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We introduce a quantum-classical generative model for small-molecule
design, specifically targeting KRAS inhibitors for cancer therapy. We apply
the method to design, select and synthesize 15 proposed molecules that
could notably engage with KRAS for cancer therapy, with two holding
promise for future development as inhibitors. This work showcases the
potential of quantum computing to generate experimentally validated hits
that compare favorably against classical models.

Drugdiscoveryisamultifaceted and resource-intensive process encom-
passing the discovery, development and comprehensive testing of new
molecules. Typically extending over a decade and incurring substantial
costs, the pharmaceutical industry faces substantial financial risks' .
The pressing need for efficiency and innovation in drug discovery
has led to integrating advanced computational tools into traditional
pharmaceutical research methodologies. Concurrently, generative
modeling has emerged as a transformative technology in molecule
design*”. Generative models use machine learning techniques tounder-
stand the underlying distribution of atoms and bonds in a specified
dataset, which are then used to construct molecules with predefined
properties, a process known as inverse molecular design®'°. These
models excel at exploring the vast drug-like chemical space (-10°°
molecules), identifying potential molecules efficiently".

By merging the advancementsin quantum machine learning with
traditional drug discovery, the industry is shifting toward innovative
computational strategies'. While purely classical algorithms have
made notable strides in drug discovery, hybrid classical-quantum
approaches offer unique advantages because of the ability of quan-
tum circuit Bornmachines (QCBMs) to leverage quantum effects such
assuperposition and entanglement™**. Theintroduction of QCBMs
illustrates this advancement, offering a generative model that can
outperform classical ones in certain aspects. QCBMs are quantum
generative models that leverage quantum circuits to learn complex
probability distributions, enabling them to generate new samples
that resemble the training data®. Hibat-Allah et al.'* demonstrated
the superior generalization capabilities of QCBMs, which can pro-
duce cardinality distributions beyond the training set and overcome
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Fig. 1| Schematic representation of the hybrid quantum-classical framework
for KRAS ligand development. a, The initial phase involved assembling a
training dataset, starting with 650 experimentally verified KRAS inhibitors
sourced from the literature. Using the STONED-SELFIES algorithm, analogs
ofthese inhibitors were generated, expanding the dataset to approximately
850,000 compounds. This was further augmented by adding 250,000 top
candidates from a virtual screening of the REAL ligand library against KRAS,
creating a total dataset of over 1 million molecules. b, In the generation phase,
the dataset was used to train our generative model, consisting of both a classical
LSTM network and a QCBM. The LSTM network processed sequential data of
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chemical structures, while the QCBM, trained on the output from the LSTM,
generated complex, high-dimensional probability distributions. This workflow
incorporated Chemistry42 as areward function to encourage the production

of structurally diverse and synthesizable molecules. ¢, Workflow for KRAS
inhibitor design, detailing the process from computational compound selection
to laboratory synthesis and experimental validation. d, A total of 1 million
compounds (classical samples from the LSTM, quantum samples from QCBM on
quantum hardware and simulated quantum samples on classical hardware) were
evaluated by Chemistry42 to filter out unsuitable candidates and rank the rest by
their PLIscores. Finally, 15 promising compounds were selected for synthesis.

learning challenges such as barren plateaus. The integration of tensor
networks furthers their effectiveness'”'®. However, the challenges
in quantum data processing and circuit trainability have led to the
development of hybrid algorithms that harness the strengths of
both quantum and classical machine learning. Manuel et al."”” show-
cased how a hybrid quantum circuit generative adversarial network
can enhance target space exploration, overcoming limitations of

classical systems and quantum prior size. Additionally, Zeng et al.*°
presented a quantum-classical hybrid for image generation, high-
lighting the ability to encode conditions into quantum circuits with
extra qubits.

Here, we propose a hybrid quantum-classical model that
addresses qubit limitations and combines quantum and classical
approaches to generate compounds targeting the KRAS protein,
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whichis known for its intricate complexity and historical resistance
todrugdiscovery efforts”*. Asillustrated in Fig. 1, our workflow was
structured into three pivotal stages. The first stage was the genera-
tion of training data, beginning with creating a dataset comprising
approximately 650 known KRAS inhibitors from the literature. To
enhance this dataset, we used VirtualFlow 2.0 to screen 100 million
molecules fromthe Enamine REAL library, selecting the top 250,000
with the best docking scores?. Additionally, we used the STONED
(superfast traversal, optimization, novelty, explorationand discovery)
algorithm onthe SELFIES (self-referencing embedded strings) mole-
cular representation of known inhibitors, generating structurally
similar compounds. After applying synthesizability filtering, this
process added 850,000 molecules to our training set?. Furthermore,
we used Chemistry42 to validate the molecules generated in this
workflow?. We merged data from various sources to compile asingle
dataset containing 1.1 million data points, all used for training our gen-
erative model. The next stage was the generation of new molecules,
which combined (1) the QCBM'® using a16-qubit processor to generate
aprior distribution; (2) along short-term memory (LSTM) network as
the classical model; and (3) Chemistry42 for validation (Fig. 1). The
quantum component, depicted in Extended DataFig. 3c, wasa QCBM
that generated samples from quantum hardware in every training
epoch and was trained with a reward value, P(x) = softmax(R(x)) cal-
culated using Chemistry42 or alocal filter. We note that, in practice,
the reward function canbe tailored to a user’s specific criteria, includ-
ing accounting for off-target effects by evaluating multiple docking
scenarios. This recurrent sampling, training and validation process
formed acycle that continuously improved the generated molecular
structures targeting the KRAS protein. The final step was experi-
mental validation. From our trained models, we sampled 1 million
compounds using three different models (selection workflow in
Fig.1). We used Chemistry42 to screen these samples for pharmaco-
logical viability and ranked them on the basis of their docking scores
(protein-ligand interaction (PLI) score). The top 15 candidates were
synthesized and tested using surface plasmon resonance (SPR) and
cell-based assays. This study highlights the promising intersection
of quantum computing and drug discovery, marking a quantum
computer’s first experimental hit.

Before initiating our campaign to design additional KRAS inhibi-
tors, we aimed to compare our hybrid quantum-classical approach to
established classical algorithms. We benchmarked our model, targeting
three different proteins, against the state of the art using the Tartarus
benchmarking suite for drug discovery?. The results indicate that,
while few classical models achieved high success rates and docking
scores, QCBM-LSTM excelled by generating numerous high-quality
samples.Itachieved ahighsuccessrate and adockingscore comparable
to the best, as demonstrated in Supplementary Table 1. Asillustrated
inExtended Data Fig.1aand Supplementary Table 2, we evaluated the
impactofincorporatingaquantum prior (QCBM/multibase (M)QCBM-
LSTM) versus a fully classical model (vanillaLSTM). We observed that
a quantum prior enhanced the success rate, as measured by the pro-
portion of molecules meeting the criteria set by the same filters. Our
observations revealed that the use of QCBM-LSTM (Supplementary
Table 1) offered a 21.5% improvement in passing filters that assessed
the synthesizability and stability of the generated molecules, indicat-
ingahigher quality of generated structures. Additionally, we analyzed
how the size of the prior (number of qubits) affected sample quality.
We found that more qubits improved the success rates for molecule
generation, suggesting that larger quantum models could enhance
molecular design. Our findings suggest that the success rate correlates
approximately linearly with the number of qubits, as illustrated in
Extended DataFig. 1c.

