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ABSTRACT
Polymorphism among individuals of the same population has generally been linked
to alternative reproductive tactics, where different morphs can exhibit differences
in their morphological, ecological, and behavioral attributes. These differences may
result in a divergence in diet between morphs due to differential exploitation of
habitat, morphological differences that influence prey selection, or differential energy
expenditure that results in different nutritional needs. The present study analyzes the
morphology (morphometry and body mass) and diet of red and yellow male morphs
in a population (El Enzuelado) of the lizard Sceloporus minor from central Mexico.
No differences between morphs were found for any of the morphometric variables
analyzed (snout-vent length, tail length, jaw length, jaw width, head length, head width,
head height, tibia length, femur length, forearm length and ventral patch length). In
both morphs, allometric growth was observed in all body features analyzed, as well
as in morphometric features of the head across seasons. Analysis of stomach contents
showed that the diet of red males was composed of 12 categories of prey, while that of
yellowmales was composed of 10 categories; those categories of diet not shared between
morphs (e.g., Isoptera, Psocoptera) were consumed by their respective morph in very
low proportions. Categories of diet with the highest values of food importance for
both groups were Coleoptera, Orthoptera, and leaves; a similar pattern was seen across
seasons. This, in turn, is reflected in low niche breadth values for each morph and a
very high niche overlap. There were no significant differences between morphs overall,
or between morphs per season, in the weight and volume of stomach contents or in
the number of prey items found in stomachs; however, differences in these variables
across all males (independent of morph) were recorded between seasons. Likewise,
no significant correlations were found between body size (snout-vent length) and the
volume of stomach contents for eithermorph or between lizardmandibular dimensions
and the volume of stomach contents for red morph males. For the yellow morph, prey
volume unexpectedly decreased significantly with jaw size rather than increasing as
expected. Overall, this study adds new information about the morphology and feeding
of males in this species, and suggests that in this population, color morphs lack the
morphological and ecological differences found in some other species of polymorphic
lizard.
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INTRODUCTION
The presence of two or more color morphs (polymorphism) among individuals of the same
sex andpopulation is a topic that has received increasing attention from researchers in recent
years (Sinervo et al., 2000; Zamudio & Sinervo, 2000; Hamilton & Sullivan, 2005; Bastiaans
et al., 2013; Olsson, Stuart-Fox & Ballen, 2013; Lattanzio & Miles, 2016; Scali et al., 2016;
McDiarmid et al., 2017; Paterson & Blouin-Demers, 2018). Many of these studies attempt
to identify the processes that lead to the evolution and maintenance of links between
alternative color morphs and morph-specific behavioral strategies (Sinervo & Lively,
1996; Sinervo et al., 2000; Zamudio & Sinervo, 2000). Such intrasexual polymorphism is
usually linked to alternative reproductive tactics (ARTs; Gross, 1996; Taborsky, Oliveira &
Brockmann, 2008), which represent alternative pathways to reproductive success among
members of a single sex, and the expression of multiple interrelated phenotypes working
in concert to maximize fitness (Taborsky, Oliveira & Brockmann, 2008). Maintaining the
polymorphism requires that each morph achieve equal fitness over a long period of time
(Gross, 1996; Taborsky, Oliveira & Brockmann, 2008). This balance can be achieved through
two processes, niche partitioning (Skúlason & Smith, 1995; Lattanzio & Miles, 2016; Scali et
al., 2016; Paterson & Blouin-Demers, 2018), and frequency-dependent selection (Sinervo &
Lively, 1996; Pryke et al., 2007).

The niche partitioning hypothesis proposes that individuals from different morphs
exploit different resources of the environment (e.g., space, shelter, food) to avoid strong
competition for the same resource (Skúlason & Smith, 1995; Lattanzio & Miles, 2016; Scali
et al., 2016; Paterson & Blouin-Demers, 2018). For example, morphs of Podarcis muralis
Laurenti, 1768 and Urosaurus ornatus Baird & Girard, 1852, have shown preferences for
certain types of prey, only partially shared with other morphs of the same species (Lattanzio
& Miles, 2016; Scali et al., 2016; Paterson & Blouin-Demers, 2018); in addition, differences
in the spatial distribution of morphs have been recorded in U. ornatus (Paterson & Blouin-
Demers, 2018). Negative frequency-dependent selection can also maintain a polymorphism
by conferring advantages of survival and / or reproduction to rare morphs, as the fitness
of a given phenotype depends on the frequencies of the other phenotypes with which it is
competing (Sinervo & Lively, 1996; Pryke et al., 2007). For example, frequency-dependent
selection maintains the polymorphism in the lizardUta stansburiana Baird & Girard, 1852.
In this species, the frequency of each morph changes across years in a cyclic manner,
a consequence of the different behavioral strategies exhibited by the different morphs
(Sinervo & Lively, 1996).

In lizards, differences between morphs have generally been linked to differences in
spatial dispersion within the landscape, body size, aggression, territory and/or home range
size, and the quality of the habitats used (Thompson & Moore, 1992; Sinervo & Lively,
1996; Bustos-Zagal et al., 2014). These differences could indicate that different morphs are
capable of exploiting different components of a resource gradient, and consequently that
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trophic niches could also diverge (Lattanzio & Miles, 2016). Consequently, the expression
of ARTs in different color morphs could favor the segregation of such morphs in the
environment, in turn allowing each morph to exploit different types of prey linked to
their respective habitats (Lattanzio & Miles, 2016). This divergence of trophic niche would
therefore favor the maintenance of polymorphism in these populations (niche partitioning
hypothesis; Lattanzio & Miles, 2016; Scali et al., 2016).

