in our
analyses. We discuss this issue in section 5.

3If we include all admissions, then we would be breaking the
assumption of independent observations. Another alternative would have
been to combine the admissions for each patient into a single record.
However, this too was flawed as it made the effective assumption that the
interim period outside of hospital was neutral and there are good reasons
(the readmission) for assuming that this was an incorrect assumption.
We acknowledge that the choice to only use the latest spell was also
imperfect, but it was the least imperfect of all the choices as it avoided
the structural censoring of the death outcome (if we had chosen an earlier
spell).

3
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Figure 1: Schematic map of greater Manchester’s ten boroughs

Downloaded from: https://www.greatermanchester-ca.gov.uk/what-we-do/digital/get-online-greater-manchester/greater-
manchester-wide-support/ 14th Jan 2024.

Table 1: Number of cases (spells) in study sample by local
authority district

Local authority district Number of spells

Bolton 1053
Bury 691
Manchester 1658
Oldham 1018
Rochdale 867
Salford 898
Stockport 1014
Tameside 1032
Trafford 786
Wigan 1355

Total 10372

hospital after their discharge from a spell within the data.
This is a limitation of the SUS dataset - it contains only
finished spells and so patients who are still in hospital who were
admitted within the timeframe, do not appear in this analysis.
Furthermore, it is not possible to identify cases in which
COVID was acquired post hospitalisation, nor is it possible
to detect cases (first or subsequent admissions) where the
primary admission reason is for non-COVID related reasons,
but there was also a COVID infection present.

For the length of stay models, we included all cases in the
models. We included a dummy variable for whether the patient
died during the spell (the ‘death’ variable) This balances the
need to avoid selection biases whilst avoiding distorting model
with an exogenous variable.

Outcome variables

Death in these data is in fact all-cause mortality (i.e., death
in hospital from any cause)4 as we do not have the death
certificates from which to select only patients for whom the
cause of death is recorded as COVID-19. The patients selected
into this analysis were all admitted with a primary cause of
COVID-19 or suspected COVID-19 so we assume that for most
patients this would also be the cause of death in the event of
their dying in the hospital.5 This is derived from a mode of
discharge variable in the SUS data (for which death is one of
the possible values).

Length of stay (LOS) is computed using the date difference
between the admission and discharge dates for the spell.
Zeroes were allowed as this is valid value (and the number
of zeroes is a small proportion of the overall sample; 5.8%).
Survival is determined from the discharge destination field
within the SUS data. Patients discharged into any kind of

4In the paper, henceforth we will use the word “death” to mean “death
in hospital from any cause after admission with a primary diagnosis of
COVID-19”.

5The criteria for inclusion as a covid hospitalisation required that one
of two ICD codes relating to a covid diagnosis be listed as the primary
admission code. This means that to the best of our knowledge and the
capability of these data, the admission reason was for an acute covid. At
the time of the work, there was some inconsistency in how deaths were
recorded on death certificates and ultimately, the UK government moved
to recording as COVID deaths as any death within 28 days of a positive
test. The exact cause of death for each patient is thus somewhat unclear
and so it is a working but reasonable assumption that those patients
dying during a hospital spell for COVID-19 would have had COVID-19
recorded as the cause of death – of course some of these patients may
have died with covid, rather than of covid, but this is not something we
can extract from the data.

4
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Figure 2: Flowchart of dataset sample selection

residential or home care are counted as surviving, and this
date of discharge is considered to be the end of the hospital
stay. We did not investigate subsequent deaths of patients
hospitalised with COVID-19 as we do not have data on deaths
outside the GMHSCP acute settings.

Covariates used in the analysis

In national level studies in the UK and elsewhere, age, sex
and the week of admission (stage of the pandemic) have been
shown to be important for length of stay [19–21]. Deprivation
has been associated with increased COVID-19 mortality, as
has ethnicity, age, underlying health conditions and sex [14–
17]. Air quality has been associated with increased mortality
[18]. Marmot, et al. [12] write that there are area differences in
mortality in Greater Manchester and so for this reason, local
authorities are included in the model for death. A timeline
of relevant pandemic restrictions for Greater Manchester is
included in Appendix A.