Webelieve that theimprovementin our hybrid classical-quantum
approach stemmed from the quantum effects, such as superposi-
tion and entanglement, which allow QCBMs to explore and represent

complex, high-dimensional probability distributions more efficiently
than classical models”. Entanglement enables the creation of correla-
tions between qubits, capturingintricate dependencies withinthe prior
distribution. This capability is particularly advantageous ingenerative
models, asitallows foramoreaccurate representation of the underly-
ing distributionsin complex datasets, leading to theimproved genera-
tion of molecular structures. Additionally, these quantum properties
helpto escape barren plateaus more effectively during optimization—a
common challenge in machine learning models”. Consequently, this
resulted in amore comprehensive exploration of the solution space,
potentially uncovering molecular structures that our naive LSTM could
not generate within the same time frame.

Furthermore, our KRAS inhibitor campaign validated com-
pounds derived from both the hybrid quantum-classical and vanilla
approaches using the Chemistry42 platform’s structure-based drug
design workflow. Within our study, 15 compounds were selected after
filtering generated compounds (Fig. 1) using Chemistry42 and synthe-
sized for experimental analysis. The two compounds demonstrating
the greatest promise, ISM061-018-2 and ISM061-022, were character-
ized (structures in Fig. 2a,e, respectively). Their assessment involved
a two-stage process; the SPR determined their binding affinities and
cell-based assays were subsequently used to gauge biological efficacy.
The compound ISM061-018-2, engineered through our hybrid quantum
model (Fig.2b and Supplementary Table 6), demonstrated substantial
binding affinity to KRAS-G12D, registered at 1.4 pM. To delve deeper
into this molecule’s effectiveness across aspectrum of KRAS mutants,
we commenced an extensive series of tests using a cell-based assay.
Specifically, we evaluated the molecule’s performance in a biological
context using acommercial cell viability assay (CellTiter-Glo, Promega)
in conjunction with MaMTH-DS (mammalian membrane two-hybrid
drug screening), an advanced split-ubiquitin-based platform for the
real-time detection of small molecules targeting specific cellular
interactions® >,

The biological activity of ISM061-018-2 was rigorously tested.
Importantly, it demonstrated no detrimental impact on the viability of
HEK293 cells, even when expressing KRAS wild type (WT) or KRAS-G12V
bait in MaMTH-DS format and being subjected to concentrations
as high as 30 uM for 18-20 h, showing that the compound did not
possess any general, nonspecific toxicity (Fig. 2d). Subsequent testing
using MaMTH-DS across a spectrum of cell lines expressing various
KRAS baits (WT and five clinically important oncogenic mutants)
incombination with Rafl‘prey’ (arecognized KRAS effector) revealed
a dose-responsive inhibition of interactions, with half-maximal
inhibitory concentration (ICy,) values in the micromolar range
(Fig. 2c and Supplementary Table 3). The compound’s activity was
not specific to mutants, as it targeted both WT and mutant inter-
actions with similar efficacy. It also showed comparable effective-
ness in disrupting the interactions of WT NRAS and HRAS baits with
Rafl prey (Fig. 2c). However, it had no effect on the interaction of a
completely unrelated artificial bait—-prey control pair (consisting
of membrane-anchored ALFA tag bait and nanobody ALFA prey)*,
supporting the biological specificity of the interaction (Fig. 2c).
Collectively, these results support a potential pan-Ras activity of
ISM061-018-2.

ISM061-022, asillustrated in Fig. 2e, also stood out asacompound
of promise, particularly because of its selectivity toward certain KRAS
mutants. Within our in vitro examination, ISM061-022 demonstrated
a concentration-dependent inhibition of KRAS interactions with IC,
values in the micromolar range (Fig. 2f and Supplementary Table 4),
while manifesting only amild, generalimpact on cell viability at higher
concentrations over an18-20-hexposure (Fig. 2g). The observedinhibi-
tionmirrored that of ISM061-018-2 yet displayed enhanced selectivity
toward certain KRAS mutants, particularly KRAS-G12R and KRAS-Q61H,
which were most receptive to the compound’s action (Fig. 2f). Diverging
from ISM061-018-2, ISM061-022 did not show binding to KRAS-G12D
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ISM061-022 through SPR and cellular activity assays. a,e, Chemical structures under the same conditions. Analyses were carried out using GraphPad Prism.
of ISM061-018-2 (a) and ISM061-022 (e). b, SPR sensorgrams illustrating binding d,g, Results from CellTiter-Glo viability assays measuring the impact of ISM061-
effects of ISM061-018-2 on KRAS protein. c,f, MaMTH-DS dose-response curves 018-2 (d) and ISM061-022 (g) on cellular proliferation over a concentration

illustrate the binding kinetics and effects of ISM061-018-2 (c) and ISM061-022 range from 123 nMto 30 pM, demonstrating that they do not display general,
(f) on various KRAS proteins, as well as NRAS, HRAS and artificial bait, with nonspecific toxicity. Data points are presented as averages from n = 3 technical
activities measured across concentrations from 4 nM to 30 pM. Data points are replicates with error bars showing the s.d. Each graphisrepresentative of n=3

presented as averages from n = 4 technical replicates with error bars showing the biological replicates performed under the same conditions.
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according to SPR. The compound also demonstrated activity against
WTHRAS and NRAS, althoughit was less potent against HRAS. Notably,
the compound had an unusual effect on our artificial control inter-
action pair, leading to a distinct dip to approximately 50% residual
activity at concentrations of ~250-500 nM, before climbing again and
ultimately leading to mild enhancement of the interaction at higher
micromolar concentrations (Fig. 2f). This distinct pattern suggests
analternative mode of action for ISM061-022, revealing at least some
degree of nonspecificactivity, although partial specificity for mutant
KRAS protein does still appear to be in evidence. Further investiga-
tion into the mechanism of action of this molecule will be the focus
of future study.

Overall, these live-cell experimental observations underscore the
robustness of our approach, effectively identifying small-molecule
candidates with biological activity. While these molecules are certainly
atan early stage and in need of further refinement, our results under-
line the potential of our methodology to address and surmount the
complexitiesinherentintargeting clinically challenging biomolecules.
To further characterize ISM061-018-2’s interaction with KRAS-G12D,
we used protein-detected nuclear magnetic resonance (NMR) spec-
troscopy. °N-labeled KRAS-G12D (residues 1-169) protein was used to
record '"H-"N transverse relaxation optimized spectroscopy (TROSY)
heteronuclear single quantum coherence (HSQC) spectrainthe pres-
ence and absence of ISM061-018-2 under guanosine diphosphate
(GDP)-loaded conditions (Extended Data Fig. 2a). Substantial chemical
shift perturbations (CSPs) were observed, indicating fast exchange
between free and bound states, with some residues showing intensity
loss because of exchange broadening. Mapping the weighted CSP
values onto the Protein Data Bank (PDB) structure of GDP-bound
KRAS-G12D (Extended Data Fig. 2b) revealed notable perturbations
in the P-loop, a2 helix, switch Il region and nearby (34 sheet residues,
suggesting abinding mode within the switch Il pocket. Additional CSPs
inthe al helix, switchland a4 regions suggest conformational changes
upon ligand binding. Although direct interaction with D12 (ref. 21), a
residue critical for selectivity ininhibitors such as MRTX1133, was not
confirmed, CSPsintheP-loop residues (G10 and A11) imply possible spe-
cificinteractions. These NMR results strongly support ISM061-018-2"s
binding to the switch Il pocket of KRAS-G12D, further corroborat-
ing its proposed mechanism of action. However, cocrystallization
studies are necessary to fully elucidate the binding residues. In sum-
mary, current quantum hardware is proving crucial for practical drug
discovery applications, preempting the need for fully fault-tolerant
quantumsystemsinthe future. Quantum algorithms have the potential
to design small molecules that better align with the distribution of the
provided training set, achieving outcomes that are challenging for
classical methods because of their ability to more effectively explore
and represent complex, high-dimensional probability distributions.
Usingjust 16 qubits, our algorithm demonstrates how quantum com-
puting can enhance classical computation, leading to more efficient
algorithms. Our hybrid quantum-classical model surpasses classical
models in performance and matches up well against the state of the
art according to the Tartarus benchmark. We applied this model to
design inhibitors targeting the complex KRAS protein, synthesizing
and evaluating 15 promising ligands. Among these, ISM061-018-2 and
ISM061-022 stood out, showing inhibitory effects on KRAS variants
with ISM061-018-2 displaying a high binding affinity of 1.4 uM and
broad activity across KRAS mutants. These results, derived from our
hybrid approach, indicate superior efficacy to fully classical models
and introduce potential chemotypes that expand the chemical space
explored in KRAS inhibitor design. While these findings are encour-
aging, they stop short of definitively proving a ‘quantum advantage’,
achievingresults unattainable by classical methods within areasonable
time frame. Future work will focus on exploring transformer-based
generative models, coupled with increasing the number of qubits,
to further enhance the quality and diversity of generated molecules.