Likewise, in polymorphic species of lizards that exhibit ARTs, it is common to observe
that one morph is territorial, and the other is not (Thompson & Moore, 1992; Sinervo
& Lively, 1996). Given possible differences in energy intake and expenditure between
territorial and non-territorial individuals, and that prey may differ in the quantity
and quality of their nutrients, morphs might also be expected to differ in their diet
(Leyte-Manrique & Ramírez-Bautista, 2010;Cruz-Elizalde et al., 2014). In addition, morph-
specific variation in coloration may be associated with other morphological traits, such as
body size (snout-vent length; SVL) and/or head size (Hover, 1985; Sinervo & Lively, 1996;
Moore, Hews & Knapp, 1998; Sinervo et al., 2000; Bustos-Zagal et al., 2014). Some of these
morphological features that distinguish each morph could also act as a constraint on the
type of prey that each can consume, further driving a divergence in diet. For example, at the
population level, prey size and volume are in some cases correlated with dimensions of the
head, which may in turn promote variation in diet between sexes and age classes (Ballinger,
1977; Cooper, Lemos-Espinal & Smith, 1998; Herrel et al., 2006). In addition, individuals of
small size tend to consume small and soft prey, in contrast to the larger and harder prey
consumed by large individuals of the same species (Gadsden et al., 2011; Ngo et al., 2015).

Consequently, in species that exhibit polymorphism linked to ARTs, morph-specific
divergence in diet could occur through at least three mechanisms: (1) differential
exploitation of habitats, with each morph eating different prey found in these different
habitats; (2) differential energy expenditure and hence different nutritional needs between
morphs that influence that type of prey consumed; and (3) morphological differences
between morphs that in turn influence the type of prey consumed. To date, few studies
have analyzed both morphology (Thompson & Moore, 1992; Sinervo & Lively, 1996; Bustos-
Zagal et al., 2014) and diet (Lattanzio & Miles, 2016; Scali et al., 2016) in polymorphic lizard
species; such information is necessary to identify the specific mechanisms responsible for
maintaining polymorphisms in a population (Lattanzio & Miles, 2016; Scali et al., 2016).

The genus SceloporusWiegmann, 1828 (Phrynosomatidae) is represented by 106 species
(Uetz, Freed & Hošek, 2018) distributed from Canada to Central America (Smith, 1939).
The species S. minor Cope, 1885 is endemic toMexico, occurring in the central andnorthern
regions of the country in the states of San Luis Potosí, Querétaro, Guanajuato, Zacatecas,
Nuevo León, and Hidalgo (Wiens, Reeder & Nieto-Montes de Oca, 1999). Sceloporus minor
is a species that has been relatively well studied in certain aspects of its biology, such
as systematics, reproduction, and morphology (Wiens, Reeder & Nieto-Montes de Oca,
1999; Ramírez-Bautista et al., 2008; Stephenson, 2010; Stephenson & Ramírez-Bautista,
2012; Ramírez-Bautista et al., 2014; García-Rosales et al., 2017). Morphological studies
conducted within and between populations of this species have shown marked within-
and between-sex phenotypic variation in several traits (Stephenson, 2010; Stephenson &
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Ramírez-Bautista, 2012; García-Rosales et al., 2017). Specifically, intersexual variation has
been reported in the coloration of the dorsum, throat, and ventral abdominal patches,
as well as SVL, in that males were found to be more colorful and larger than females
(see García-Rosales et al., 2017). Intrasexual variation has been observed in the dorsal
coloration of males (which can be red, brown, yellow, or blue: Wiens, Reeder & Nieto-
Montes de Oca, 1999; Stephenson & Ramírez-Bautista, 2012; García-Rosales et al., 2017), as
well in SVL, head size, and physiology (Stephenson, 2010; but see García-Rosales et al.,
2017). Despite these advances, there are many unknown details regarding intrasexual
variation in other characteristics, including details of morphology, diet, and behavior.
Such studies are relevant because they provide new information about polymorphic lizard
species, in turn allowing us to more fully understand their ecology.

In this study, we analyzed aspects of morphology and diet in red and yellow morphs of
adult males from a population of S. minor in central Mexico. Our specific objectives were
to: (1) compare morphometric characteristics between morphs, (2) analyze the overall diet
composition of each morph, (3) analyze the diet composition of each morph across three
seasons of the year (summer, fall, and spring), (4) determine the dietary niche breadth
and overlap between morphs, and (5) analyze the relationship between body size and
mandibular dimensions with the volume of stomach content and prey sizes (respectively)
for each male morph. If the niche partitioning hypothesis helps maintain the presence of
polymorphism in this population, morphs should show differences in at least some of their
morphological or trophic ecology attributes that would allow them to differentially exploit
resources in the environment, thus helping reduce resource competition between morphs.
Alternatively, if these morphs do not differ in any of their trophic or morphological
features, this would suggest that polymorphism in this population is being maintained by
frequency-dependent natural selection.

MATERIAL AND METHODS
Study area
Fieldwork was conducted at a site approximately five hectares in size near the community
of El Enzuelado (20◦35′N, 98◦37′W) of the municipality of San Agustín Metzquititlán,
Hidalgo, Mexico. El Enzuelado is located at an elevation of 1,955 m, and the dominant
vegetation type is xerophilous scrub (Rzedowski, 1978). The mean annual temperature is
17.5 ◦C and mean annual precipitation is 496.7 mm (Pavón & Meza-Sánchez, 2009).