The variables used in the analysis have been selected based
on existing literature and are detailed in Table 2. We compared
Variance Inflation Factors and Pearson’s Correlations for all
variables and did not find any multi-collinearity.6

We included a variable to capture the timing of the
admission, splitting the timeframe analysed into three distinct

6Defined as no Pearson’s correlation of greater than 0.7 and no
Variance Inflation Factor above 2

periods reflecting the changes in treatment protocols. Dummy
variables for three periods to indicate when the admission
occurred. Period 1 (the reference category) relates to all
spells completed before 14/04/2020 (update of guidance
on proning7). Period 2 relates to all spells completed after
14/04/2020 but before 16/06/2020 when Dexamethasone was
approved [24]. Period 3 relates to spells completed after 16
June 2020. Spells are categorised into these periods by end
date to capture the changes in treatment that a patient would
have experienced. The guidance on proning and the approval
of steroidal treatment for COVID-19 had a marked impact on
death and recovery from the disease [25].

Modelling

We fitted a logistic regression model to the data to
investigate the association between deprivation and death
whilst controlling for known risk and demographic factors.
Coefficient estimates, significance at the p<0.05 level,
standard errors and 95% confidence intervals are presented
in Tables 5 to 8.

To model length of stay we use a Poisson model as the
data although theoretically continuous have the properties of a

7‘Proning’ refers to a medical intervention whereby a patient is turned
to lie face down for a period of time to improve the efficacy of mechanical
ventilation.

5
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Table 2: Variables used in the analysis

Variable Mean Std Dev Missing Notes

Length of Stay (LOS) 10.90 14.50 0 Difference between the admission and discharge dates, in
whole days. Descriptives are for patients who survived,
N= 4,350. Source: SUS.

Died 0.32 – 0 Mode of discharge. 1= died, 0= survived. Source: SUS.
Deprivation 3.80 2.80 0 Index of Multiple Deprivation (IMD) decile for the

respondent’s LSOA as per registered address. A higher
decile indicates lower deprivation. Source: English Indices
of Multiple Deprivation [22]

Age 68.6 16.80 0 Age in years at the date of admission. Source: SUS.
Sex 0.44 – 0 Binary variable. 0=Male, 1=Female. Source: SUS.
Ethnicity – – 471 Ethnicity variable collapsed to four categories (White,

Black, Asian, Other) due to small numbers. (Missing cases:
471) Source: SUS

Home air quality (AQ) 0.04 2.61 0 Index constructed by summing the standardised mean
annual NO2, SO2 and PM10 scores in µ gm3 for each
LSOA. Source: AQ domains of the Access to Healthy
Assets and Hazards Index [23].

Hospital site air quality (AQ) 0.71 2.86 0 As Home AQ but based on the site of the hospital. Source:
AQ domains of the Access to Healthy Assets and Hazards
Index [23].

Count of diagnoses 2.91 0.73 0 The natural log of the count of diagnoses is used as a proxy
for co-morbidity. All cases had a minimum of 1 diagnosis
and so there are no zero counts. Used as proxy for greater
co-morbidities. The log of the count is used in this analysis.
Source: SUS.

Timing of admission – – 0 Period 1 (reference) relates to all spells completed before
14/04/2020. Period 2 relates to all spells completed after
14/04/2020 but before 16/06/2020. Period 3 relates to
spells completed after 16 June 2020.

Multiple admission – – 0 Indicator that the person has had at least one previous
admission for COVID-19. Spells for patients have been
subsequently readmitted within the data have been
removed. 1= final admission of multiple admissions for this
patient, 0= one admission only.

Local Authority – – 0 LA name (dummy variables), included in the model for
death only.

count variable, we found overdispersion in exploratory Poisson
models and so we fitted a Negative Binomial (NB) regression
model to the data to account for this. The α parameter was
estimated using an auxiliary ordinary least squares regression
without a constant in line with [26].

