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Quantum-computing-enhanced algorithm 
unveils potential KRAS inhibitors
 

Mohammad Ghazi Vakili1,2, Christoph Gorgulla    3,4  , Jamie Snider5, 
AkshatKumar Nigam6  , Dmitry Bezrukov7, Daniel Varoli8, Alex Aliper7, 
Daniil Polykovsky    9, Krishna M. Padmanabha Das10,11, Huel Cox III11, 
Anna Lyakisheva5, Ardalan Hosseini Mansob    5,12, Zhong Yao5, Lela Bitar5,13, 
Danielle Tahoulas    5,14, Dora Čerina    14,15, Eugene Radchenko    7, Xiao Ding7, 
Jinxin Liu7, Fanye Meng7, Feng Ren    7, Yudong Cao16, Igor Stagljar    5,12,14,17  , 
Alán Aspuru-Guzik    1,2,18,19,20,21   & Alex Zhavoronkov    7 

We introduce a quantum–classical generative model for small-molecule 
design, specifically targeting KRAS inhibitors for cancer therapy. We apply 
the method to design, select and synthesize 15 proposed molecules that 
could notably engage with KRAS for cancer therapy, with two holding 
promise for future development as inhibitors. This work showcases the 
potential of quantum computing to generate experimentally validated hits 
that compare favorably against classical models.

Drug discovery is a multifaceted and resource-intensive process encom-
passing the discovery, development and comprehensive testing of new 
molecules. Typically extending over a decade and incurring substantial 
costs, the pharmaceutical industry faces substantial financial risks1–3. 
The pressing need for efficiency and innovation in drug discovery  
has led to integrating advanced computational tools into traditional 
pharmaceutical research methodologies. Concurrently, generative 
modeling has emerged as a transformative technology in molecule 
design4–7. Generative models use machine learning techniques to under-
stand the underlying distribution of atoms and bonds in a specified 
dataset, which are then used to construct molecules with predefined 
properties, a process known as inverse molecular design8–10. These 
models excel at exploring the vast drug-like chemical space (~1060  
molecules), identifying potential molecules efficiently11.

By merging the advancements in quantum machine learning with 
traditional drug discovery, the industry is shifting toward innovative 
computational strategies12. While purely classical algorithms have 
made notable strides in drug discovery, hybrid classical–quantum 
approaches offer unique advantages because of the ability of quan-
tum circuit Born machines (QCBMs) to leverage quantum effects such 
as superposition and entanglement13,14. The introduction of QCBMs  
illustrates this advancement, offering a generative model that can  
outperform classical ones in certain aspects. QCBMs are quantum 
generative models that leverage quantum circuits to learn complex 
probability distributions, enabling them to generate new samples 
that resemble the training data15. Hibat-Allah et al.16 demonstrated 
the superior generalization capabilities of QCBMs, which can pro-
duce cardinality distributions beyond the training set and overcome 
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classical systems and quantum prior size. Additionally, Zeng et al.20 
presented a quantum–classical hybrid for image generation, high-
lighting the ability to encode conditions into quantum circuits with  
extra qubits.

Here, we propose a hybrid quantum–classical model that 
addresses qubit limitations and combines quantum and classical 
approaches to generate compounds targeting the KRAS protein, 

learning challenges such as barren plateaus. The integration of tensor 
networks furthers their effectiveness17,18. However, the challenges 
in quantum data processing and circuit trainability have led to the 
development of hybrid algorithms that harness the strengths of 
both quantum and classical machine learning. Manuel et al.19 show-
cased how a hybrid quantum circuit generative adversarial network 
can enhance target space exploration, overcoming limitations of 
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Fig. 1 | Schematic representation of the hybrid quantum–classical framework 
for KRAS ligand development. a, The initial phase involved assembling a 
training dataset, starting with 650 experimentally verified KRAS inhibitors 
sourced from the literature. Using the STONED–SELFIES algorithm, analogs 
of these inhibitors were generated, expanding the dataset to approximately 
850,000 compounds. This was further augmented by adding 250,000 top 
candidates from a virtual screening of the REAL ligand library against KRAS, 
creating a total dataset of over 1 million molecules. b, In the generation phase, 
the dataset was used to train our generative model, consisting of both a classical 
LSTM network and a QCBM. The LSTM network processed sequential data of 

chemical structures, while the QCBM, trained on the output from the LSTM, 
generated complex, high-dimensional probability distributions. This workflow 
incorporated Chemistry42 as a reward function to encourage the production 
of structurally diverse and synthesizable molecules. c, Workflow for KRAS 
inhibitor design, detailing the process from computational compound selection 
to laboratory synthesis and experimental validation. d, A total of 1 million 
compounds (classical samples from the LSTM, quantum samples from QCBM on 
quantum hardware and simulated quantum samples on classical hardware) were 
evaluated by Chemistry42 to filter out unsuitable candidates and rank the rest by 
their PLI scores. Finally, 15 promising compounds were selected for synthesis.
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which is known for its intricate complexity and historical resistance 
to drug discovery efforts21,22. As illustrated in Fig. 1, our workflow was 
structured into three pivotal stages. The first stage was the genera-
tion of training data, beginning with creating a dataset comprising 
approximately 650 known KRAS inhibitors from the literature. To 
enhance this dataset, we used VirtualFlow 2.0 to screen 100 million 
molecules from the Enamine REAL library, selecting the top 250,000 
with the best docking scores23. Additionally, we used the STONED 
(superfast traversal, optimization, novelty, exploration and discovery)  
algorithm on the SELFIES (self-referencing embedded strings) mole
cular representation of known inhibitors, generating structurally 
similar compounds. After applying synthesizability filtering, this 
process added 850,000 molecules to our training set24. Furthermore, 
we used Chemistry42 to validate the molecules generated in this 
workflow25. We merged data from various sources to compile a single 
dataset containing 1.1 million data points, all used for training our gen-
erative model. The next stage was the generation of new molecules, 
which combined (1) the QCBM16 using a 16-qubit processor to generate 
a prior distribution; (2) a long short-term memory (LSTM) network as 
the classical model; and (3) Chemistry42 for validation (Fig. 1). The 
quantum component, depicted in Extended Data Fig. 3c, was a QCBM 
that generated samples from quantum hardware in every training 
epoch and was trained with a reward value, P(x) = softmax(R(x)) cal-
culated using Chemistry42 or a local filter. We note that, in practice, 
the reward function can be tailored to a user’s specific criteria, includ-
ing accounting for off-target effects by evaluating multiple docking 
scenarios. This recurrent sampling, training and validation process 
formed a cycle that continuously improved the generated molecular 
structures targeting the KRAS protein. The final step was experi-
mental validation. From our trained models, we sampled 1 million  
compounds using three different models (selection workflow in 
Fig. 1). We used Chemistry42 to screen these samples for pharmaco-
logical viability and ranked them on the basis of their docking scores 
(protein–ligand interaction (PLI) score). The top 15 candidates were 
synthesized and tested using surface plasmon resonance (SPR) and 
cell-based assays. This study highlights the promising intersection 
of quantum computing and drug discovery, marking a quantum 
computer’s first experimental hit.