Sampling
Surveys for adult male lizards were conducted from June 2017 to March 2018. Snout-vent
length of adults corresponded to those of Ramírez-Bautista et al. (2014). In total, we
measured 99 adult males (58 red males and 41 yellow males; Fig. 1). Specimens were
collected in June (summer; 11 red and nine yellow males) and November (fall; 41 red and
25 yellow males) 2017, and in March (spring; six red and seven yellow males) 2018. All
searches were conducted between 10:00-17:00 h, and were limited to boulders and rock
piles, the microhabitats in which adult males of this species are most commonly observed
at this site (A García-Rosales, pers. obs., 2017); once lizards were found, they were captured
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Figure 1 Representative examples of variation in dorsal color pattern in male S. minor from El Enzue-
lado, Hidalgo, México. A-yellow, B-red. photographs taken by Aaron García-Rosales.

Full-size DOI: 10.7717/peerj.8099/fig-1

directly by hand. Sex identification was made on the basis of the (sexually dimorphic) color
patterns of each lizard, as well as examination of the enlarged post-anal scales present only
in males.

This study was conducted according to the ethics and regulations for animal research of
the Universidad Autónoma del Estado de Hidalgo, the AVMA Guidelines on Euthanasia
(AVMA 2013), and the policies for handling of animal specimens described in the NORMA
OficialMexicanaNOM-033-SAG/ZOO-2014. All animal use was approved under collecting
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permit SGPA/DGVS/06183/17 issued by the Secretaría del Medio Ambiente y Recursos
Naturales (SEMARNAT) of the Government of Mexico.

Morphometric analysis
We collected data on 11 morphometric variables from each lizard in the field. Distance
measures [snout-vent length (SVL; distance from the tip of the rostral scale to the cloaca),
tail length (TLL; distance from the vent to the tip of the tail), jaw length (JL; distance from
the tip of the rostral scale to the point of maximum width of the left side of the mandible),
jaw width (JW; the maximum distance between the left and right sides of the mandible),
head length (HL; distance from the anterior tip of the rostral scale to the posterior margin
of the left ear), head width (HW; maximum width of the head, measured as the distance
between the posterior margin of the left and right ears), head height (HH; the maximum
distance between the dorsal and ventral sides of the head), tibia length (TL; distance from
the knee to the pad of the foot), femur length (FL; distance from the angle of the groin to
the knee), forearm length (FOL; distance from the elbow to the pad of the foot), and ventral
patch length (VPL; the maximum longitudinal distance of the dark edge)] were collected
with the aid of a Mitutoyo digital caliper (±0.01 mm). Body mass was measured using a
Pesola spring scale (±0.01 g). In addition, we recorded the dorsal color of each individual
based on a color catalogue for field work (Köhler, 2012) in the context of previously
described color morph variation in males from El Enzuelado (see García-Rosales et al.,
2017; Fig. 1). Following morphometric data collection, most individuals (54 of 99 males)
were permanently marked by toe clipping, then released at their site of capture to avoid
measuring the same lizard on multiple occasions (García-Rosales & Martínez-Coronel,
2016).

To evaluate morphometric differences between color morphs, we used a discriminant
function analysis that included body mass, SVL, TLL, JL, JW, HL, HW, HH, TL, FL, FOL,
and VPL for both groups (i.e., red and yellow morphs). Differences between groups were
estimated, and we identified those variables that provided the greatest variation between
groups. Before analysis, all means were transformed into Z scores using the formula
Z =

(
X−µ
σ

)
, standardizing the data. To characterize morph allometry, we performed

multiple regressions for each morph using the 10 morphometric variables described above
and body mass as dependent variables and SVL as the independent variable. In addition to
this overall analysis, we also assessed allometric patterns across individual seasons (spring,
summer, and fall); for this latter analysis, a subset of morphometric head measurements
(HL, HW, HH, JL, and JW) were used as dependent variables in each season, with SVL as
the independent variable, as before. Tests were considered significant if P ≤ 0.05. Statistical
tests for this analysis were performed using Statistica 7.0 (StatSoft, Inc., Tulsa, OK, USA).

Dietary analysis
The remaining 45 males (24 red and 21 yellow morphs) that were not released were used in
an analysis of stomach contents, as well as to collect other data not presented here. These
lizards were collected in the month of June (summer; 11 red and nine yellow males) and
November (fall; seven red and five yellow males) of 2017, and in March (spring; six red
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and seven yellow males) of 2018. All lizards used in this analysis were collected between
13:00 and 17:00 h, in order to minimize the likelihood of finding individuals with an empty
stomach, and were humanely euthanized in the laboratory via intracoelomic injection
of sodium pentobarbital. Specimens were then fixed in 10% formalin and preserved in
70% ethanol (Ramírez-Bautista et al., 2008). All of these specimens were deposited at
the collection of Amphibians and Reptiles of the Centro de Investigaciones Biológicas,
Universidad Autónoma del Estado de Hidalgo.