For area effects, we modelled death rates of hospitalised
patients at the Middle Super Output Area (MSOA) and Local
Authority (LA) level using mean IMD deciles (aggregated from
the lower super output area level), mean age from mid-year
population estimates as of 2019, and the proportion male
residents from mid-year population estimates as predictors. For
the LA model, we were also able to include the proportion of
Black, Asian and other ethnic minorities based on the 2011
census data.

For both death and length of stay models, the explanatory
variables in denoted in Table 2 were included as covariates.
They were then removed singly in reverse order of p-values
until only significant coefficients remain. The reported models
are these final models.

Truncation in the data

The data are structurally truncated. Only completed hospital
spells are included within the dataset and so admissions at
the end of the data period are likely to be omitted due
to this truncation effect. This introduces a skew into the
data, reducing the mean length of stay for later months.
It is therefore important to conduct sensitivity analysis to
enable use to make informed decisions regarding mitigating
the impact this structural truncation on model estimates.

We conducted this sensitivity analysis by the following
procedure. We removed cases admitted in the ten days prior
to the last admission within the data. This we repeated
at intervals of ten days. We observed that most parameter
estimates were stable to this change in the data; however,
the estimation of the period 3 effect was sensitive to the
inclusion of later spells. Assessing the mean length of stay for
the remaining data, we determined that the models and mean
values stabilised after 170 days of removal as indicated by the

6
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Figure 3: Length of stay by dataset size

Figure 4: Length of stay by admission date

vertical line in Figure 3. The analysis therefore only includes
spells admitted between 30/12/2019 and 02/01/2021. This
has the additional benefit of removing the exogenous effect of
vaccination on both length of stay and death. As we do not
have vaccination status for individuals within the data, we are
unable to control for this directly.

The length of stay is time dependent. For admissions early
in the period, there were very low numbers with some long
lengths of stay. The length of stay then became more stable as
the number of cases increased - see Figure 4. The spike shown
in these data relates to 25/08/2020. For this day, only two
admissions are included in the dataset, one of which resulted
in a length of stay of 79 days, the other 1 day. The mean

length of stay for August admissions was 12.5 days and the
mean number of admissions included per day was 5 admissions.
This spike therefore represents the impact of an outlier in the
data.

Results

Descriptive statistics and missing data

Low numbers necessitated the collapse of ethnic coding into
four broad categories. Men outnumber women in the data
across all ethnic groups as shown in Table 3.

7
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Table 3: Sex by ethnicity. N= 10,372

Sex White Asian Black Other Missing

Female 3,570 470 137 93 247
Male 4,397 679 203 142 434
Total 7,967 1,149 340 235 681

Table 4: Deaths by sex, N= 10,372

Sex
Died? Male Female Total

No 3,872 3,232 7,104
Yes 1,983 1,285 3,268
Total 5,855 4,517 10,372

Table 5: Date of spell conclusion

Date of spell Period Number of spells
conclusion

Before 14/04/2020 1 1,547
Between 14/04/2020
and 16/06/2020

2 2,651

After 16/06/2020 3 6,174

The mean age for men (68.1 years [std 16.0]) is lower
than for women (69.1 years [std 18.0]). 33.8% of men died,
compared with 28.4% of women (see Table 4). Of the 10,372
unique patients, 9,560 have only one recorded hospital spell
in the dataset. 751 patients have two spells, and 61 patients
have three or more spells. The death rate for spells which were

Table 6: Length of stay by age category for survivors

Age range Mean Std dev Count

Under 50 7.0 12.6 1,443
50-64 10.3 19.1 1,948
65-75 12.2 17.4 1,327
>75 13.6 13.0 2,386

the last in a series of more than one admission for a COVID-
19 infection was lower (0.26) than for first admission spells
(0.32). 6,174 (57%) of the spells concluded in period 3 (see
Table 5).

The mean length of stay for was 10.9 days (std 14.5). The
distribution of lengths of stay is shown in Figure 5 where 29
patients with stays over 100 days are removed for clarity; the
maximum length of stay within the data is 321 days. This
distribution includes the length of stay for patients who died
in hospital.