Before initiating our campaign to design additional KRAS inhibi-
tors, we aimed to compare our hybrid quantum–classical approach to 
established classical algorithms. We benchmarked our model, targeting 
three different proteins, against the state of the art using the Tartarus 
benchmarking suite for drug discovery26. The results indicate that, 
while few classical models achieved high success rates and docking 
scores, QCBM–LSTM excelled by generating numerous high-quality 
samples. It achieved a high success rate and a docking score comparable 
to the best, as demonstrated in Supplementary Table 1. As illustrated 
in Extended Data Fig. 1a and Supplementary Table 2, we evaluated the 
impact of incorporating a quantum prior (QCBM/multibase (M)QCBM–
LSTM) versus a fully classical model (vanilla LSTM). We observed that 
a quantum prior enhanced the success rate, as measured by the pro-
portion of molecules meeting the criteria set by the same filters. Our 
observations revealed that the use of QCBM–LSTM (Supplementary 
Table 1) offered a 21.5% improvement in passing filters that assessed 
the synthesizability and stability of the generated molecules, indicat-
ing a higher quality of generated structures. Additionally, we analyzed 
how the size of the prior (number of qubits) affected sample quality. 
We found that more qubits improved the success rates for molecule 
generation, suggesting that larger quantum models could enhance 
molecular design. Our findings suggest that the success rate correlates 
approximately linearly with the number of qubits, as illustrated in 
Extended Data Fig. 1c.

We believe that the improvement in our hybrid classical–quantum 
approach stemmed from the quantum effects, such as superposi-
tion and entanglement, which allow QCBMs to explore and represent 

complex, high-dimensional probability distributions more efficiently 
than classical models27. Entanglement enables the creation of correla-
tions between qubits, capturing intricate dependencies within the prior 
distribution. This capability is particularly advantageous in generative 
models, as it allows for a more accurate representation of the underly-
ing distributions in complex datasets, leading to the improved genera-
tion of molecular structures. Additionally, these quantum properties 
help to escape barren plateaus more effectively during optimization—a 
common challenge in machine learning models17. Consequently, this 
resulted in a more comprehensive exploration of the solution space, 
potentially uncovering molecular structures that our naive LSTM could 
not generate within the same time frame.

Furthermore, our KRAS inhibitor campaign validated com-
pounds derived from both the hybrid quantum–classical and vanilla 
approaches using the Chemistry42 platform’s structure-based drug 
design workflow. Within our study, 15 compounds were selected after 
filtering generated compounds (Fig. 1) using Chemistry42 and synthe-
sized for experimental analysis. The two compounds demonstrating 
the greatest promise, ISM061-018-2 and ISM061-022, were character-
ized (structures in Fig. 2a,e, respectively). Their assessment involved 
a two-stage process; the SPR determined their binding affinities and 
cell-based assays were subsequently used to gauge biological efficacy. 
The compound ISM061-018-2, engineered through our hybrid quantum 
model (Fig. 2b and Supplementary Table 6), demonstrated substantial 
binding affinity to KRAS-G12D, registered at 1.4 μM. To delve deeper 
into this molecule’s effectiveness across a spectrum of KRAS mutants, 
we commenced an extensive series of tests using a cell-based assay. 
Specifically, we evaluated the molecule’s performance in a biological 
context using a commercial cell viability assay (CellTiter-Glo, Promega) 
in conjunction with MaMTH-DS (mammalian membrane two-hybrid 
drug screening), an advanced split-ubiquitin-based platform for the 
real-time detection of small molecules targeting specific cellular 
interactions28–35.

The biological activity of ISM061-018-2 was rigorously tested. 
Importantly, it demonstrated no detrimental impact on the viability of 
HEK293 cells, even when expressing KRAS wild type (WT) or KRAS-G12V 
bait in MaMTH-DS format and being subjected to concentrations 
as high as 30 μM for 18–20 h, showing that the compound did not  
possess any general, nonspecific toxicity (Fig. 2d). Subsequent testing 
using MaMTH-DS across a spectrum of cell lines expressing various 
KRAS baits (WT and five clinically important oncogenic mutants)  
in combination with Raf1 ‘prey‘ (a recognized KRAS effector) revealed 
a dose-responsive inhibition of interactions, with half-maximal  
inhibitory concentration (IC50) values in the micromolar range  
(Fig. 2c and Supplementary Table 3). The compound’s activity was  
not specific to mutants, as it targeted both WT and mutant inter-
actions with similar efficacy. It also showed comparable effective-
ness in disrupting the interactions of WT NRAS and HRAS baits with 
Raf1 prey (Fig. 2c). However, it had no effect on the interaction of a 
completely unrelated artificial bait–prey control pair (consisting 
of membrane-anchored ALFA tag bait and nanobody ALFA prey)36, 
supporting the biological specificity of the interaction (Fig. 2c). 
Collectively, these results support a potential pan-Ras activity of 
ISM061-018-2.