Before fixing in formalin, the stomach of each collected lizard was removed and weighed
using an Adam analytical balance (±0.0001 g). Stomach contents were removed and placed
in Petri dishes, and the length, width, and height of each prey item were recorded using
Mitutoyo digital calipers (±0.01 mm; (Leyte-Manrique & Ramírez-Bautista, 2010). The
volume (mm3) of all stomach contents (the total volume of all prey items in the stomach),
volume of each category of prey found in a stomach (total volume of all grouped prey of the
same order or category found in a single stomach), and the volume of each individual intact
prey item found in each lizard stomach were obtained using the formula of an ellipsoid
(Duré, Kehr & Schefer, 2009): V = 4

3π ∗
[(

length
2

)
∗
(width

2

)2]. We used dichotomous keys
to identify most types of prey to the taxonomic level of order (Triplehorn & Johnson,
2005), with the exception of Hymenoptera, which were further classified as formicids
(ants) and non-formicids (bees and wasps). In addition, holometabolous prey items were
identified as being either larvae or adults, and each was treated as an independent category
(Aldape-López, Lazcano-Hernández & Martínez-Coronel, 2009; Gadsden et al., 2011). Plant
matter was classified as leaves, flowers, or fruits (Hernández-Salinas, Ramírez-Bautista &
Cruz-Elizalde, 2016).

We used the relative importance index (I ) to determine the value of each category of
consumed prey to each morph. This index includes three parameters for consumed prey
(frequency, number, and volume), and is calculated as I = %F+%N+%V

3 , where %F is the
percentage of occurrence, %N is the numerical percentage, and %V is the volumetric
percentage (Biavati, Wiederhecker & Colli, 2004; Ngo et al., 2014). The relative importance
index was calculated for each morph overall, and for each morph on a per-season basis
(summer, fall, and winter). We calculated niche breadth using Levin’s standardized niche

index (Hurlbert, 1978), with the formula BA =

(
1∑
pi2

)
−1

n−1 , where: pi is the proportion
(number of individuals) in each prey category with respect to the total number of prey
found in each group (color morph), and n is the number of each prey category found in the
diet of individuals of each morph. This index is calculated by groups (e.g., morphs, season
of the year) and ranges from zero to one, where zero indicates a specialist diet and one
indicates a general diet (Hurlbert, 1978). Diet overlap was assessed using Pianka’s Ojk index

(Pianka, 1973), with the formulaOjk =
∑n

i=1pijpik√∑n
i=1p

2
ij
∑n

i=1p
2
ik

, where Pij and Pik are the proportions

of resource i used by groups (i.e., morphs) j and k, respectively. This index is calculated by
pairs of groups (e.g., seasons of the year, morphs) and ranges from zero to one, where zero
indicates that these groups consume different prey or use different resources (i.e., there is
no overlap), and one indicates that these groups consume the same categories of prey or use
the same resources (maximum niche overlap; Pianka, 1973). Niche breadth was calculated
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for each morph separately and for all individuals, while niche overlap was calculated only
between morphs. Both indices were calculated using the Ecological Methodology software,
version 6.1.1 (Krebs, 1999).

We evaluated differences betweenmorphs in the volume andweight of stomach contents,
as well as the number of prey consumed. All data were initially log10 transformed to meet
normality assumptions for parametric tests. When normality was met, we used t -tests for
subsequent comparisons; for data sets that were not normalized following transformation,
we used Mann–Whitney U tests with untransformed data instead (Zar, 1999). These same
variables (volume and weight of stomach contents, and number of prey consumed) were
also evaluated for each morph through three seasons of the year (summer, fall, and spring)
using a MANOVA. For this analysis, all response variables were transformed to Z scores
(see formula inMorphometric Analysis). In addition, we assessed the relationships between
body size (SVL) and the volume of stomach contents and total number of prey, as well
as relationships between two variables of head size (JL and JW) and the total volume of
prey in the stomach. As before, data were initially log10 transformed in an attempt to
meet normality conditions for parametric tests. When these conditions were met, we used
Pearson (r) correlation tests; when data failed to normalize, we used Spearman correlations
(rs) on the untransformed data instead (Zar, 1999). Tests were considered significant if
P ≤ 0.05. Statistical analyses were performed using Statistica 7.0 (StatSoft, Inc., Tulsa, OK,
USA). Means are presented as X̄ ± standard deviation.

RESULTS
The discriminant function analysis showed that red and yellow morph males have a
similar morphology overall, since no differences between morphs were observed in any
morphometric variable (Wilks’ lambda = 0.97, F (1,97)= 2.77, P = 0.99; Table 1). Multiple
regression analysis did find a significant positive relationship between SVL and most
morphometric variables analyzed for each morph (red: R2

= 0.07, F11,46= 53.73, P < 0.01;
yellow:R2

= 0.08, F11,29= 43.68, P < 0.01; Table 2), with the exception of TLL in redmales,
and TLL and FOL in yellow males (Table 2). Multiple regressions by season on the head
measurements only showed that for the red morph, there was a positive and significant
relationship in the fall (R2

= 0.78, F5,35= 75.4; P < 0.01), but not the summer (R2
= 0.35,

F5,5= 1.35, P = 0.37), and an undetermined relationship in the spring (R2
= 0.79, F and P

values were not calculated due to insufficient data). Similarly, multiple regressions revealed
a significant positive relationship between head measurements and SVL for the yellow
morph in the fall (R2

= 0.82, F5,19 = 41.24, P < 0.01); these relationships were positive
but nonsignificant among males from the spring (R2

= 0.74, F5,1 = 5.39, P = 0.31) and
summer (R2

= 0.25, F5,3= 4.1, P = 0.13). For both morphs, simple regressions revealed
positive relationships between SVL and the individual head variables analyzed in each of
these three seasons, but not all were significant (Table 3).

For the dietary analysis, all 45 examined individuals (24 red and 21 yellow males) were
included, as no lizard was found to have an empty stomach. We identified a total of 576
prey items belonging to 13 dietary categories, including insects, arachnids, and plant matter
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Table 1 Descriptive statistics of morphometric traits and summary data from discriminant function
analysis of red and yellowmale morphs of Sceloporus minor from El Enzuelado. Morphometric mea-
surements reported as mean (in mm)± standard deviation.