Modelling risk of death

Table 7 shows the results of the logistic model for risk of death.
Shryane et al. [19] identified a non-monotonic relationship
between length of stay in the Intensive Care Unit and age.
Using the same age banding categories as Shyrane et al. for
comparison, the same effect does not appear to be present
when considering total length of stay for survivors of a hospital
spell (see Table 6). Age is associated with increased likelihood
of death. We also tested age categories as dummy variables to
assess non-linear and non-monotonic relationships and found
none.

Figure 5: Distribution of length of stay, all cases, capped at 100 days for clarity (N= 10,337)

8
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Table 7: Model 1: Logistic regression model for death. N= 10,372

Coef. Std Err. 95% Confidence interval
[0.025 0.975]

Intercept −5.435 ∗ 0.181 −5.789 −5.081
Multiple admissions 0.288 ∗ 0.088 0.115 0.461
Sex −0.395 ∗ 0.047 −0.487 −0.302
Age 0.055 ∗ 0.002 0.052 0.059
NumDiag Ln 0.394 ∗ 0.036 0.324 0.464
IMD decile −0.022 ∗ 0.008 −0.039 −0.006
Period2 −0.563 ∗ 0.074 −0.708 −0.418
Period3 −0.589 ∗ 0.066 −0.718 −0.460

∗Indicates significant at the p <0.05 level. AIC: 11,188, pseudo R2= 0.140.

The parameter estimates of the model show that increased
co-morbidity, age and male sex are associated with increased
likelihood of dying. Spells ending in period 1 were more likely
to result in death than 2 and 3.

Residing in a higher IMD decile (less deprived) was
associated with a lower risk of death. Spells which were re-
admissions for a COVID-19 infection, were less likely to result
in death.

Air quality at either the home or provider site was not
significant in the model for death, nor were the ethnicity
dummy variables.

Model 1A (in Table 8) shows the impact of including
local authorities as dummies within the model. Living in
Bury, Wigan or Tameside was associated with increased
death risk on hospitalisation compared with the reference
category Manchester, the most deprived area. The measure
of deprivation is significant; residing in a higher centile
(less deprived area) is associated with decreased death
risk.

The AIC value for model 1A is marginally lower than for
Model 1. Other parameter estimates are not sensitive to the
inclusion of the local authority and so we determine that there
is evidence for place-based effects even after controlling for
deprivation.

Modelling death rates at the local authority
level

Table 9 shows the results of aggregate level modelling at
the LA level for death risk, using an ordinary least squares
approach. The model explains 64% of the variance in death
rates between local authorities.

Local authorities with a higher mean IMD decile of the
constituent LSOAs (i.e., composed of relatively less deprived
geographical units in higher deciles) experienced a lower death
rate for hospitalised patients when controlling for the mean
age of residents. The proportion of resident males and ethnic
make-up were not significant in this model.

Table 8: Model 1A: Logistic regression model for death including local authority names, N= 10,372

Coef. Std Err. 95% Confidence interval
[0.025 0.975]

Intercept −5.526 ∗ 0.186 −5.891 −5.160
Bolton 0.140 0.096 −0.049 0.329
Trafford −0.122 0.115 −0.347 0.103
Wigan 0.410 ∗ 0.089 0.235 0.584
Salford −0.100 0.103 −0.302 0.102
Tameside 0.268 ∗ 0.095 0.083 0.454
Oldham 0.073 0.098 −0.119 0.266
Stockport −0.178 0.103 −0.380 0.023
Rochdale 0.195 0.101 −0.002 0.393
Bury 0.268 ∗ 0.110 0.052 0.483
Multiple admission 0.293 ∗ 0.089 0.119 0.467
Sex −0.399 ∗ 0.047 −0.491 −0.306
Age 0.055 ∗ 0.002 0.051 0.059
NumDiag Ln 0.395 ∗ 0.037 0.324 0.467
IMD decile −0.019 ∗ 0.009 −0.038 −0.001
period2 −0.590 ∗ 0.075 −0.736 −0.444
period3 −0.629 ∗ 0.066 −0.759 −0.499