ISM061-022, as illustrated in Fig. 2e, also stood out as a compound 
of promise, particularly because of its selectivity toward certain KRAS 
mutants. Within our in vitro examination, ISM061-022 demonstrated 
a concentration-dependent inhibition of KRAS interactions with IC50 
values in the micromolar range (Fig. 2f and Supplementary Table 4), 
while manifesting only a mild, general impact on cell viability at higher 
concentrations over an 18–20-h exposure (Fig. 2g). The observed inhibi-
tion mirrored that of ISM061-018-2 yet displayed enhanced selectivity 
toward certain KRAS mutants, particularly KRAS-G12R and KRAS-Q61H, 
which were most receptive to the compound’s action (Fig. 2f). Diverging  
from ISM061-018-2, ISM061-022 did not show binding to KRAS-G12D 
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Fig. 2 | Pharmacological characterization of compounds ISM061-018-2 and 
ISM061-022 through SPR and cellular activity assays. a,e, Chemical structures 
of ISM061-018-2 (a) and ISM061-022 (e). b, SPR sensorgrams illustrating binding 
effects of ISM061-018-2 on KRAS protein. c,f, MaMTH-DS dose–response curves 
illustrate the binding kinetics and effects of ISM061-018-2 (c) and ISM061-022  
(f) on various KRAS proteins, as well as NRAS, HRAS and artificial bait, with 
activities measured across concentrations from 4 nM to 30 μM. Data points are 
presented as averages from n = 4 technical replicates with error bars showing the 

s.d. Each graph is representative of n = 3 biological replicates, performed  
under the same conditions. Analyses were carried out using GraphPad Prism.  
d,g, Results from CellTiter-Glo viability assays measuring the impact of ISM061-
018-2 (d) and ISM061-022 (g) on cellular proliferation over a concentration 
range from 123 nM to 30 μM, demonstrating that they do not display general, 
nonspecific toxicity. Data points are presented as averages from n = 3 technical 
replicates with error bars showing the s.d. Each graph is representative of n = 3 
biological replicates performed under the same conditions.
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according to SPR. The compound also demonstrated activity against 
WT HRAS and NRAS, although it was less potent against HRAS. Notably, 
the compound had an unusual effect on our artificial control inter-
action pair, leading to a distinct dip to approximately 50% residual 
activity at concentrations of ~250–500 nM, before climbing again and 
ultimately leading to mild enhancement of the interaction at higher 
micromolar concentrations (Fig. 2f). This distinct pattern suggests 
an alternative mode of action for ISM061-022, revealing at least some 
degree of nonspecific activity, although partial specificity for mutant 
KRAS protein does still appear to be in evidence. Further investiga-
tion into the mechanism of action of this molecule will be the focus 
of future study.

Overall, these live-cell experimental observations underscore the 
robustness of our approach, effectively identifying small-molecule 
candidates with biological activity. While these molecules are certainly 
at an early stage and in need of further refinement, our results under-
line the potential of our methodology to address and surmount the 
complexities inherent in targeting clinically challenging biomolecules. 
To further characterize ISM061-018-2’s interaction with KRAS-G12D, 
we used protein-detected nuclear magnetic resonance (NMR) spec-
troscopy. 15N-labeled KRAS-G12D (residues 1–169) protein was used to 
record 1H–15N transverse relaxation optimized spectroscopy (TROSY) 
heteronuclear single quantum coherence (HSQC) spectra in the pres-
ence and absence of ISM061-018-2 under guanosine diphosphate 
(GDP)-loaded conditions (Extended Data Fig. 2a). Substantial chemical 
shift perturbations (CSPs) were observed, indicating fast exchange 
between free and bound states, with some residues showing intensity 
loss because of exchange broadening. Mapping the weighted CSP 
values onto the Protein Data Bank (PDB) structure of GDP-bound 
KRAS-G12D (Extended Data Fig. 2b) revealed notable perturbations 
in the P-loop, α2 helix, switch II region and nearby β4 sheet residues, 
suggesting a binding mode within the switch II pocket. Additional CSPs 
in the α1 helix, switch I and α4 regions suggest conformational changes 
upon ligand binding. Although direct interaction with D12 (ref. 21), a 
residue critical for selectivity in inhibitors such as MRTX1133, was not 
confirmed, CSPs in the P-loop residues (G10 and A11) imply possible spe-
cific interactions. These NMR results strongly support ISM061-018-2’s  
binding to the switch II pocket of KRAS-G12D, further corroborat-
ing its proposed mechanism of action. However, cocrystallization 
studies are necessary to fully elucidate the binding residues. In sum-
mary, current quantum hardware is proving crucial for practical drug 
discovery applications, preempting the need for fully fault-tolerant 
quantum systems in the future. Quantum algorithms have the potential 
to design small molecules that better align with the distribution of the 
provided training set, achieving outcomes that are challenging for 
classical methods because of their ability to more effectively explore 
and represent complex, high-dimensional probability distributions. 
Using just 16 qubits, our algorithm demonstrates how quantum com-
puting can enhance classical computation, leading to more efficient 
algorithms. Our hybrid quantum–classical model surpasses classical 
models in performance and matches up well against the state of the 
art according to the Tartarus benchmark. We applied this model to 
design inhibitors targeting the complex KRAS protein, synthesizing 
and evaluating 15 promising ligands. Among these, ISM061-018-2 and 
ISM061-022 stood out, showing inhibitory effects on KRAS variants 
with ISM061-018-2 displaying a high binding affinity of 1.4 μM and 
broad activity across KRAS mutants. These results, derived from our 
hybrid approach, indicate superior efficacy to fully classical models 
and introduce potential chemotypes that expand the chemical space 
explored in KRAS inhibitor design. While these findings are encour-
aging, they stop short of definitively proving a ‘quantum advantage’, 
achieving results unattainable by classical methods within a reasonable 
time frame. Future work will focus on exploring transformer-based 
generative models, coupled with increasing the number of qubits, 
to further enhance the quality and diversity of generated molecules. 

This synergistic approach could potentially lead to the discovery of 
therapeutics that might be overlooked by other methods, while also 
reducing the preclinical drug discovery phase from several years to 
just a few months.
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Methods
Benchmark setup
Our benchmark used both classical and quantum hardware. Our classi-
cal computational setup was based on a cluster equipped with graphics 
processing unit (GPU) nodes. This cluster consisted of two GPU nodes, 
each with specific features. These features included two AMD EPYC 
7V13 64-core processors, resulting in a total of 128 central processing 
unit cores per node. In addition, each node was equipped with 512 GB 
of random-access memory (RAM). The nodes also contain eight AMD 
Instinct MI100 GPUs, each with a GPU RAM of 32 GB. For the classical 
training, we used four of these GPUs in parallel (that is, one GPU node). 
Furthermore, we used an Nvidia GPU (RTX3090Ti) to facilitate our 
classical–quantum simulations. For the quantum hardware setup, we 
used the Guadalupe quantum system, equipped with 16 qubits and a 
Falcon r4P processor type. Our QCBM model, accompanied by an error 
correction circuit, was executed on this quantum processor.