This synergistic approach could potentially lead to the discovery of
therapeutics that might be overlooked by other methods, while also
reducing the preclinical drug discovery phase from several years to
justafew months.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Benchmark setup

Ourbenchmark usedboth classical and quantum hardware. Our classi-
cal computational setup was based on a cluster equipped withgraphics
processing unit (GPU) nodes. This cluster consisted of two GPU nodes,
each with specific features. These features included two AMD EPYC
7V13 64-core processors, resulting in a total of 128 central processing
unit cores per node. In addition, each node was equipped with 512 GB
of random-access memory (RAM). The nodes also contain eight AMD
Instinct MI100 GPUs, each with a GPU RAM of 32 GB. For the classical
training, we used four of these GPUs in parallel (thatis, one GPU node).
Furthermore, we used an Nvidia GPU (RTX3090Ti) to facilitate our
classical-quantumsimulations. For the quantum hardware setup, we
used the Guadalupe quantum system, equipped with 16 qubits and a
Falconr4P processor type. Our QCBM model, accompanied by anerror
correction circuit, was executed on this quantum processor.

Regarding software, we used several packages provided by Zapata
Al under the Qml core agreements. We implemented our variational
quantum circuitand classical LSTM model using the Qml Core Python
package. We used the STONED-SELFIES and VirtualFlow 2.0 packages
to prepare a diverse dataset. Additionally, we used RDkit and Insilico
APIs to compute the reward value and conduct some postprocessing
analyses. The QCBM model underwent a training regimen spanning
30 epochs. In contrast, the LSTM model was trained over a total of
40 epochs.

We used the Optuna platform to optimize the hyperparameters
in the benchmarking. We ran Optuna tuning for 100 trials for each
model to determine the optimal number of QCBM layers, number of
LSTM layers and embedding dimensions. Additionally, we tuned the
sampling temperature, which defines the balance between determin-
ismand stochasticity inthe model, particularly between the prior input
and the LSTM output.

Computational benchmarks: classical versus quantum models
Tartarus benchmark. We used the Tartarus platform® to benchmark
our proposed QCBM-LSTM methodology against an array of classical
state-of-the-art models, including REINVENT®, SMILES-VAE*®, SELFIES-
VAE*, MoFlow*’, SMILES-LSTM-HC***?, SELFIES-LSTM-HC, GB-GA*
andJANUS*. The study focused on three protein targets selected from
the Tartarus dataset: (1) PDB 1SYH, an ionotropic glutamate receptor
associated with neurological and psychiatric disorders such as
Alzheimer disease, Parkinson disease and epilepsy*; (2) PDB 6Y2F, the
main protease of severe acute respiratory syndrome coronavirus 2,
crucial forits RNA translation*¢; and (3) PDB4LDE, the B,-adrenoceptor
G-protein-coupled receptor, acell-membrane-spanning receptor that
binds to adrenaline, a hormone implicated in muscle relaxation and
bronchodilation. For each target, we had a dual objective: to generate
novel molecules that exhibit strong binding affinity to the specified
proteins, as determined by active sites assigned by Tartarus, and to
minimize the docking score using QuickVina 2 (ref. 48). Additionally,
these molecules were required to pass a comprehensive set of filters
designed to eliminate reactive, unsynthesizable or unstable groups,
thereby streamlining the drug discovery process. The top-performing
molecules, after filtering, were subjected to a refined rescoring using
amore precise scoring function provided by SMINA*’, at an increased
level of exhaustiveness.

We conducted experiments using the QCBM with 16 qubits as
a quantum prior and the LSTM as a classical model. The local filter
from the Tartarus paper served as the reward function to train the
QCBM. As recommended by Tartarus, our models were trained on a
subset of 150,000 molecules from the Developmental Therapeutics
Program open compound collection®*, referred to as DATASET in
Supplementary Table 1. Notably, all 150,000 structures underwent a
rigorous screening process using structural filters to eliminatereactive,
unsynthesizable or unstable groups. As such, generative models adept

atcapturingthe distribution of the provided molecule set would exhibit
a correspondingly high success rate in generating novel molecules
without structural violations. Our observations indicated that only a
few generative models demonstrated a high success rate. However, the
QCBM-LSTM model was very strong in producing a substantial num-
ber of high-quality samples that successfully meet the filter criteria,
asevidenced by the elevated success rate depicted in Supplementary
Tablel. Consequently, we believe that the incorporation of aquantum
priorleads toimproved distribution matching. We further benchmark
the influence of a classical-quantum prior in the subsequent sec-
tion. Moreover, our analysis revealed that, for the PDB 4LDE target,
our model generated the highest-scoring molecules relative to other
generative models. While the docking scores for the remaining two
targets were not as high as those produced by classical algorithms, we
speculate thatincorporating a docking-score-based reward, in conjunc-
tionwith the filter successrate, could potentiallyimprove our results.

Benchmarking of prior distributions. To evaluate theimpact of prior
selection on the quality of the molecules generated by our model, we
trained four distinct model variants, each incorporating different
priors (Extended Data Fig. 1b). Specifically, we examined a QCBM
prior and implemented it on both a quantum simulator and a hard-
ware backend, in contrast with an MQCBM operating exclusively on
a quantum simulator and a classical LSTM model devoid of quantum
priors. These models were tasked with designing KRAS inhibitors,
usingameticulously curated dataset of over Lmillion molecules (Fig. ).
Extended Data Figure 1b showcases the optimal results obtained follow-
ingacomprehensive optimization of the corresponding architectures
using Optuna’’. We assessed the quality of the generated molecules
using two distinct sets of criteria: one derived from Tartarus®, termed
the ‘local filter’, and a more stringent set provided by Chemistry42,
termed the ‘Chemistry42filter’. Inboth assessments, we observed that
incorporating a quantum prior enhanced the success rate, as gauged
by the proportion of molecules satisfying the criteria set by the two
filters. Furthermore, using the top model from each prior category, we
sampled 5,000 molecules that successfully met the filter criteria and
examined their respective docking scores (Supplementary Table 2).
Intriguingly, these molecules displayed comparably high docking
scores asdetermined by QuickVina2and the PLIscore, as evaluated by
Chemistry42. Additionally, the synthesized molecules demonstrated
consistent metrics across various parameters, including the diversity
fraction, uniqueness fraction, Chemistry42 reward and Chemistry42
synthetic accessibility score”.