∗Indicates significance at the p <0.05 level. AIC: 11,139, pseudo R2 = 0.141.
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Table 9: Model 3: Ordinary least squares model for death rate in hospitalised patients at the Local Authority aggregate level,
N= 10 authorities

Coef. Std Err. 95% Confidence interval
[0.025 0.975]

Intercept −0.4687 0.234 −1.022 0.085
imd_dec_mean −0.0389 ∗ 0.013 −0.07 −0.008
mean_ages_LA −0.0247 ∗ 0.007 0.008 0.041

∗Indicates significant at the p < 0.05 level, R2 = 0.642.

Table 10: Model 2: Negative binomial regression model for length of hospital stay for all patients, N= 9,691

Coef. Std Err. 95% Confidence interval
[0.025 0.975]

Intercept −0.5668 ∗ 0.057 −0.678 −0.455
died −0.1504 ∗ 0.022 −0.193 −0.108
sex −0.1273 ∗ 0.019 −0.165 −0.09
age 0.0014 ∗ 0.001 0.000 0.003
NumDiag Ln 0.7914 ∗ 0.014 0.764 0.819
period2 0.5106 ∗ 0.032 0.448 0.573
period3 0.5331 ∗ 0.029 0.477 0.589
Asian −0.0347 0.032 −0.097 0.028
Black 0.1706 ∗ 0.054 0.065 0.276
Other 0.3109 ∗ 0.064 0.185 0.437

∗indicates significant at the p < 0.05 level, α = 0.79.

We used the same approach to modelling death rates at
the MSOA level, but parameter estimates were unstable using
this smaller geographical unit.

Modelling length of stay

Table 10 shows parameter estimates for the negative binomial
regression model for length of stay in hospital, considering
all patients (model 2). Given the results of model 1 and
1A we tested the inclusion of local authority within the
analysis. The inclusion of local authority destabilised the model
estimates and no clear pattern of association emerges from
their inclusion with very small effect sizes for any which do
meet the significance criteria. We have therefore excluded
these variables from this part of the analysis.

The key findings were:

• Age in single years is significant in this model, older
patients have longer spells in hospital. Based on prior
work in the area [19],we also tested age bands for a non-
monotonic association with the length of stay (Under
50, aged 50-64, aged 65-74 and aged 75 and over) and
found none.

• The length of stay was longer for patients in period 2
than period 1, but no longer again for those admitted
during period 3.

• Being a member of some ethnic groups was associated
with longer lengths of stay, Black and Other ethnic
groups experienced longer lengths of stay compared with
their White and Asian heritage counterparts. However,

being of Asian heritage was not associated with longer
lengths of stay compared with white ethnicity patients
however8.

• Co-morbidity was predictive of longer spell length.

• Deprivation, home air quality, provider site air quality
and multiple admission were not associated with
length of stay. We tested for non-monotonic effects in
deprivation by including dummy variables for deprivation
quintile but this also did not yield significant results.

• Provider site air quality was associated with longer stays
where the index measure indicates poorer average air
quality.

Sensitivity to model selection was tested by fitting Ordinary
Least Squares and Poisson9 models to the data. The variables
identified as significant within Model 2 remained significant in
the alternative approaches.

Discussion
Our study suggests that patients who were female in Greater
Manchester were at lower mortality risk and had shorter
hospital stays when infected with COVID-19. Age was also

8For cases where ethnicity was missing, we excluded the case from the
analysis reducing the number of valid cases to N=9,691 (missing ethnicity
variable = 861, 8.0%).

9We computed the likelihood ratio test statistic to compare Poisson
and Negative Binomial models and confirmed that correcting for
dispersion by using the Negative Binomial case gave a better fit to the
data at the 0.001% confidence level.
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another key risk factor with older age groups more likely to
die from their COVID-19 infection.