Red (n= 58) Yellow (n= 41) Wilks’ lambda F p-value

Body mass (g) 15.3± 4.1 15.2± 4.7 0.972 0.047 0.82
Snout-vent length 73.0± 7.3 72.9± 8.0 0.972 0.044 0.83
Tail length 100.8± 22.6 92.9± 24.3 1.000 2.766 0.10
Head length 17.4± 1.9 17.4± 2.4 0.972 0.037 0.84
Head width 15.9± 1.8 15.7± 2.1 0.971 0.083 0.77
Head height 9.7± 1.3 9.8± 1.4 0.970 0.212 0.64
Jaw length 11.9± 1.1 11.9± 0.9 0.972 0.025 0.87
Jaw width 13.8± 1.3 13.7± 1.4 0.972 0.002 0.96
Femur length 15.7± 1.6 15.8± 1.9 0.969 0.306 0.58
Tibia length 12.8± 1.2 13.0± 1.2 0.965 0.677 0.41
Forearm length 10.8± 1.2 13.4± 16.3 0.965 0.772 0.38
Ventral patch length 35.6± 7.2 34.4± 4.5 0.969 0.323 0.57

Table 2 Summary of simple regression results frommultiple regression analysis of all males of Scelo-
porus minor. A total of 10 morphometric variables and body mass were used as dependent variables, with
SVL as the independent variable.

Red Yellow

R p-value R p-value

Body mass 0.94 <0.01 0.94 <0.01
Tail length 0.09 0.50 0.25 0.11
Head length 0.90 <0.01 0.71 <0.01
Head width 0.89 <0.01 0.89 <0.01
Head height 0.74 <0.01 0.87 <0.01
Jaw length 0.83 <0.01 0.81 <0.01
Jaw width 0.82 <0.01 0.90 <0.01
Femur length 0.81 <0.01 0.92 <0.01
Tibia length 0.50 <0.01 0.84 <0.01
Forearm length 0.80 <0.01 0.11 0.47
Ventral patch length 0.56 <0.01 0.59 <0.01

(Fig. 2, Table 4). Of the total prey items recorded, 331 were consumed by red males and
245 by yellow males. The diet of red males was composed of 12 diet categories, while that
of yellow males consisted of 10 categories. Prey categories that were not shared between
morphs were Isoptera, Coleoptera larvae, Psocoptera (all of which were exclusive to the
red morph), and Pseudoescorpionidae (exclusive to the yellow morph). However, all of
these prey represented a small proportion of the diet of the respective morph. For both
morphs, the diet categories that presented the highest values of alimentary importance
were Coleoptera adults, Orthoptera, and leaves (Fig. 2, Table 4). Differences in the number
of prey categories consumed by each morph were seen across different seasons (Table 5).
However, the category of diet with the highest value of food importance (adult Coleoptera)
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Table 3 Summary of simple regression results frommultiple regression analysis carried out by season of the year of Sceloporus minor. A subset
of five head measurements were used as dependent variables in each regression, with SVL as the independent variable.

Red Yellow

Spring Summer Fall Spring Summer Fall

R p-value R p-value R p-value R p-value R p-value R p-value

HL 0.90 0.01 0.59 0.05 0.94 <0.01 0.89 <0.01 0.24 0.53 0.90 <0.01
HW 0.93 <0.01 0.71 0.01 0.89 <0.01 0.90 <0.01 0.71 0.03 0.94 <0.01
HH 0.70 0.12 0.45 0.16 0.79 <0.01 0.87 0.01 0.87 <0.01 0.86 <0.01
JL 0.92 <0.01 0.53 0.09 0.87 <0.01 0.50 0.25 0.74 0.02 0.88 <0.01
JW 0.94 <0.01 0.54 0.08 0.85 <0.01 0.83 0.02 0.79 0.01 0.93 <0.01

Figure 2 Values of food importance (I) of red and yellowmale morphs of Sceloporus minor from El
Enzuelado, Mexico. A, adults; L, larvae.

Full-size DOI: 10.7717/peerj.8099/fig-2

was the same for both morphs across spring, summer, and fall (Table 5). Also, it was
observed that plant matter (flowers and leaves) was one of the major components of
the diet of these lizards, ranking higher than that of several categories of insect prey
(Table 5).

For all males combined, the niche breadth value was low (BA= 0.263), though red males
showed higher values of breadth (BA= 0.334) compared to yellow males (BA= 0.265). In
turn, a high value of food niche overlap between morphs was recorded (Ojk= 0.957). We
found no differences between groups in the mean mass of stomach contents (red males: X̄
= 0.76± 0.35 g; yellowmales: X̄ = 0.75± 0.27 g;U24,21 = 245, P = 0.89), stomach content
volume (red males: X̄ = 4159.7 ± 3605.6 mm3; yellow males: X̄ = 3771.7 ± 3089.5 mm3;
t24,21= 0.23, P = 0.81), or the number of individual prey found in stomachs (red males: X̄
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Table 4 Diet composition of red and yellowmale morphs of Sceloporus minor from El Enzuelado.