Encouraged by our observation that quantum priors enhance
molecule quality, we further investigated theinfluence of the number
of qubits used inmodeling priors on the quality of generated molecules
(Extended Data Fig. 1d). Specifically, we analyzed the percentage of
5,000 uniquely generated random molecules that satisfied a series of
localfilters. Interestingly, our findings revealed that the success rate
correlated roughly linearly with the number of qubits used inmodeling
the prior, indicating a direct relationship between the complexity of
the quantum model and the effectiveness in generating high-quality
molecules. This trend underscores the potential of increasing qubit
numbers in quantum models to improve molecular design outcomes
systematically.

SPR conditions

A Biacore 8K system was used for all experiments. For preliminary
compound screening, N-terminal biotinylated KRAS-G12D protein
(synthesized by VIVA Biotech; purity > 95%) was captured on a sen-
sor chip SA (GE Healthcare) at a density of about 2,000 RU. Protein
immobilization was conducted using 1x HBS-EP+, 2 mM TCEP and 2%
DMSO as a running buffer. Protein was injected for 70 s at a flow rate
of 5 pul min™. The protein concentration was 5 ug ml™. We performed
aninitial screening of compounds prepared samples by serial twofold
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dilutions from 200 pM to 0.39 pM in 1x HBS-EP+, 2 mM TCEP and 2%
DMSO. Samples were injected for 60 s at a flow rate of 30 pl min"and
dissociation time of 180 s. A Biacore 8K machine was used to carry out
the SPR experiments and subsequent data analysis.

MaMTH-DS dose-response assays

MaMTH-DS FLP HEK293 reporter cell lines®® stably expressing KRAS
(WT or mutant), HRAS, NRAS or artificial membrane-anchored ALFA
tag bait alongside Rafl (for Ras baits) or nanobody ALFA (for artificial
bait) preys were seeded into 384-well white-walled, flat-bottomed,
tissue-culture-treated microplates (Greiner, 781098) at a concentra-
tion 0f100,000 cells per ml (50 pl total volume per well) in DMEM, 10%
FBS and 1% penicillin-streptomycin. Seeding was performed using a
MultiFlo-FX multimode liquid dispenser (BioTek). Plates were left at
room temperature for 30-60 min following seeding before transfer
to a Heracell 150i incubator (Thermo Fisher Scientific) and growth at
37°Cin 5% CO, for 3 h. After growth, 10 pl of DMEM, 10% FBS and 1%
penicillin-streptomycin supplemented with 3 pg ml™ tetracycline
(toinduce bait and prey expression; BioShop, TET701) and 60 ng ml™
epidermal growth factor (to stimulate Ras signaling; Sigma, E9644) was
added to each well using amultichannel pipette. As appropriate, a 6x
concentration of drug (or DMSO only) was also included in the medium,
with alllower concentrations produced by serial dilution starting from
the highest concentration solution. Plates were then grown overnight
(18-20 h) at37 °Cin 5% CO,. A luciferase assay was performed the next
day using 10 pl of 20 uM native coelenterazine substrate (Nanolight,
303) per well. Luminescence was measured using a Clariostar plate
reader (BMG Labtech) with again of3,200-3,800 and al-sintegration
time. All data analysis was performed using Microsoft Excel and Graph-
Pad Prism. Curve fits were performed in Prism (nonlinear regression)
usinglog(inhibitor) versus response curves, with a variable slope (four
parameters) bottom-constrained to zero.

Cell viability assay

MaMTH-DS FLP HEK293 reporter cell lines®® stably expressing KRAS
(WT or G12V mutant) bait alongside Raf1 prey were seeded into 96-well
white-walled, PCLEAR flat-bottomed, tissue-culture-treated plates
(Greiner, 655098) at 40,000 cells per well in DMEM, 10% FBS and 1%
penicillin-streptomycin (60 pl total volume per well). Seeding was
performed using a MultiFlo-FX multimode liquid dispenser (BioTek).
Plates were left at room temperature for 30-60 min following seeding
before transfer toaHeracell 150i incubator (Thermo Fisher Scientific)
and growth at 37 °C in 5% CO, for 3 h. After growth, 30 pl of a 3x con-
centration of the drug (or DMSO only) in DMEM, 10% FBS and 1% peni-
cillin-streptomycin was added to wells, with all lower concentrations
produced by serial dilution starting from the highest concentration
solution (final drug concentration: 30 pM to 123 nM). Plates were then
grown overnight (18-20 h) at 37 °Cin 5% CO,. The effect of the drug on
cellviability was assessed by the CellTiter-Glo luminescent cell viability
assay from Promega (G7570). Briefly, 90 pl of the CellTiter-Glo reagent
was added directly into each well following 30-min equilibration of the
plate at room temperature. Contents of the wells were mixed on an
orbital shaker for 2 min and plates were then incubated at room tem-
perature for 10 minto stabilize the luminescence signal. Luminescence
was measured using a Clariostar plate reader (BMG Labtech) withagain
of 3,600 and al-sintegration time. Valuesrepresent the mean + s.d. of
three replicates for each tested drug concentration. All data analysis
was performed using Microsoft Excel and GraphPad Prism.

Protein purification and NMR: sample preparation

A construct encoding N-His-TEV (tobacco etch virus)-KRAS-G12D
was transformed into BL21(DE3) cells. The cells were grown in minimal
medium containing 1g 1™ [*N]JH,Cl and 4 g 1™ glucose to an optical
density at 600 nm of -0.7-1.0 and induced with 1mM IPTG for 16 h
at 16 °C. Cells were pelleted and resuspended in lysis buffer (20 mM

sodium phosphate pH 8.0, 500 mM NacCl, 10 mM imidazole, 1 mM
2-mercaptoethanol and 5% (v/v) glycerol) containing PMSF and benza-
midine. Protein was purified over a His trap column (Cytiva) following
standard Ni-affinity protocols (wash with10 mMand 20 mMimidazole
and then elute with 300 mM imidazole) and the His-tag was removed
by TEV cleavage. KRAS-G12D was further purified by size-exclusion
chromatography using a Superdex 75 Increase column (10/300 GL)
with PBS buffer (137 mM NacCl, 2.7 mM KCI, 10 mM Na,HPO, and 2 mM
KH,PO,, pH 7.4) containing 10 mM EDTA. The samples were prepared
by mixing 30 pM of protein with 200 pM ISMO018-2 in the presence of
2% DMSO-d,, 5 mM GDP and 15 mM MgCl, in the buffer. The purifica-
tion protocols were adapted from previously published protocols for
KRAS-G12C (ref. 53) and KRAS-G12D (ref. 54).

NMR experiments and analysis

'H-"N TROSY HSQC experiments were recorded at 298 K on an
800-MHz Bruker spectrometer equipped with an AVANCE Il console
andacryogenically cooled probe. The acquired spectrawere processed
using NMRPipe* and were analyzed using ccpnmr 2.0 (ref. 56). The
chemical shifts were transferred from Biological Magnetic Resonance
Bank 27719 (ref. 54). The CSPs on both 'H and ®N dimensions were used
to calculate the weighted CSP*” and these values were then plotted
onto the PDB structure using PyMol to map the regions that took part
inligand binding or underwent conformational changes upon ligand
binding.