The change in treatment protocols for COVID-19 was
measured here by a marker for hospital discharge or death date.
In both models, period effects are significant. Although there
have been clinical studies into the effectiveness of different
interventions, leading to evidence for their implementation,
retrospective cohort studies have not (at the time writing)
sought to control for period effects in this way, so the evidence
here clarifies the pandemics progression. Death risk reduced
as the pandemic progressed however length of stay increased.
This may reflect a change in outcome for patients who with a
similar level of disease in March might well have died, but who,
when presenting a few months later, survived, albeit with a
longer hospital stay on account of the severity of their disease.
The alternative interpretation is that it was a capacity effect in
period 1 where patients may have been sent home sooner than
hospital norms and as the overall levels dropped then norms re-
emerged seems unlikely as in Manchester although hospitals
did fill up, the additional capacity Nightingale hospital was
never actually used.

In this analysis, we segmented the time in hospital by key
treatment change dates. Many other dates may have been
relevant to treatment and disease progression. Although we
can see clear period effects here associated with the dates
chosen, we cannot necessarily link the specific changes in
guidance to the improvement of outcomes using these data.
The reduction in the risk of death with period, may also have
reflected changes in other pandemic measures and population
behaviours which shifted throughout the time of the study.
Disease outcomes improved as the pandemic progressed in
2020 and this is likely linked to a better understanding of the
nature of the virus and better experience of treating patients
with severe disease.

Co-morbidity was important for death risk and for
length of stay. Those patients with higher co-morbidity were
more likely to die, and those who survived stay longer in
hospital. Williamson et al. [17] showed an association between
underlying health conditions and increased mortality risk
from COVID-19, and Guo et al. [21] demonstrated a link
between co-morbidity (specifically forms of kidney and liver
disease) with longer lengths of stay for hospitalised COVID-
19 patients. The results of our work are consistent with these
previous studies and the results are consistent with patients
who have underlying conditions being more likely to die,
and more likely to develop severe disease requiring lengthy
hospitalisation.

Multiple admissions were predictive of death, and this is to
be expected; patients who have attended and been admitted to
hospital multiple times for their COVID-19 infection are likely
to be experiencing severe disease and they are therefore more
likely to die. The multiple admission variable was not however
associated with the length of stay in Model 2. It may appear
surprising at first sight, but there is no reason a priori to expect
the two response variables to have the same relationship with
multiple admissions. Indeed, one might expect the relationship
between multiple admissions and length of stay to be partially
structural and/or affected by extraneous variables. It may be
that the patients who are admitted multiple times present
atypically and so appear well enough to be discharged but
then deteriorate sufficiently for a readmission - potentially of

differing lengths and severity at each time. It may also be that
their home environment is not conducive to a rapid and secure
recovery, leading them to be re-admitted. This ‘bounce-back’
pattern may therefore be too noisy to allow a clear signal to
be distinguished in the data.

In the model for death, ethnicity does not feature, however
Black and Other ethnic groups stayed longer in hospital than
their White and Asian counterparts. Apea et al. [27] studied
length of stay and outcomes for patients in East London
and reported that adjusting for risk factors, Asian and Black
heritage patients were more likely to die and had greater acute
disease severity resulting in longer hospital stays. The work
here demonstrates the same effect in for Black patients for
length of stay only and the link between Asian ethnicity and
more severe disease within the hospitalised population was
not replicated in this Greater Manchester study. The same
pattern of results was demonstrated by Alnababteh et al.
[28]. Those authors retrospectively analysed adult patients in
hospital in the same timeframe in the United States. Black
patients’ hospital length of stay was 21% longer compared with
other ethnicities, but there was no difference found between
ethnic groups for mortality. This replication of effects across
contexts and healthcare systems is interesting and warrants
further investigation.

Deprivation was not significant in the length of stay
models, whereas it is significant in the model for mortality
risk.

The proportion of deaths of hospitalised patients varies
by local authority within the city region. For this dataset,
only 61% of patients survived in Tameside where the mean
IMD decile for the LSOAs within the authority is 3.6, versus
74% in Trafford with a mean IMD of 6.8. A model at the
local authority level showed that deprivation within an LA is
associated with the death rate for hospitalised residents, when
controlling for the age of the LA population.