Regarding software, we used several packages provided by Zapata 
AI under the Qml core agreements. We implemented our variational 
quantum circuit and classical LSTM model using the Qml Core Python 
package. We used the STONED–SELFIES and VirtualFlow 2.0 packages 
to prepare a diverse dataset. Additionally, we used RDkit and Insilico 
APIs to compute the reward value and conduct some postprocessing 
analyses. The QCBM model underwent a training regimen spanning 
30 epochs. In contrast, the LSTM model was trained over a total of  
40 epochs.

We used the Optuna platform to optimize the hyperparameters 
in the benchmarking. We ran Optuna tuning for 100 trials for each 
model to determine the optimal number of QCBM layers, number of 
LSTM layers and embedding dimensions. Additionally, we tuned the 
sampling temperature, which defines the balance between determin-
ism and stochasticity in the model, particularly between the prior input 
and the LSTM output.

Computational benchmarks: classical versus quantum models
Tartarus benchmark. We used the Tartarus platform26 to benchmark 
our proposed QCBM–LSTM methodology against an array of classical 
state-of-the-art models, including REINVENT37, SMILES–VAE38, SELFIES–
VAE39, MoFlow40, SMILES–LSTM–HC41,42, SELFIES–LSTM–HC, GB–GA43  
and JANUS44. The study focused on three protein targets selected from 
the Tartarus dataset: (1) PDB 1SYH, an ionotropic glutamate receptor  
associated with neurological and psychiatric disorders such as  
Alzheimer disease, Parkinson disease and epilepsy45; (2) PDB 6Y2F, the 
main protease of severe acute respiratory syndrome coronavirus 2, 
crucial for its RNA translation46; and (3) PDB 4LDE, the β2-adrenoceptor 
G-protein-coupled receptor, a cell-membrane-spanning receptor that 
binds to adrenaline, a hormone implicated in muscle relaxation and 
bronchodilation47. For each target, we had a dual objective: to generate 
novel molecules that exhibit strong binding affinity to the specified 
proteins, as determined by active sites assigned by Tartarus, and to 
minimize the docking score using QuickVina 2 (ref. 48). Additionally, 
these molecules were required to pass a comprehensive set of filters 
designed to eliminate reactive, unsynthesizable or unstable groups, 
thereby streamlining the drug discovery process. The top-performing 
molecules, after filtering, were subjected to a refined rescoring using 
a more precise scoring function provided by SMINA49, at an increased 
level of exhaustiveness.

We conducted experiments using the QCBM with 16 qubits as 
a quantum prior and the LSTM as a classical model. The local filter 
from the Tartarus paper served as the reward function to train the 
QCBM. As recommended by Tartarus, our models were trained on a 
subset of 150,000 molecules from the Developmental Therapeutics 
Program open compound collection50,51, referred to as DATASET in 
Supplementary Table 1. Notably, all 150,000 structures underwent a 
rigorous screening process using structural filters to eliminate reactive, 
unsynthesizable or unstable groups. As such, generative models adept 

at capturing the distribution of the provided molecule set would exhibit 
a correspondingly high success rate in generating novel molecules 
without structural violations. Our observations indicated that only a 
few generative models demonstrated a high success rate. However, the 
QCBM–LSTM model was very strong in producing a substantial num-
ber of high-quality samples that successfully meet the filter criteria, 
as evidenced by the elevated success rate depicted in Supplementary 
Table 1. Consequently, we believe that the incorporation of a quantum 
prior leads to improved distribution matching. We further benchmark 
the influence of a classical–quantum prior in the subsequent sec-
tion. Moreover, our analysis revealed that, for the PDB 4LDE target, 
our model generated the highest-scoring molecules relative to other 
generative models. While the docking scores for the remaining two 
targets were not as high as those produced by classical algorithms, we 
speculate that incorporating a docking-score-based reward, in conjunc-
tion with the filter success rate, could potentially improve our results.

Benchmarking of prior distributions. To evaluate the impact of prior 
selection on the quality of the molecules generated by our model, we 
trained four distinct model variants, each incorporating different 
priors (Extended Data Fig. 1b). Specifically, we examined a QCBM 
prior and implemented it on both a quantum simulator and a hard-
ware backend, in contrast with an MQCBM operating exclusively on 
a quantum simulator and a classical LSTM model devoid of quantum 
priors. These models were tasked with designing KRAS inhibitors, 
using a meticulously curated dataset of over 1 million molecules (Fig. 1). 
Extended Data Figure 1b showcases the optimal results obtained follow-
ing a comprehensive optimization of the corresponding architectures 
using Optuna52. We assessed the quality of the generated molecules 
using two distinct sets of criteria: one derived from Tartarus26, termed 
the ‘local filter’, and a more stringent set provided by Chemistry42, 
termed the ‘Chemistry42 filter’. In both assessments, we observed that 
incorporating a quantum prior enhanced the success rate, as gauged 
by the proportion of molecules satisfying the criteria set by the two 
filters. Furthermore, using the top model from each prior category, we 
sampled 5,000 molecules that successfully met the filter criteria and 
examined their respective docking scores (Supplementary Table 2). 
Intriguingly, these molecules displayed comparably high docking 
scores as determined by QuickVina 2 and the PLI score, as evaluated by 
Chemistry42. Additionally, the synthesized molecules demonstrated 
consistent metrics across various parameters, including the diversity 
fraction, uniqueness fraction, Chemistry42 reward and Chemistry42 
synthetic accessibility score25.

Encouraged by our observation that quantum priors enhance 
molecule quality, we further investigated the influence of the number 
of qubits used in modeling priors on the quality of generated molecules 
(Extended Data Fig. 1d). Specifically, we analyzed the percentage of 
5,000 uniquely generated random molecules that satisfied a series of 
local filters. Interestingly, our findings revealed that the success rate 
correlated roughly linearly with the number of qubits used in modeling 
the prior, indicating a direct relationship between the complexity of 
the quantum model and the effectiveness in generating high-quality 
molecules. This trend underscores the potential of increasing qubit 
numbers in quantum models to improve molecular design outcomes 
systematically.