Experimental validation methods

Chemistry42 methods: after screening and selection of promising
candidate structures for synthesis. Our selection process reliedona
tiered system of the following criteria:

- Structural and compositional parameter filters, such as hydro-
gen bond donor count and aromatic atom fraction.

* Property evaluation for molecular weight, lipophilicity and

other physicochemical traits.

Medicinal chemistry filters to exclude problematic structural

motifs.

« Asynthetic accessibility assessment based on the ReRSA
model*®,

« Three-dimensional pharmacophoric analysisin reference to an
X-ray cocrystal structure (PDB 7EW9) (Extended Data Fig. 4).

 PLIscoring to estimate binding efficiency.

« Anoverall reward calculation integrating the above scores

For synthesis candidacy, we applied more demanding conditions,
ensuring compounds met the following enhanced benchmarks:

« Clearance of all Chemistry42 filters.

« Anaggregate reward value exceeding 0.7.

+ APLIscore indicative of strong KRAS binding (<—8 kcal mol ™).
« Apharmacophore match score above 0.7.

 Favorable synthetic accessibility with a ReRSA score under 5.

After screening, molecules were clustered and ranked within clusters
by chemical similarity, allowing for expert analysis to further prioritize
onthebasis of novelty and structural intricacy, culminatinginaselec-
tion of 100-150 molecules for potential synthesis and subsequent
examination.

Experimental evaluation methods of generated compounds. From
the pool of identified structures, we synthesized and characterized 15
compounds. Detailed methodologies of this process are elaborated in
the Supplementary Information. The molecular structures of the two
most promising compounds (ISM061-018-2 and ISM061-022) are show-
cased in Fig. 2a,e. Each synthesized compound underwent a rigorous
two-phase evaluation; their binding affinities were determined using
SPR and their biological efficacies were gauged through cell-based
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assays. Notably, compound ISM061-018-2, engineered through our
hybrid quantum model (Supplementary Table 3), demonstrated a
substantial binding affinity to KRAS-G12D, registered at 1.4 puM. To
delve deeper into this molecule’s effectiveness across a spectrum
of KRAS mutants, we commenced an extensive series of tests using
a cell-based assay. Specifically, we evaluated the molecule’s perfor-
mance in a biological context using a commercial cell viability assay
(CellTiter-Glo, Promega) in conjunction withMaMTH-DS, an advanced
split-ubiquitin-based platform for the real-time detection of small
molecules targeting specific cellular interactions?*.

Furthermore, the biological activity of ISM061-018-2 was rigor-
ously tested. Importantly, it demonstrated no detrimental impact on
the viability of HEK293 cells, even when expressing either KRAS WT
or KRAS-G12V bait in MaMTH-DS format and being subjected to con-
centrations as high as 30 pM for 18-20 h, showing that the compound
did not possess any general, nonspecific toxicity (Fig. 2d). Subsequent
testing usingMaMTH-DS across aspectrum of cell lines expressing vari-
ous KRAS baits (WT and five clinically important oncogenic mutants)
incombination with Rafl prey (arecognized KRAS effector) revealed a
dose-responsiveinhibition of interactions, with ICy, values in the micro-
molar range (Supplementary Table 3). The compound’s activity was not
specifictomutants, asittargeted both WT and mutant interactions with
similar efficacy. It also showed comparable effectivenessin disrupting
the interactions of WT NRAS and HRAS baits with Rafl prey (Fig. 2c).
However, it had no effect on the interaction of acompletely unrelated
artificial bait-prey control pair (consisting of membrane-anchored
ALFA tag bait and nanobody ALFA prey)*®, supporting the biological
specificity of the interaction (Fig. 2c). Collectively, these results sup-
porta potential pan-Ras activity of ISM061-018-2.

ISM061-022 (Fig. 2e) also stood out as a compound of promise,
particularly because of its selectivity toward certain KRAS mutants.
Within our in vitro examination, ISM061-022 demonstrated a
concentration-dependent inhibition of KRAS interactions (Fig. 2f),
while manifesting only amild, generalimpact on cell viability at higher
concentrations over an18-20-hexposure (Fig. 2g). The observed inhibi-
tionmirrored that of ISM061-018-2 yet displayed enhanced selectivity
toward certain KRAS mutants, particularly KRAS-G12R and KRAS-Q61H,
which were most receptive to the compound’s action (Fig. 2f and Sup-
plementary Table 4). Diverging from ISM061-018-2, ISM061-022 did
not show binding to KRAS-G12D. The compound also demonstrated
activity against WT HRAS and NRAS, although it was less potent against
HRAS. Notably, the compound had an unusual effect on our artificial
controlinteraction pair, leading to adistinct dip to approximately 50%
residual activity at concentrations of 250-500 nM, before climbing
again and ultimately leading to mild enhancement of the interaction
at higher micromolar concentrations (Fig. 2f). This distinct pattern
suggests an alternative mode of action for ISM061-022, revealing at
least some degree of nonspecific activity, although partial specificity
for mutant KRAS protein does still appear to be in evidence. Further
investigation into the mechanism of action of this molecule will be the
focus of future study.

Inessence, these live-cell experimental observations underscore
therobustness of our approach, effectively identifying small-molecule
candidates with biological activity. This underlines the potential of our
methodology to address and surmount the complexities inherent in
targeting clinically challenging biomolecules.

This section explains the methods and workflow incorporated in
our proposed approach, offering acomprehensive understanding of
the mechanisms used in our study. Figure 1illustrates the workflow
we used in our study.

Data acquisition and preprocessing

Our preliminary dataset, sourced from Insilico Medicine, included
approximately 650 data points. These were selectively collated from
existing literature, specifically targeting the KRAS-G12D mutant (Fig. 1).

Given the dataset’s limited size, we opted to expand it to improve the
robustness of our model during training.

STONED-SELFIES. We used the STONED-SELFIES* algorithm (https://
github.com/aspuru-guzik-group/stoned-selfies) to mine our initial
set of 650 molecules. For a given molecule in SMILES format, we first
randomized the string using RDKit. These randomized strings were
then convertedinto SELFIES. Each SELFIES string underwent mutations
(in the form of character deletions, replacements and additions) up
to 500 times. Subsequently, the synthesizability and stability of the
mutated strings were assessed using Chemistry42. We generated 850,000
molecules, which served as the training set for our generative models.

Virtual screening process. VirtualFlow 2.0 (ref. 23) wasused toiden-
tify additional molecules predicted to bind to KRAS-G12D. The adaptive
target-guided (ATG) method performed the virtual screening in two
stages. In the first stage, the ATG prescreen was performed, in which
a spare version of the 69 billion REAL space from Enamine (version
2022q12) was screened. Inthe second stage, the most potent tranches
ofligands were screened in full,amounting to 100 million ligands. The
docking program used was QuickVina 2 (ref. 48), with exhaustiveness
set to1in both stages of the screen. The screen was carried out in the
Amazon Web Services cloud computing platform. The protein struc-
ture used in the screen was PDB 5US4 (ref. 59), which was prepared
before the virtual screen with Schrédinger’s protein preparation wizard
(addition of hydrogens and protonation state prediction). The size of
the docking box was 14 x 14 x 20 A>.