Male proportion and ethnic makeup were not statistically
significant in this analysis but it is clear that there is a
deprivation effect on the risk of dying in hospital from COVID-
19, and that due to the spatial inequalities within Greater
Manchester, some areas suffered a greater death rate than
others. In a model at the MSOA level the same effect was
observed, however a much smaller proportion of the variance
was explained.

Using an area-based deprivation statistic for individuals has
shown a link between mortality risk and deprivation and when
aggregated based on geographical units, this effect persists.
Purdam [13] showed spatial differences in life expectancy
within the city region and in the review commissioned by
the Greater Manchester Health and Social Care Partnership
(GMHSCP) and Marmot et al [12] reported that there has
been a significant change in life expectancy, correlated with
deprivation-space in the Greater Manchester area; these effects
are replicated in the individual level hospital data and so it
seems that the acute care system is not able to cut through
this unequal disease burden once hospitalised. This may be
because of other risk factors we have been unable to capture
(for example obesity, or specific forms of co-morbidity) or it
may represent the long-term embedding of adverse outcomes
associated with deprivation. Deaths occurring outside of the
hospital system do not feature within this dataset and so we
are unable to capture deaths either within private residences in
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the community or within the residential adult and elderly social
care population. It is therefore likely that the death burden
within the patients in this analysis is underestimated.

It may be the case that the predictors of the additional
death burden replicate those identified in these non-
hospitalised populations. We did not account for hospital
overcrowding within the models which may have impacted
admission decisions and could potentially have exacerbated
area effects; however, we note that the ‘Nightingale’ hospital
in Manchester was commissioned but remained unused, and
therefore we assume that although the hospitals were very
busy, they were not overwhelmed during the period of the
study data.

Strengths and limitations

Previous analyses of length of stay have been restricted to the
COVID-19 Hospital Episode Statistics (CHES) data, analysed
in close to real-time for operational purposes. The CHES data
is more limited and data quality improves with time as coding
is updated and records quality checked meaning that analyses
earlier in the pandemic were subject to significant truncation
and missingness. The data used in this analysis include all
hospitals within Greater Manchester and have the benefit of
being temporally distant from the event which improves data
quality and reduces the extent of missingness.

The data are truncated; the dataset contains only hospital
spells which have completed by 24/06/21 and so any very long
spells admitted before this date but not concluded are not
included in the dataset. The first admission within the data
is 30/12/19. We minimised this effect by selecting a defined
period within the data availability, defined by sensitivity
analysis to the truncation effect.

The time window of the study – admissions during 2020 –
also means that we are focused here on the pre-vaccine period
of the pandemic. This is both a strength and a limitation. The
pre-vaccine response of the population to a pandemic is clearly
an important subject of enquiry but this focus does mean
that the findings may be less directly relevant to the current
situation i.e., the post vaccine development of COVID-19
outcomes.

Delayed transfers of care are not accounted for in this
model as the data were not available and so some longer
stays may reflect a spell persisting because there is a difficulty
in finding an appropriate discharge destination for a patient,
rather than their ongoing care need being to stay in the acute
setting.

We have no information on subsequent re-admissions after
the dataset, or on deaths which occur post discharge in the
community. There may also be deaths resulting from post
COVID-19 infection complications which are coded as an
admission for the primary presenting diagnosis and thus do
not appear as a COVID-19 case in these data. For example,
some patients have experienced cardiac health episodes, likely
related to their prior COVID-19 infection, and these hospital
episodes would not be recorded as a COVID-19 case but a
death in this instance may well be related to the original
COVID-19 infection.

The lack of data on deaths outside hospital is limitation of
the study. This research was restricted to hospital data as it
was conducted as part of an academic partnership, supporting

the health board with operational research. It was not possible
to link these data to external deaths. One option for extending
this work would be to link the CHES data to other data sources
– for example, the ONS deaths data which has the potential
to improve the quality and richness of the analyses.

An assumption of the work reported here is that the model
was uniform across areas with only changes to the intercept
considered in model 1A. A further extension would be to test
this assumption by fitting a multilevel model with random
effects for local area and for period.