SPR conditions
A Biacore 8K system was used for all experiments. For preliminary 
compound screening, N-terminal biotinylated KRAS-G12D protein 
(synthesized by VIVA Biotech; purity ≥ 95%) was captured on a sen-
sor chip SA (GE Healthcare) at a density of about 2,000 RU. Protein 
immobilization was conducted using 1× HBS-EP+, 2 mM TCEP and 2% 
DMSO as a running buffer. Protein was injected for 70 s at a flow rate 
of 5 μl min−1. The protein concentration was 5 μg ml−1. We performed 
an initial screening of compounds prepared samples by serial twofold 
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dilutions from 200 μM to 0.39 μM in 1× HBS-EP+, 2 mM TCEP and 2% 
DMSO. Samples were injected for 60 s at a flow rate of 30 μl min−1 and 
dissociation time of 180 s. A Biacore 8K machine was used to carry out 
the SPR experiments and subsequent data analysis.

MaMTH-DS dose–response assays
MaMTH-DS FLP HEK293 reporter cell lines28 stably expressing KRAS 
(WT or mutant), HRAS, NRAS or artificial membrane-anchored ALFA 
tag bait alongside Raf1 (for Ras baits) or nanobody ALFA (for artificial 
bait) preys were seeded into 384-well white-walled, flat-bottomed, 
tissue-culture-treated microplates (Greiner, 781098) at a concentra-
tion of 100,000 cells per ml (50 μl total volume per well) in DMEM, 10% 
FBS and 1% penicillin–streptomycin. Seeding was performed using a 
MultiFlo-FX multimode liquid dispenser (BioTek). Plates were left at 
room temperature for 30–60 min following seeding before transfer 
to a Heracell 150i incubator (Thermo Fisher Scientific) and growth at 
37 °C in 5% CO2 for 3 h. After growth, 10 μl of DMEM, 10% FBS and 1% 
penicillin–streptomycin supplemented with 3 μg ml−1 tetracycline 
(to induce bait and prey expression; BioShop, TET701) and 60 ng ml−1 
epidermal growth factor (to stimulate Ras signaling; Sigma, E9644) was 
added to each well using a multichannel pipette. As appropriate, a 6× 
concentration of drug (or DMSO only) was also included in the medium, 
with all lower concentrations produced by serial dilution starting from 
the highest concentration solution. Plates were then grown overnight 
(18–20 h) at 37 °C in 5% CO2. A luciferase assay was performed the next 
day using 10 μl of 20 μM native coelenterazine substrate (Nanolight, 
303) per well. Luminescence was measured using a Clariostar plate 
reader (BMG Labtech) with a gain of 3,200–3,800 and a 1-s integration 
time. All data analysis was performed using Microsoft Excel and Graph-
Pad Prism. Curve fits were performed in Prism (nonlinear regression) 
using log(inhibitor) versus response curves, with a variable slope (four 
parameters) bottom-constrained to zero.

Cell viability assay
MaMTH-DS FLP HEK293 reporter cell lines28 stably expressing KRAS 
(WT or G12V mutant) bait alongside Raf1 prey were seeded into 96-well 
white-walled, μCLEAR flat-bottomed, tissue-culture-treated plates 
(Greiner, 655098) at 40,000 cells per well in DMEM, 10% FBS and 1% 
penicillin–streptomycin (60 μl total volume per well). Seeding was 
performed using a MultiFlo-FX multimode liquid dispenser (BioTek). 
Plates were left at room temperature for 30–60 min following seeding 
before transfer to a Heracell 150i incubator (Thermo Fisher Scientific) 
and growth at 37 °C in 5% CO2 for 3 h. After growth, 30 μl of a 3× con-
centration of the drug (or DMSO only) in DMEM, 10% FBS and 1% peni-
cillin–streptomycin was added to wells, with all lower concentrations 
produced by serial dilution starting from the highest concentration 
solution (final drug concentration: 30 μM to 123 nM). Plates were then 
grown overnight (18–20 h) at 37 °C in 5% CO2. The effect of the drug on 
cell viability was assessed by the CellTiter-Glo luminescent cell viability 
assay from Promega (G7570). Briefly, 90 μl of the CellTiter-Glo reagent 
was added directly into each well following 30-min equilibration of the 
plate at room temperature. Contents of the wells were mixed on an 
orbital shaker for 2 min and plates were then incubated at room tem-
perature for 10 min to stabilize the luminescence signal. Luminescence 
was measured using a Clariostar plate reader (BMG Labtech) with a gain 
of 3,600 and a 1-s integration time. Values represent the mean ± s.d. of 
three replicates for each tested drug concentration. All data analysis 
was performed using Microsoft Excel and GraphPad Prism.

Protein purification and NMR: sample preparation
A construct encoding N-His–TEV (tobacco etch virus)–KRAS-G12D 
was transformed into BL21(DE3) cells. The cells were grown in minimal 
medium containing 1 g l−1 [15N]H4Cl and 4 g l−1 glucose to an optical 
density at 600 nm of ~0.7–1.0 and induced with 1 mM IPTG for 16 h 
at 16 °C. Cells were pelleted and resuspended in lysis buffer (20 mM 

sodium phosphate pH 8.0, 500 mM NaCl, 10 mM imidazole, 1 mM 
2-mercaptoethanol and 5% (v/v) glycerol) containing PMSF and benza-
midine. Protein was purified over a His trap column (Cytiva) following 
standard Ni-affinity protocols (wash with 10 mM and 20 mM imidazole 
and then elute with 300 mM imidazole) and the His-tag was removed 
by TEV cleavage. KRAS-G12D was further purified by size-exclusion 
chromatography using a Superdex 75 Increase column (10/300 GL) 
with PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM 
KH2PO4, pH 7.4) containing 10 mM EDTA. The samples were prepared 
by mixing 30 μM of protein with 200 μM ISM018-2 in the presence of 
2% DMSO-d6, 5 mM GDP and 15 mM MgCl2 in the buffer. The purifica-
tion protocols were adapted from previously published protocols for 
KRAS-G12C (ref. 53) and KRAS-G12D (ref. 54).