Quantume-assisted algorithm

AsshowninFig.1, our quantum-assisted model was a hybrid algorithm
composed of both quantum and classical generative components. The
quantum generative model used a QCBM model while the classical
component used an LSTM model. Extended Data Fig. 3 illustrates the
flowchart of our proposed generative model.

Within this model, we used Chemistry42 and a local filter to vali-
date sample generation at each step, which was then used to train
the QCBM model. The QCBM model, a quantum circuit model, was
executed onaquantum processing unit. Subsequently, samples from
the trained QCBM were fed into the LSTM model, which generated
sequences on the basis of these samples. The reward value for each
sample was computed at every step using the local filter until epoch
20, after which we selected Chemistry42. This reward value was then
used to train our quantum generative model. During the first epoch,
no rewards were available; hence, the algorithm sampled from the
untrained QCBM model, designated as X;. From the second epoch
onward, rewards were computed, allowing us to calculate the softmax
of the rewards for each X, where i € [1, N]. The corresponding pseu-
docode canbe foundin Algorithm1.

Quantum-computing-enhanced workflow

Our methodology encompassed a comprehensive workflow, extend-
ing from data preparation to experimental validation, as delineated in
Fig. 1. This workflow was structured into three pivotal stages:

(1) Generation of training data. We initiated the process by con-
structing arobust dataset for training our generative model to target
the KRAS protein. The foundation of this dataset was approximately
650 experimentally confirmed KRAS inhibitors, compiled through an
extensive literature review® . Acknowledging the necessity of amore
expansive dataset to develop amodel for ligand design effectively, we
adopted atwo-pronged approach: virtual screening and local chemical
space exploration. Inthe virtual screening phase, we used VirtualFlow
2.0 (ref.23) toscreen100 million molecules, applying Enamine’s REAL
library®* in conjunction with molecular docking techniques. The top
250,000 compounds from this screen, exhibiting the lowest docking
scores, were subsequently integrated into our dataset. Complementing
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this, the local chemical space exploration was conducted using the
STONED-SELFIES algorithm®*, which was applied to the 650 experimen-
tally derived hits. This algorithm distinctively introduces random point
substitutions into the SELFIES representations®***“° of the molecules,
thereby generating novel compounds that maintain astructural resem-
blanceto the starting point. The resulting derivatives were filtered on
the basis of synthesizability, culminating in the addition of 850,000
molecules to our training set.

(2) Generation of new molecules. Our approach was structured
around the integration of three primary components: (1) the QCBM;
(2) the classical LSTM model; and (3) Chemistry42 for artificial-
intelligence-driven validation, as shown in Extended Data Fig. 3. The
QCBM generator'® used a16-qubit IBM quantum processor with quan-
tum circuits to model complex data distributions. The integration
method of quantum priorsinto the LSTM architecture (Supplementary
Fig. 4) involved merging molecular information encoded in SELFIES
and quantum databy addition or concatenation to form samples, X'(¢),
which were then input into the LSTM cell. The quantum component
(Supplementary Fig. 4) was a QCBM that generated samples from
quantum hardware each training epoch and was trained with areward
value, P(x) = softmax(R(x)), calculated using Chemistry42 or a local
filter. This cyclical sampling, training and validation process formed a
loop aimed at continually improving the generated molecular struc-
tures for targeting KRAS.

(3) Experimental validation. The process of selecting experi-
mental sample candidates isillustrated at the bottom of Fig. 1. After
training our model, we sampled 1 million compounds from each
prior model listed at the bottom of Fig. 1. These samples underwent
evaluation by Chemistry42, filtering out unsuitable compounds for
pharmacological purposes and ranking the remaining compounds by
their docking score (PLI score). Subsequently, 15 novel compounds
were selected for synthesis and underwent SPR and cell-based assay
experiments.

Algorithm 1. Algorithm 1 provides an overview of quantum-assisted
drugdiscovery using an LSTM framework. This pseudocode details the
iterative process, starting with theinitialization of the LSTM and QCBM
models, followed by the generation and validation of new compounds.
Valid compounds are subjected to areward calculation and probability
assessment, whichinturninform the subsequent training of the QCBM
(Algorithm 2). This cycle continues until convergence, illustrating the
dynamicinterplay between quantum predictions and LSTM-generated
compounds underpinned by the Chemistry42 evaluation.

1: Initialize: LSTM, QCBM, filter (Chemistry42)

2:Generate initial samples X;from QCBM

3: while not converged do

4: Train LSTM with X;

5 LSTM generates a new compound from the current samples X;
6 Validate the new compound with the filter

7: ifnew compoundis valid then

8 Compute rewards for the new compound

9 Compute probabilities P(X;) for each new compound

10: Train QCBM with X;and P(X))
11: Generate new X;from QCBM
12: endif

13:end while

QCBM model. The QCBM model represents a quantum variational
generative model, necessitating a classical optimizer to trainits param-
eters. The total count of these parameters was computed with the
number of qubits and layers defined in the model (Extended Data
Fig. 5). Upon specifying the parameters, denoted as 6,, we obtain a
quantum state |¢(6)). Here, each 8, exerts an impact on the wave func-
tion, expressed as ¢(6). To optimize these parameters 8, the model is

initially configured with randomly assigned parameters |¢(6)). These
parameters are subsequently calculated throughout the training pro-
cess. The training of the QCBM model involves minimizing the exact
negative log-likelihood (exact NLL) loss function.

Classical model: LSTM model. LSTM networks (Fig. 1) were used for
the classical part of this architecture. LSTM is simple and has a good
record of learning the string pattern in natural language processing
for along time. LSTM networks are specialized recurrent neural
networks capable of learning long-term dependencies in sequence
data®. They are particularly useful in applications where the context
from earlier parts of the sequence is needed to interpret later parts,
such asin natural language processing and time-series forecasting®®.
The LSTM architecture consists of a chain of repeating modules
called cells. Each cell contains three gates that control the flow of
information:

1. Forgetgate: This gate decides what information from the cell
state should be thrown away or kept. It takes the output of
the previous LSTM cell and the current input and passes them
through a sigmoid function, outputting a number between O
and 1for each number in the cell state, where O means ‘com-
pletely forget this’and 1 means ‘completely keep this’.

2. Input gate: This gate updates the cell state with new informa-
tion. It has two parts: a sigmoid layer called the input gate layer
and a hyperbolic tangent layer. The sigmoid layer decides what
values to update and the hyperbolic tangent layer creates a vec-
tor of new candidate values that could be added to the state.

3. Output gate: This gate decides the next hidden state. The hid-
den state contains information on previous inputs. The hidden
state is used to calculate the output of the LSTM and the next
hidden state.

The following equations can describe the LSTM’s operations:

Forgetgate: f, = o(W;- [h,_1,X,] + by) (6]
Input gate: i, = o(W; - [A,_1,x;] + b)) )
Candidate values: C, = tanh(Wc - [h,_;,Xx;] + bc) 3)
Updatecellstate: C, =f;-C,_; +i,- C, 4)
Output gate: o, = (W, - [h,_1,x;] +b,) 5)
Update hidden state: h, = o, - tanh(C,) 6)

Here, o is the sigmoid activation function, W and b are the weight
matrices and bias vectors for each gate and x, is the input at time ¢*°.