We note that Ethnicity and deprivation are likely to be
associated both with each other intersectionally in terms of
their effects on COVID outcomes and we did not consider that
here, partly because of limitations of the size of the dataset
leading to small counts in some intersectional cells. This is
something which work on national datasets might want to
consider.

One important topic to cover here is the issue of COVID
variants. It is established that different COVID variants had
different level of transmissibility, virulence and responsiveness
to treatment (see for example [29, 30]).

All the cases in the UK were of the wild-type10 until the
Alpha variant emerged in late 2020. Alpha was concentrated in
the southeast of England initially (it is sometimes referred to as
the Kent variant); the Northwest – where Greater Manchester
is located was one of the later affected regions with significant
case numbers only starting to appear in the second half of
December 2020; (see [31] for example). By the end of the study
period, it was still not dominant in the Northwest, however, at
least some of the cases in the period 3 data would likely have
been Alpha.

Evidence is mixed on the virulence of Alpha compared to
the wild-type. Some, e.g., [32] found no difference between
alpha and wild-type for deaths in hospital, others e.g.,[33],
show a higher death rate overall.

Data on which variant the patient had was not available
to us within the dataset. We could in principle have imputed a
probability that each case was alpha, based on the prevailing
prevalence rates in the NW, However, this would have been a
heuristic of dubious value and multicollinear with our period
variable.

So, considering the lag between contracting the virus and
hospital admission and lower rates of Alpha in the Northwest in
the study period, the number of Alpha cases in our dataset is
probably relatively modest. The likely impact on the findings of
variants is minimal. Any effect is likely to have been a modest
dampening of the period 3 coefficients in Tables 7, 8 and 10
but would not have altered the overall findings.

Conclusions

The results present a complex picture, and this is not easy
to understand without further work. The widely reported link
between deprivation and severe disease is detected for death
risk for hospitalised patients within Greater Manchester but
not for the length of stay. On the other hand, ethnicity is
important for length of stay in the city region, but not for
death risk upon hospitalisation.

10Wild-type covid refers to initial virus infections, prior to mutated
‘variants’ which emerged later in the pandemic.
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A key point here is that the data only concern the
hospitalised population so a key component of the data
generating process for these data occurs after the event
(infection) that drives the primary reason for the study.
We need more research into how COVID-19 impacted
different communities, with a broader range of data so we
can understand how deprivation, ethnicity and space have
intersected to impact on outcomes through the infection
process.

Contribution

There have been many studies into the length of stay for
COVID-19 patients, as medics seek to understand the patterns
of disease for different patient groups and plan healthcare
provision for their populations.

The current study used complete administrative data
covering the whole of Greater Manchester for the period
January - November 2020. The inclusion of more accurate and
complete social, demographic and spell data for each stay has
allowed a nuanced and detailed analysis of the factors affecting
spell length and mortality in the city region for hospitalised
patients.
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Appendix A: Abbreviated timeline of restrictions applying to greater manchester

Date Details National or local?

12/03/2020 Major sporting and cultural events suspended National
17/03/2020 NHS cancellation of all non-emergency surgery National
18/03/2020 All schools closed to students other than the children of ‘key workers’ National
20/03/2020 Pubs, restaurants, cinemas, nightclubs, theatres, gyms and leisure centres closed National
23/03/2020 National lockdown - citizens permitted to leave the home for a limited number of

reasons only (food shopping, medical needs, essential work travel and to exercise once
per day)

National

28/05.20 Groups of 6 permitted to meet up outside. National
01/06/20 Reception, year 1 and year 6 allowed to return to school National
30/07/20 Groups of 6 no longer allowed to meet up outside Greater Manchester
14/9/20 Groups of 6 no longer allowed to gather National
20/10/20 Tier 3 restrictions imposed Greater Manchester
31/10/20 Second national lockdown imposed National
19/12/20 Tier 4 restrictions imposed in the south of England, all other lifting of restrictions

cancelled and restricted to Christmas day only
National
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