NMR experiments and analysis
1H–15N TROSY HSQC experiments were recorded at 298 K on an 
800-MHz Bruker spectrometer equipped with an AVANCE III console 
and a cryogenically cooled probe. The acquired spectra were processed 
using NMRPipe55 and were analyzed using ccpnmr 2.0 (ref. 56). The 
chemical shifts were transferred from Biological Magnetic Resonance 
Bank 27719 (ref. 54). The CSPs on both 1H and 15N dimensions were used 
to calculate the weighted CSP57 and these values were then plotted 
onto the PDB structure using PyMol to map the regions that took part 
in ligand binding or underwent conformational changes upon ligand 
binding.

Experimental validation methods
Chemistry42 methods: after screening and selection of promising 
candidate structures for synthesis. Our selection process relied on a 
tiered system of the following criteria:

•	 �Structural and compositional parameter filters, such as hydro-
gen bond donor count and aromatic atom fraction.

•	 �Property evaluation for molecular weight, lipophilicity and 
other physicochemical traits.

•	 �Medicinal chemistry filters to exclude problematic structural 
motifs.

•	 �A synthetic accessibility assessment based on the ReRSA 
model58.

•	 �Three-dimensional pharmacophoric analysis in reference to an 
X-ray cocrystal structure (PDB 7EW9) (Extended Data Fig. 4).

•	 PLI scoring to estimate binding efficiency.
•	 An overall reward calculation integrating the above scores

For synthesis candidacy, we applied more demanding conditions, 
ensuring compounds met the following enhanced benchmarks:

•	 Clearance of all Chemistry42 filters.
•	 An aggregate reward value exceeding 0.7.
•	 A PLI score indicative of strong KRAS binding (<−8 kcal mol−1).
•	 A pharmacophore match score above 0.7.
•	 Favorable synthetic accessibility with a ReRSA score under 5.

After screening, molecules were clustered and ranked within clusters 
by chemical similarity, allowing for expert analysis to further prioritize 
on the basis of novelty and structural intricacy, culminating in a selec-
tion of 100–150 molecules for potential synthesis and subsequent 
examination.

Experimental evaluation methods of generated compounds. From 
the pool of identified structures, we synthesized and characterized 15 
compounds. Detailed methodologies of this process are elaborated in 
the Supplementary Information. The molecular structures of the two 
most promising compounds (ISM061-018-2 and ISM061-022) are show-
cased in Fig. 2a,e. Each synthesized compound underwent a rigorous 
two-phase evaluation; their binding affinities were determined using 
SPR and their biological efficacies were gauged through cell-based 
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assays. Notably, compound ISM061-018-2, engineered through our 
hybrid quantum model (Supplementary Table 3), demonstrated a 
substantial binding affinity to KRAS-G12D, registered at 1.4 μM. To 
delve deeper into this molecule’s effectiveness across a spectrum 
of KRAS mutants, we commenced an extensive series of tests using 
a cell-based assay. Specifically, we evaluated the molecule’s perfor-
mance in a biological context using a commercial cell viability assay 
(CellTiter-Glo, Promega) in conjunction with MaMTH-DS, an advanced 
split-ubiquitin-based platform for the real-time detection of small 
molecules targeting specific cellular interactions28–34.

Furthermore, the biological activity of ISM061-018-2 was rigor-
ously tested. Importantly, it demonstrated no detrimental impact on 
the viability of HEK293 cells, even when expressing either KRAS WT 
or KRAS-G12V bait in MaMTH-DS format and being subjected to con-
centrations as high as 30 μM for 18–20 h, showing that the compound 
did not possess any general, nonspecific toxicity (Fig. 2d). Subsequent 
testing using MaMTH-DS across a spectrum of cell lines expressing vari-
ous KRAS baits (WT and five clinically important oncogenic mutants) 
in combination with Raf1 prey (a recognized KRAS effector) revealed a 
dose-responsive inhibition of interactions, with IC50 values in the micro-
molar range (Supplementary Table 3). The compound’s activity was not 
specific to mutants, as it targeted both WT and mutant interactions with 
similar efficacy. It also showed comparable effectiveness in disrupting 
the interactions of WT NRAS and HRAS baits with Raf1 prey (Fig. 2c). 
However, it had no effect on the interaction of a completely unrelated 
artificial bait–prey control pair (consisting of membrane-anchored 
ALFA tag bait and nanobody ALFA prey)36, supporting the biological 
specificity of the interaction (Fig. 2c). Collectively, these results sup-
port a potential pan-Ras activity of ISM061-018-2.

ISM061-022 (Fig. 2e) also stood out as a compound of promise, 
particularly because of its selectivity toward certain KRAS mutants. 
Within our in vitro examination, ISM061-022 demonstrated a 
concentration-dependent inhibition of KRAS interactions (Fig. 2f), 
while manifesting only a mild, general impact on cell viability at higher 
concentrations over an 18–20-h exposure (Fig. 2g). The observed inhibi-
tion mirrored that of ISM061-018-2 yet displayed enhanced selectivity 
toward certain KRAS mutants, particularly KRAS-G12R and KRAS-Q61H, 
which were most receptive to the compound’s action (Fig. 2f and Sup-
plementary Table 4). Diverging from ISM061-018-2, ISM061-022 did 
not show binding to KRAS-G12D. The compound also demonstrated 
activity against WT HRAS and NRAS, although it was less potent against 
HRAS. Notably, the compound had an unusual effect on our artificial 
control interaction pair, leading to a distinct dip to approximately 50% 
residual activity at concentrations of 250–500 nM, before climbing 
again and ultimately leading to mild enhancement of the interaction 
at higher micromolar concentrations (Fig. 2f). This distinct pattern 
suggests an alternative mode of action for ISM061-022, revealing at 
least some degree of nonspecific activity, although partial specificity 
for mutant KRAS protein does still appear to be in evidence. Further 
investigation into the mechanism of action of this molecule will be the 
focus of future study.

In essence, these live-cell experimental observations underscore 
the robustness of our approach, effectively identifying small-molecule 
candidates with biological activity. This underlines the potential of our 
methodology to address and surmount the complexities inherent in 
targeting clinically challenging biomolecules.

This section explains the methods and workflow incorporated in 
our proposed approach, offering a comprehensive understanding of 
the mechanisms used in our study. Figure 1 illustrates the workflow 
we used in our study.