Red Yellow

Category F %F N %N V %V F %F N %N V %V

Coleoptera (A) 21 22.34 84 40.78 59,854 67.42 19 27.14 73 51.05 34,446 59.88
Orthoptera 16 17.02 17 8.25 11,179 12.59 10 14.29 12 8.39 7,895 13.72
Leaves 15 15.96 15 7.28 3,604 4.06 13 18.57 13 9.09 8,548 14.86
Non-Formicid Hymenoptera 7 7.45 30 14.56 875 0.99 2 2.86 4 2.80 254 0.44
Flower 9 9.57 12 5.83 3,948 4.45 4 5.71 9 6.29 2,524 4.39
Araneae 9 9.57 14 6.80 2,415 2.72 9 12.86 11 7.69 1,883 3.27
Hemiptera 6 6.38 10 4.85 4,699 5.29 3 4.29 3 2.10 458 0.80
Lepidoptera (L) 5 5.32 5 2.43 2,126 2.40 5 7.14 5 3.50 1,437 2.50
Formicidae 3 3.19 10 4.85 38 0.04 4 5.71 12 8.39 77 0.13
Isoptera 1 1.06 7 3.40 33 0.04
Coleoptera (L) 1 1.06 1 0.49 3 0.00
Psocoptera 1 1.06 1 0.49 2 0.00
Pseudoescorpionidae 1 1.43 1 0.70 6 0.01

Notes.
F, frequency of occurrence; %F, percentage of F; N, number of items; %N, percentage of N; V, prey volume (mm 3); %V, percentage of V; A, adults; L, larvae.

Table 5 Value of the relative importance index of red and yellowmale morphs of Sceloporus minor by
season.

Summer Fall Spring

Category Red Yellow Red Yellow Red Yellow

Araneae 4.70 10.34 12.72 9.29 7.89 4.52
Coleoptera (A) 50.72 61.16 27.42 32.43 20.11 23.35
Coleoptera (L) 0.99
Flowers 1.03 21.77 14.90 12.18 9.28
Formicidae 3.79 2.68 2.26 11.91 2.92
Hemiptera 4.62 2.69 13.61 7.31
Leaves 8.92 17.12 5.08 6.25 16.66 15.59
Non-Formicid Hymenoptera 9.64 2.68 7.19 2.67 2.62
Isoptera 2.52
Lepidoptera (L) 19.47 13.82
Orthoptera 12.07 6.03 20.87 22.12 7.41 20.60
Pseudoescorpionidae 3.10
Psocoptera 0.99

Notes.
A, adults; L, larvae.

= 13.8 ± 8.2 prey; yellow males: X̄ = 11.7 ± 6.7 prey; t24,21= 0.67, P = 0.50). Similarly,
MANOVA on the full sample of males found no differences between morphs in either the
volume and mass of stomach contents, or abundance of prey consumed between morphs
(Wilks’ lambda = 0.98, F (3,37)= 0.21, P = 0.88); likewise, there was no difference between
morphs in these characteristics on a seasonal basis (Wilks’ lambda = 0.90, F (6,74)= 0.66,
P = 0.67). However, these characteristics varied across seasons independent of morph
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Table 6 Descriptive statistics of response variables used inMANOVA of lizard stomach contents. For all measurements, the mean± standard
deviation is reported.

Red Yellow

Summer Fall Spring Summer Fall Spring

Mass (g) 0.95± 0.43 0.55± 0.13 0.66± 0.20 0.80± 0.16 0.50± 0.21 0.85± 0.34
Volume (mm3) 7,097± 3,443 1,505± 543 1,873± 778 6,472± 2,950 1,239± 502 2,109± 731
Abundance 17.72± 7.34 9.4± 7.9 11.7± 7.8 14. 77± 8.74 10.8± 2.38 8.28± 4.11

Notes.
Mass, mass of stomach contents; volume, volume of stomach contents; abundance, abundance of prey consumed.

(Wilks’ lambda = 0.29, F (6,76) = 10.49, P <0.01; mass: F(2) = 5.41, P <0.01; volume:
F(2)= 28.3, P <0.001; abundance: F(2)= 4.22, P = 0.02; Table 6).

Correlation analyses found no significant relationship in either morph between SVL
and volume of stomach contents (red males: r = 0.17, P = 0.42; yellow males: r = 0.25,
P = 0.25), or between SVL and the total number of prey items found in stomachs (red
males: r =−0.35, P = 0.09; yellow males: r = 0.025, P = 0.91). No relationship was found
between total prey volume and either JL (rs= 0.18, P = 0.29) or JW (rs= 0.008, P = 0.96)
in red males. However, there was a significant negative relationship between total prey
volume and both JL (rs = -0.44, P = 0.05) and JW (rs =−0.45, P = 0.04) in yellow males.