Training an LSTM involves optimizing the network’s weights and
biases to minimize a specific loss function. This is typically accom-
plished using gradient-based optimization algorithms such as sto-
chastic gradient descent or Adam’. The backpropagation through
time algorithm was used to compute the gradients relative to the
loss function, considering the sequential nature of the data”. The
networks were trained using the Adam optimizer with the NLL loss
function; to mitigate overfitting, regularization techniques such as
dropout were implemented’. The NLL loss for a single data point is
given by

L(y.5) = ~log(y,) @

whereyisthetrueclasslabel and y, is the predicted probability for the
true class label y.
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Theloss forabatch of datais the mean of theindividual losses for
each datapointinthebatch:

1 N
% = -5 2 log,) ®

where Nis the number of data points in the batch, y; is the true class
label for the ith data point and y, is the predicted probability for the
true class label of the ith data point.

In the hyperparameter tuning process, we used Optuna, an opti-
mization framework, to adjust parameters such as the number of hid-
dendimensions, embedding dimensions and layers within the model.
The model presentedinthisresearchintegrated adeep learningarchi-
tecture. Thisarchitecture was designed to incorporate prior informa-
tion (samples) into the generative process. Additionally, the model
used Chemistry42 feedback in conjunction with QCBMs, aimed at
enhancingits generative accuracy. Supplementary Figure 4 illustrates
the proposed architecture atacelllevel. The prior samples were com-
bined withinput samples x; = X(i) +x, in the LSTM cell. This combina-
tion constituted two methods: adding and concatenating samples. The
LSTM’s operations were updated with the following operations:

Prior sampling x; = X(i) +-x; ORx; = X(i) + x; 9)
Forgetgate: f; = o(W- [A,_1,x,] + by (10)
Input gate: i, = o(W; - [h_y,x,] + b;) (11)
Candidate values: C, = tanh(W, - [A,_1,X]] + bc) (12)
Update cellstate: C, =f; - C,_y +i; - C; (13)
Outputgate: o, = o(W, - [h,_1,x;] + b,) (14)
Update hidden state: h, = o, - tanh(C,) (15)

To generate samples, the process began with sampling from the
prior, followed by the LSTM network processing these prior samples to
generate compounds representations. The compounds were validated
through the Chemistry42 platform, specifically tailored to assess ligand
quality for the KRAS-G12D mutant. This methodology allows designing
ligands targeted at specific proteins. Moreover, the LSTM model is a
classical approach for learning ligand structures and constructing a
latent ligand space. The QCBM functions as a prior, guiding the LSTM
inthe generation of novel ligand samples. The procedure was subjected
to an iterative process to enhance the quality of ligands, which was
evaluated using the Chemistry42 platform.

Quantum generative model: QCBM model. The QCBM s a variational
quantum algorithm that uses the foundational principles of quantum
mechanics, particularly the Bornrule, to generate complex and diverse
datasamples. The core of our QCBM modelis a parameterized quantum
state |(0)), where 6 denotes the parameters or ansatz of our quantum
circuit. As per the Bornrule, given ameasurement basis, whichis com-
monly the computational basisin our case, the probability of observing
aspecific outcome |x) is expressed as |(x|@(6))[*

Training a QCBM involves optimizing the parameters of the
quantum circuit to produce a probability distribution that closely
approximates the target distribution (probability computed by Chem-
istry42 reward values). This processis fundamentally iterative, where
the quantum circuit parameters, denoted as 6, are adjusted in each
step to reduce the discrepancy between the generated and target

distributions. A classical optimization algorithm recommends adjust-
ing parameters, which operates on the basis of the feedback received
fromtheevaluation of the circuit’s output. At eachiteration, the quan-
tum circuitis sampled to produce aset of states. These states are then
compared against the target distribution and the difference between
theminformsthedirectionand magnitude of parameter adjustmentsin
the quantumcircuit. Thisiterative process continues until the distribu-
tiongenerated by the QCBM closely aligns with the target distribution
or until a predefined convergence criterion is met.

In the context of QCBM training, the exact NLL functions as the
primary loss function, providing a quantitative measure of the differ-
encebetween the distributions. The exact NLL fora QCBM is the nega-
tive sum of the logarithms of the probabilities that the quantum circuit
assigns to the states in the training dataset. Mathematically, this is
representedasNLL (6) = -, log po(x) where Disthe set of data points
and py(x) is the probability of observing state x under the current
parameters 6 of the quantum circuit. Minimizing the NLL involves
adjusting @such that the quantum circuit’s output distributionincreas-
ingly resembles the empirical distribution of the data. This optimiza-
tion is typically carried out using gradient-based methods or other
heuristic techniques suited to the quantum computing context. In our
project, we used COBYLA for our optimizer. Asthe NLL decreases, the
fidelity of the QCBMin modeling the target distribution correspond-
ingly increases, indicating successful training of the quantum model.

Extended Data Fig. 5 shows the QCBM architecture and illustrates
its associated ansatz. We used linear topology for our project. Our
QCBM model was built with 16 qubits and four layers and we had 96
parameters to optimize in total. The initial probability of the sam-
ples, P(X(i)), was computed on the basis of the rewards returned by
the Chemistry42 model. These reward-based probabilities were then
passed through a sof tmax function to ensure that they were normal-
ized and fell within the range of 0-1. Theresulting values served as the
‘true’ probabilities of the samples and were used as the target values
during the model’s training process.

Algorithm 2. Algorithm 2 provides the pseudocode outlining the train-
ingregimen for the QCBM model. This process delineates theiterative
optimization of the QCBM parameters.

1: Initialize: QCBM model with a certain number of qubits and layers
2:Set: Parameterized quantum state |y(6))

3:while not converged do

4: Compute exact NLL loss function

5 Compute gradient of exact NLL with respectto 8

6 Adjust parameters using an optimizer

7: Validate the sample and compute its reward value

8 ifsampleis valid then

9 Compute rewards for the sample

10: Adjust probabilities P(X;) on the basis of the rewards
11: Train QCBM model with adjusted probabilities
12: endIf

13:end while

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets generated and analyzed during the current study, along
with the generative model, are available viaZenodo at https://doi.org/
10.5281/zen0do.11137638 (ref. 73).

Code availability
The full code for running our generative modelis available via Zenodo
at https://doi.org/10.5281/zenodo.11137638 (ref. 73).
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Clasical vs. Quantum Modelling
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Extended Data Fig. 1| Comparative Benchmarking of Quantum and Classical
Ligand Design Methods. (A, B) Comparative analysis of our hybrid approaches
withvaried priors. The performance of the Quantum Circuit Born Machine
(QCBM) was assessed using both a quantum simulator (Sim) and a hardware
backend (HW), and contrasted with a Multi-bases QCBM (MQCBM) operating
solely ona quantum simulator (Sim), as well as an LSTM model devoid of
quantum priors (representing a fully classical architecture). We calculated