Data acquisition and preprocessing
Our preliminary dataset, sourced from Insilico Medicine, included 
approximately 650 data points. These were selectively collated from 
existing literature, specifically targeting the KRAS-G12D mutant (Fig. 1). 

Given the dataset’s limited size, we opted to expand it to improve the 
robustness of our model during training.

STONED–SELFIES. We used the STONED–SELFIES24 algorithm (https://
github.com/aspuru-guzik-group/stoned-selfies) to mine our initial 
set of 650 molecules. For a given molecule in SMILES format, we first 
randomized the string using RDKit. These randomized strings were 
then converted into SELFIES. Each SELFIES string underwent mutations  
(in the form of character deletions, replacements and additions) up 
to 500 times. Subsequently, the synthesizability and stability of the 
mutated strings were assessed using Chemistry42. We generated 850,000 
molecules, which served as the training set for our generative models.

Virtual screening process. VirtualFlow 2.0 (ref. 23) was used to iden-
tify additional molecules predicted to bind to KRAS-G12D. The adaptive 
target-guided (ATG) method performed the virtual screening in two 
stages. In the first stage, the ATG prescreen was performed, in which 
a spare version of the 69 billion REAL space from Enamine (version 
2022q12) was screened. In the second stage, the most potent tranches 
of ligands were screened in full, amounting to 100 million ligands. The 
docking program used was QuickVina 2 (ref. 48), with exhaustiveness 
set to 1 in both stages of the screen. The screen was carried out in the 
Amazon Web Services cloud computing platform. The protein struc-
ture used in the screen was PDB 5US4 (ref. 59), which was prepared 
before the virtual screen with Schrödinger’s protein preparation wizard 
(addition of hydrogens and protonation state prediction). The size of 
the docking box was 14 × 14 × 20 Å3.

Quantum-assisted algorithm
As shown in Fig. 1, our quantum-assisted model was a hybrid algorithm 
composed of both quantum and classical generative components. The 
quantum generative model used a QCBM model while the classical 
component used an LSTM model. Extended Data Fig. 3 illustrates the 
flowchart of our proposed generative model.

Within this model, we used Chemistry42 and a local filter to vali-
date sample generation at each step, which was then used to train 
the QCBM model. The QCBM model, a quantum circuit model, was 
executed on a quantum processing unit. Subsequently, samples from 
the trained QCBM were fed into the LSTM model, which generated 
sequences on the basis of these samples. The reward value for each 
sample was computed at every step using the local filter until epoch 
20, after which we selected Chemistry42. This reward value was then 
used to train our quantum generative model. During the first epoch, 
no rewards were available; hence, the algorithm sampled from the 
untrained QCBM model, designated as Xi. From the second epoch 
onward, rewards were computed, allowing us to calculate the softmax 
of the rewards for each Xi, where i ∈ [1, N]. The corresponding pseu-
docode can be found in Algorithm 1.

Quantum-computing-enhanced workflow
Our methodology encompassed a comprehensive workflow, extend-
ing from data preparation to experimental validation, as delineated in 
Fig. 1. This workflow was structured into three pivotal stages:

(1) Generation of training data. We initiated the process by con-
structing a robust dataset for training our generative model to target 
the KRAS protein. The foundation of this dataset was approximately 
650 experimentally confirmed KRAS inhibitors, compiled through an 
extensive literature review60–63. Acknowledging the necessity of a more 
expansive dataset to develop a model for ligand design effectively, we 
adopted a two-pronged approach: virtual screening and local chemical 
space exploration. In the virtual screening phase, we used VirtualFlow 
2.0 (ref. 23) to screen 100 million molecules, applying Enamine’s REAL 
library64 in conjunction with molecular docking techniques. The top 
250,000 compounds from this screen, exhibiting the lowest docking 
scores, were subsequently integrated into our dataset. Complementing 
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this, the local chemical space exploration was conducted using the 
STONED–SELFIES algorithm24, which was applied to the 650 experimen-
tally derived hits. This algorithm distinctively introduces random point 
substitutions into the SELFIES representations39,65,66 of the molecules, 
thereby generating novel compounds that maintain a structural resem-
blance to the starting point. The resulting derivatives were filtered on 
the basis of synthesizability, culminating in the addition of 850,000 
molecules to our training set.

(2) Generation of new molecules. Our approach was structured 
around the integration of three primary components: (1) the QCBM; 
(2) the classical LSTM model; and (3) Chemistry42 for artificial- 
intelligence-driven validation, as shown in Extended Data Fig. 3. The 
QCBM generator16 used a 16-qubit IBM quantum processor with quan-
tum circuits to model complex data distributions. The integration 
method of quantum priors into the LSTM architecture (Supplementary 
Fig. 4) involved merging molecular information encoded in SELFIES 
and quantum data by addition or concatenation to form samples, X′(t), 
which were then input into the LSTM cell. The quantum component 
(Supplementary Fig. 4) was a QCBM that generated samples from 
quantum hardware each training epoch and was trained with a reward 
value, P(x) = softmax(R(x)), calculated using Chemistry42 or a local 
filter. This cyclical sampling, training and validation process formed a 
loop aimed at continually improving the generated molecular struc-
tures for targeting KRAS.

(3) Experimental validation. The process of selecting experi-
mental sample candidates is illustrated at the bottom of Fig. 1. After 
training our model, we sampled 1 million compounds from each 
prior model listed at the bottom of Fig. 1. These samples underwent 
evaluation by Chemistry42, filtering out unsuitable compounds for 
pharmacological purposes and ranking the remaining compounds by 
their docking score (PLI score). Subsequently, 15 novel compounds 
were selected for synthesis and underwent SPR and cell-based assay 
experiments.

Algorithm 1. Algorithm 1 provides an overview of quantum-assisted 
drug discovery using an LSTM framework. This pseudocode details the 
iterative process, starting with the initialization of the LSTM and QCBM 
models, followed by the generation and validation of new compounds. 
Valid compounds are subjected to a reward calculation and probability 
assessment, which in turn inform the subsequent training of the QCBM 
(Algorithm 2). This cycle continues until convergence, illustrating the 
dynamic interplay between quantum predictions and LSTM-generated 
compounds underpinned by the Chemistry42 evaluation.