DISCUSSION
We found no differences between morphs in any of the morphometric characters analyzed
(Table 1). However, all morphs did exhibit allometric growth for all these same variables
(Table 2), and showed seasonal allometric growth in themorphometric head traits (Table 3).
These similarities may be a consequence of the size at which offspring are born, their rate
of growth, and/or their body size at sexual maturity (Benabib, 2009). These similarities may
also be a consequence of the homogeneity and availability of resources in the environment;
that is, if resources (e.g., space, food) are sufficiently available, competition should be
minimal or non-existent. In this context, morphological characters might not change;
this is in contrast to a population of S. minor from La Manzana, Hidalgo (Stephenson,
2010), where morphometric differences were recorded among the morphs. At La Manzana,
blue and red morph males were larger and exhibited proportionately larger heads than
yellow morph males (Stephenson, 2010). Territorial behavior is common in heterogeneous
environments where resources are grouped in space, for example, in the pine-oak forests
of La Manzana with their intermittent limestone outcroppings that are important for S.
minor at that locality (see Stephenson, 2010). The unequal distribution of resources can
result in intense competition, with larger or more aggressive individuals at an advantage
(Sinervo & Lively, 1996; Huyghe et al., 2007). Smaller or less aggressive individuals should
adopt alternative strategies to obtain their resources (Gross, 1996; Sinervo & Lively, 1996),
and such tactics may help explain the morphological, physiological, and behavioral
differences seen among morphs in the La Manzana population (Stephenson, 2010). At
El Enzuelado, the morphometric characteristics of the different color morphs are much
more similar than at La Manzana; however, the aggressive and territorial behavior of the
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morphs at El Enzuelado may differ (McEvoy et al., 2013). Such behavior could result in
an asymmetry in the retention of resources between morphs, so that the less aggressive or
less dominant morph would have to use different tactics to obtain these resources (Sinervo
& Lively, 1996), or move to environments where there is less competition (Paterson &
Blouin-Demers, 2018). However, this interpretation should be treated with caution, since
more detailed morphological and behavioral studies among the morphs of El Enzuelado
and other populations of S. minor, and the distribution of resources in each environment,
will be necessary in order to generate more robust conclusions.

We found that male S. minor lizards have an omnivorous diet, with 13 dietary
categories represented. The diet category with the largest proportion in male stomachs
was insects, followed by plant material (leaves and flowers), and arachnids (spiders and
pseudoscorpions; Fig. 2, Tables 4 and 5). A high proportion of insects in the diet has
been recorded in other studies of S. minor from both the same and different localities
(García-Rosales et al., 2019), as well as in several closely related species [S. torquatus
Wiegmann, 1828 (Feria-Ortiz, Nieto-Montes de Oca & Salgado-Ugarte, 2001); S. jarrovii
Cope, 1875 (Gadsden et al., 2011)]. Consumption of insects is common in the diet of
lizards in general, as these prey provide an excellent source of nutrients for growth,
development, and daily activities (Gadsden et al., 2011; Zamora-Abrego & Ortega-León,
2016). The observed frequency of consumption of plant material was also high, confirming
previous reports of this behavior in S. minor (García-Rosales et al., 2019), close relatives
such as S. mucronatus Cope, 1885 (Méndez-De la Cruz, Casas-Andreu & Villagrán-Santa
Cruz, 1992), and S. torquatus (Feria-Ortiz, Nieto-Montes de Oca & Salgado-Ugarte, 2001),
and species of the lacertid genus Podarcis (Pérez-Mellado & Corti, 1993), among others.
Potential benefits to consumption of plant material include increasing water uptake in dry
environments (Méndez-De la Cruz, Casas-Andreu & Villagrán-Santa Cruz, 1992; Sazima,
Sazima & Sazima, 2005; Serrano-Cardozo, Lemos-Espinal & Smith, 2008), supplementing
nutritional intake when insect abundance is low (Greene, 1982; Búrquez, Flores-Villela &
Hernández, 1986), improving the digestive process (Búrquez, Flores-Villela & Hernández,
1986), and reducing foraging time, given that plant material often offers a relatively
abundant and accessible source of energy (Durtsche, 1992).

When examining diet at the level of color morph, we found that the diet of red males
was composed of 12 diet categories, whereas 10 categories of prey were consumed by yellow
males (Fig. 2, Table 4). The categories of diet not shared between morphs (e.g., Isoptera,
Psocoptera) were those consumed by their respective morph in very low proportions. The
number of prey categories consumed by each morph was different between morphs and
seasons (Table 5). Despite this difference, the categories of diet with the highest values of
food importance for both groups were Coleoptera, Orthoptera, and plant material (leaves
and flowers). Notably, García-Rosales et al. (2019) found that the diet types consumed the
most throughout the year by males and females of S. minor of this same population (but
in years different from this study) were also Coleoptera, Orthoptera, and plant matter. The
overrepresentation of these three groups in the diet of both morphs suggests that these
categories are either especially abundant in the habitat of each morph, efficiently meet
the nutritional requirements of all adult male lizards, or both. A similar diet composition
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among morphs corresponded to low niche breadth values for each morph, but a high
niche overlap. The values of trophic niche breadth in both morphs are low because, of the
total categories of prey that each morph consumes (red = 12 and yellow = 10), each is
most frequently consuming only three main types of prey. On the other hand, the values
of trophic niche overlap are high because both morphs share nine prey categories, and
the prey that they do not share (four prey categories) are consumed in low proportions.
These results indicate that males of S. minor have a specialist diet, because although food
availability in the environment was not assessed, our data show a bias in consumption
towards only a few categories of prey.