the number of generated molecules that met a series of synthesizability and
stability criteria as stipulated by the Tartarus benchmarking platform (referred
to as Local Filters)” and by Chemistry42 (referred to as Chemistry42 Filters). To
generate Figure A, we repeated the experiments five times, sampling n=1,000
compounds in each repetition and applying the filter. The reported values
represent the mean for each data point, with error bars indicating the standard
deviation across the repetitions (Mean + Std.). more detailed is reported in
Supplementary Information Table S3.2. (C) Success rate of generating molecules
that meet Tartarus’s filter criteria as a function of the number of qubits used in
modeling priors for the QCBM. We Comparative Benchmarking of Quantum
and Classical Ligand Design Methods. (A, B) Comparative analysis of our hybrid
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approaches with varied priors. The performance of the Quantum Circuit Born
Machine (QCBM) was assessed using both aquantum simulator (Sim) anda
hardware backend (HW), and contrasted with a Multi-bases QCBM (MQCBM)
operating solely ona quantum simulator (Sim), as well as an LSTM model devoid
of quantum priors (representing a fully classical architecture). We calculated the
number of generated molecules that met a series of synthesizability and stability
criteria as stipulated by the Tartarus benchmarking platform (referred to as Local
Filters)* and by Chemistry42 (referred to as Chemistry42 Filters). To generate
Figure A, we repeated the experiments five times, sampling n=1,000 compounds
ineachrepetition and applying the filter. The reported values represent the
mean for each data point, with error bars indicating the standard deviation
across the repetitions (Mean + Std.). more detailed is reported in Supplementary
Information Table S3.2. (C) Success rate of generating molecules that meet
Tartarus’s filter criteria as a function of the number of qubits used in modeling
priors for the QCBM. We repeated the experiments five times, sampling n=5,000
compoundsin each repetition and applying the filter. The reported values
represent the mean for each data point, with error barsindicating the standard
deviation across the repetitions.
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Extended DataFig. 2| Protein-detected NMR experiments. Protein-detected
NMR experiments elucidate the binding mode of Compound 18-2 to KRAS-G12D.
(A) Significant chemical shift perturbations (CSPs) and intensity changes due

to chemical exchange are observed upon binding to the compound. Residues
lining the Switch-1l pocket that show significant CSPs are highlighted in the inset,
including Gly10 (from the P-loop), Phe78 and Gly77 (from the a-2 helix adjacent
to the Switch-Ilregion), Ser89, and Asp92 (from the -4 sheet). (B) The CSP values

are mapped onto the G12D structure and displayed in a color gradient. Residues
that could not be assigned are shown in grey. The majority of significant CSPs are
observed near the Switch-1l pocket; however, CSPs are also noted in the a-1 helix,
Switch-I, and a-4 regions, possibly indicating conformational changes upon
binding to the compound. (C) Zoomed-in region of the protein, highlighting
residues from the Switch-Il pocket that exhibit CSPs.
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Architecture of Hybrid Quantum-Classical Model
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Extended Data Fig. 3| Quantum-Enhanced Generative Model for Drug
Discovery Applications. (B) Hybrid model combining a Quantum Circuit Born
Machine (QCBM) with Long Short-Term Memory (LSTM). This model iteratively
trains using prior samples from quantum hardware. (A) Integration method of
prior samplesinto the LSTM architecture. Molecular information (in SELFIES

encoding) and quantum data are merged by addition or concatenation. The
resultant samples, X'(t), are then input to the LSTM cell. (C) Quantum prior
component described as a QCBM, generating samples from quantum hardware
each training epoch and trains with a reward value, P (x)=Softmax(R(x)),
calculated using Chemistry42 or alocal filter.
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Extended Data Fig. 4| Pharmacophore Model Depiction. Pharmacophore supports structural integrity, a green sphere highlights a hydrophobic moiety

Model Depiction for KRAS Inhibitor TH-Z816 Based on the Co-crystallized Ligand ~ essential for binding affinity, and a cyan sphere indicates a hydrogen bond donor
Structure Analyzed with Chemistry42 (PDB: 7EW9). This figure illustrates the that contributes to interaction specificity with the KRAS protein. The protein

key pharmacophoric features identified from the ligand structure of TH-Z816 structure is shown on the right, while the pharmacophore interactions within the
bound to KRAS G12D. A blue sphere represents a critical ring system that KRAS Switch-1l binding pocket are detailed on the left.
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Extended DataFig. 5| Quantum Circuit Born Machine (QCBM) Model. gates, including parameterized rotations (Rx, Rz) and entangling CNOT gates, are
Schematic representation of the Quantum Circuit Born Machine (QCBM) orchestrated to evolve the initial state |0) into acomplex quantum state |¥(0)).
implemented in our numerical experiments, illustrating a variational quantum The outcome is measured, and the resulting data are used by the classical
circuit with a configuration of three layers and four qubits. In practice, our optimizer to iteratively refine the parameters 6, thus leading the circuit towards
numerical experiments utilized a system with 16 qubits. The depicted quantum an optimal solution for ligand generation.
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Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The data used in this research were generated using VirtualFlow 2.0 to produce ligand candidates, followed by validation and scoring using
the Chemistry42 platform. Detailed information about the dataset preparation is provided in the manuscript.

Data analysis Data analysis was conducted using custom Python scripts, with the workflow described in detail in the manuscript. Statistical computations,
performance evaluations, and visualization were performed using standard Python libraries. The scripts are available in the GitHub repository
and have been cited in the paper for accessibility and reproducibility.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Zenodo Repository: https://zenodo.org/records/11137638




PDB protein : PDB:7EW9
enamine REAL database : https://enamine.net

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant
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groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size for experimental validation was determined based on standard practices in biological assays and the availability of
synthesized compounds. For Surface Plasmon Resonance (SPR) experiments, serial dilutions of the compounds were tested across a
concentration range of 0.39 uM to 200 uM, ensuring sufficient data points for reliable binding affinity measurements. Cell-based assays were
conducted with three technical replicates for each concentration, ensuring statistical robustness in viability and inhibition data. The chosen
sample sizes are sufficient to detect meaningful differences in activity while minimizing resource use.

Data exclusions  No data were excluded from the analysis unless experiments failed due to technical issues such as improper compound dissolution or
equipment malfunction. Excluded data points and their rationale are noted in the raw dataset and supplementary materials. The exclusion
criteria were predefined to ensure data integrity and reliability.

Replication All experimental findings were independently replicated to confirm reproducibility. SPR experiments were repeated for each compound to
validate binding kinetics, and cell-based assays were conducted in triplicate to ensure consistent results. Results were verified to align across
replicates, confirming the robustness of the findings.

Randomization  Compounds were assigned to experimental groups based on their order in the synthesis workflow and tested across the full range of
concentrations in a randomized sequence to minimize systematic errors. Cell lines and assay plates were randomized during preparation to
avoid any unintended bias.

Blinding Blinding was not implemented during the data collection or analysis phases, as compound testing was conducted in a systematic and

automated manner using established protocols. The lack of subjective decision-making in the experimental workflow made blinding
unnecessary for this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study
|:| Antibodies
|Z Eukaryotic cell lines

[] clinical data

XXX XXX &

[] Plants

Eukaryotic cell lines

n/a | Involved in the study

|Z |:| ChiIP-seq
|:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms

|:| Dual use research of concern

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)
Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Plants

HEK293 (T-REX) cell lines used in this study were obtained from Thermo Fisher (Cat# R71007). Cells were cultured in DMEM
supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin under standard conditions (37°C, 5% CO,).

HEK293 cells used in this study were authenticated by STR analysis at the Toronto Hospital for Sick Children authentication
facility.

HEK293 cells used in this study are routinely tested for mycoplasma contamination using PCR-based mycoplasma detection.

Tests performed before experimentation confirmed that the cell lines are negative for mycoplasma contamination.

The HEK293 cell line is not commonly misidentified. It is a well-characterized human embryonic kidney cell line widely
recognized and validated for biological research.

Seed stocks NA

Novel plant genotypes ~ NA

Authentication NA
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