In addition, red and yellow morph diets were similar in terms of the amount of food
ingested, as no significant differences were found between morphs in the weight or volume
of stomach contents, or the number of individual prey found in stomachs. Similarly, there
were no differences in these variables when analyzed by season. Similarities in diet might
also reflect similar preferences for certain types of prey and/or tendencies to forage at similar
sites at the same times of the day, as has been seen in other species of lizards (Wikelski &
Trillmich, 1994). The observed similarity in the type and quantity of prey consumed by red
and yellow males could also reflect similarity in head morphologies, since no differences
were found between morphs in terms of traits linked to head size. However, the results
obtained between seasons (summer, fall, and spring) should be taken with caution, since
in some groups of data, the sample size was relatively small. On the other hand, across
all males there were significant differences in the volume and mass of stomach contents
and abundance of prey consumed across seasons of the year (Table 6). In general, a lower
volume and weight of stomach contents was found in, and a lower abundance of prey was
consumed by, both red and yellow morphs during the fall as compared to other seasons
(though prey abundance for yellow morphs in the fall was higher than in the spring; see
Table 6). In contrast, the largest volume and mass of stomach contents, as well as greatest
abundance of prey consumed, were recorded in the summer (except for mass in the yellow
morph, which was slightly higher in the spring; Table 6). Overall, the lowest values recorded
for these variables in this population coincided with the period of courtship and mating,
while the highest values were recorded in the pre-breeding season (Ramírez-Bautista et al.,
2014). During reproductive activity, males ingest a smaller amount of food, since their
activities during this time (especially courtship, mating, and territory defense) limit the
time of foraging. Therefore, food intake is maximal during the pre-reproductive period
in the spring and summer, with energy stored in fat bodies; this stored energy is utilized
during the reproductive period, allowing males to decrease foraging and maximize their
reproductive activities (Méndez-De la Cruz, Casas-Andreu & Villagrán-Santa Cruz, 1992;
Ramírez-Bautista & Olvera-Becerill, 2004; Hernández-Salinas et al., 2010).

Correlation analyses showed that there was no significant relationship between SVL
and volume of stomach contents, or between SVL and total number of prey items found
in stomachs, in either morph. Previous work on this same species at El Enzuelado and
La Manzana showed a relationship between SVL and volume of stomach content, but
only when the analysis was performed at the population level with a comparatively large
sample size (see García-Rosales et al., 2019); when the authors performed a similar analysis
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by sex for each population, no significant correlations were observed (García-Rosales
et al., 2019). The lack of significant correlations between SVL and stomach contents of
males in this study might therefore reflect limited sample size, rather than the absence
of such patterns in general (García-Rosales et al., 2019). Future studies should therefore
consider performing these analyses with a larger sample size, if feasible, to account for this
possibility. Indeed, other studies with polymorphic species have revealed morphometric
differences between morphs in body structures, particularly in head anatomy (Huyghe et
al., 2007; Bustos-Zagal et al., 2014). Such differences in head size may be linked to variation
in bite force, which in turn may be associated with morph differences in diet on the basis
of prey size (Gadsden et al., 2011; Ngo et al., 2015) or hardness (Huyghe et al., 2007). We
also found no relationship between the total volume of prey and either JL or JW in red
males, but significant and negative associations between these variables were observed
for yellow males (JL: rs = −0.44, P = 0.05; JW: rs = −0.45, P = 0.04). Contrary to our
expectations, yellow males with larger jaws consumed smaller prey; however, this result
should be taken with caution, since prey volume data only included complete prey items
(i.e., those that were not crushed) and hence excluded those prey that were not fully intact.
In addition, at least some non-intact prey items were found in the stomachs of all examined
individuals. Given that large prey must be crushed for swallowing to be feasible, whereas
small prey consumed by a lizard with large jaws could potentially be swallowed whole, large
intact prey—i.e., those closest to the limits imposed by lizard jaw dimensions—are likely
underestimated in this analysis as compared to small prey, and hence their influence on
the relationship of jaw size to prey volume is disproportionately reduced. Consequently,
future studies will need to implement a different approach that more reliably assesses the
relationship between mandibular dimensions and prey volume.

Morph-specific differences in diet have been reported between morphs in some other
lizard species that show polymorphism (Lattanzio & Miles, 2016; Scali et al., 2016). The
lack of such a pattern in S. minor from El Enzuelado could be a function of environmental
homogeneity at the study site, such that food resources may be relatively uniform
throughout the area. Similarly, it has been observed that both morphs exploit the same
types of microhabitat (boulders and rock piles; A. García-Rosales, pers. obs., 2017), such
that both groups of males may be exposed to the same type and amount of food. In this
regard, Lattanzio & Miles (2016) noted that segregation of the microhabitat that arises from
behavioral interactions between males of polymorphic species exposes individuals of each
morph to different types of resources, resulting in a trophic polymorphism in species that
exploit ARTs. In this study, the similarities in diet between morphs suggest that either the
behavior of the morphs is similar, morphs exploit the same microhabitats, or both.

On the other hand, Scali et al. (2016) proposed the hypothesis that each morph in
a polymorphic species has evolved a specific preference for certain types of prey, only
partially shared with another morph. This segregation of trophic niches would reduce
competition for resources, thus promoting coexistence of morphs in the same locality
(Pianka, 1974). In this study, we found no differences in the diet of the analyzed morphs.
This suggests that male S. minor from El Enzuelado live in an environment with relatively
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abundant food resources, such that any competition between morphs may be minimal, or
that the polymorphism in this population is probably notmaintained by niche partitioning.

CONCLUSIONS
In conclusion, our results showed that there are no morphological differences among
morphs of S. minor from El Enzuelado for any morphometric trait examined, in contrast
to that reported for populations elsewhere (Stephenson, 2010). In addition, we found no
differences in the diet of red and yellow morphs, which were very similar in terms of the
type and quantity of ingested food, rejecting the hypothesis that morphs in this population
are maintained by niche partitioning. However, future studies of this species should
include dietary analyses of different populations that exhibit heterogeneity in the structure
of the habitats used by males. Such studies should also monitor patterns of diet over a
longer period of time, since territorial behavior, and consequently spatial segregation, may
change according to environmental conditions (Knapp et al., 2003). Researchers should
also continue studies on the behavior of males in this species testing for morph-specific
differences in aggressive behavior (Stephenson, 2010). Such studies may collectively provide
insights into the basis for population variation in ARTs in polymorphic species.
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