1: Initialize: LSTM, QCBM, filter (Chemistry42)
2: Generate initial samples Xi from QCBM
3: while not converged do
4:    Train LSTM with Xi

5:    LSTM generates a new compound from the current samples Xi

6:    Validate the new compound with the filter
7:    if new compound is valid then
8:        Compute rewards for the new compound
9:        Compute probabilities P(Xi) for each new compound
10:         Train QCBM with Xi and P(Xi)
11:        Generate new Xi from QCBM
12:    end if
13: end while

QCBM model. The QCBM model represents a quantum variational 
generative model, necessitating a classical optimizer to train its param-
eters. The total count of these parameters was computed with the 
number of qubits and layers defined in the model (Extended Data 
Fig. 5). Upon specifying the parameters, denoted as θn, we obtain a 
quantum state ||ψ(θ)⟩. Here, each θn exerts an impact on the wave func-
tion, expressed as ψ(θ). To optimize these parameters θ, the model is 

initially configured with randomly assigned parameters ||ψ(θ)⟩. These 
parameters are subsequently calculated throughout the training pro-
cess. The training of the QCBM model involves minimizing the exact 
negative log-likelihood (exact NLL) loss function.

Classical model: LSTM model. LSTM networks (Fig. 1) were used for 
the classical part of this architecture. LSTM is simple and has a good 
record of learning the string pattern in natural language processing 
for a long time. LSTM networks are specialized recurrent neural 
networks capable of learning long-term dependencies in sequence 
data67. They are particularly useful in applications where the context 
from earlier parts of the sequence is needed to interpret later parts, 
such as in natural language processing and time-series forecasting68. 
The LSTM architecture consists of a chain of repeating modules 
called cells. Each cell contains three gates that control the flow of 
information:

	 1.	� Forget gate: This gate decides what information from the cell 
state should be thrown away or kept. It takes the output of 
the previous LSTM cell and the current input and passes them 
through a sigmoid function, outputting a number between 0 
and 1 for each number in the cell state, where 0 means ‘com-
pletely forget this’ and 1 means ‘completely keep this’.

	 2.	� Input gate: This gate updates the cell state with new informa-
tion. It has two parts: a sigmoid layer called the input gate layer 
and a hyperbolic tangent layer. The sigmoid layer decides what  
values to update and the hyperbolic tangent layer creates a vec-
tor of new candidate values that could be added to the state.

	 3.	� Output gate: This gate decides the next hidden state. The hid-
den state contains information on previous inputs. The hidden 
state is used to calculate the output of the LSTM and the next 
hidden state.

The following equations can describe the LSTM’s operations:

Forget gate: ft = σ(Wf ⋅ [ht−1, xt] + bf) (1)

Input gate: it = σ(Wi ⋅ [ht−1, xt] + bi) (2)

Candidate values: ̃Ct = tanh(WC ⋅ [ht−1, xt] + bC) (3)

Update cell state: Ct = ft ⋅ Ct−1 + it ⋅ ̃Ct (4)

Output gate: ot = σ(Wo ⋅ [ht−1, xt] + bo) (5)

Update hidden state: ht = ot ⋅ tanh(Ct) (6)

Here, σ is the sigmoid activation function, W and b are the weight 
matrices and bias vectors for each gate and xt is the input at time t69.

Training an LSTM involves optimizing the network’s weights and 
biases to minimize a specific loss function. This is typically accom-
plished using gradient-based optimization algorithms such as sto-
chastic gradient descent or Adam70. The backpropagation through 
time algorithm was used to compute the gradients relative to the 
loss function, considering the sequential nature of the data71. The 
networks were trained using the Adam optimizer with the NLL loss 
function; to mitigate overfitting, regularization techniques such as 
dropout were implemented72. The NLL loss for a single data point is 
given by

L( y, ̂y) = − log( ̂yy) (7)

where y is the true class label and ̂yy is the predicted probability for the 
true class label y.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-024-02526-3

The loss for a batch of data is the mean of the individual losses for 
each data point in the batch:

ℒ = − 1
N

N
∑
i=1

log( ̂yyi ) (8)

where N is the number of data points in the batch, yi is the true class 
label for the ith data point and ̂yyi is the predicted probability for the 
true class label of the ith data point.

In the hyperparameter tuning process, we used Optuna, an opti-
mization framework, to adjust parameters such as the number of hid-
den dimensions, embedding dimensions and layers within the model. 
The model presented in this research integrated a deep learning archi-
tecture. This architecture was designed to incorporate prior informa-
tion (samples) into the generative process. Additionally, the model 
used Chemistry42 feedback in conjunction with QCBMs, aimed at 
enhancing its generative accuracy. Supplementary Figure 4 illustrates 
the proposed architecture at a cell level. The prior samples were com-
bined with input samples x′t = X(i) ++xt  in the LSTM cell. This combina-
tion constituted two methods: adding and concatenating samples. The 
LSTM’s operations were updated with the following operations:

Prior sampling x′t = X(i) ++xt OR x′t = X(i) + xt (9)

Forget gate: ft = σ(Wf ⋅ [ht−1, x′t] + bf) (10)

Input gate: it = σ(Wi ⋅ [ht−1, x′t] + bi) (11)

Candidate values: ̃Ct = tanh(WC ⋅ [ht−1, x′t] + bC) (12)

Update cell state: Ct = ft ⋅ Ct−1 + it ⋅ ̃Ct (13)

Output gate: ot = σ(Wo ⋅ [ht−1, x′t] + bo) (14)

Update hidden state: ht = ot ⋅ tanh(Ct) (15)

To generate samples, the process began with sampling from the 
prior, followed by the LSTM network processing these prior samples to 
generate compounds representations. The compounds were validated 
through the Chemistry42 platform, specifically tailored to assess ligand 
quality for the KRAS-G12D mutant. This methodology allows designing 
ligands targeted at specific proteins. Moreover, the LSTM model is a 
classical approach for learning ligand structures and constructing a 
latent ligand space. The QCBM functions as a prior, guiding the LSTM 
in the generation of novel ligand samples. The procedure was subjected 
to an iterative process to enhance the quality of ligands, which was 
evaluated using the Chemistry42 platform.

Quantum generative model: QCBM model. The QCBM is a variational 
quantum algorithm that uses the foundational principles of quantum 
mechanics, particularly the Born rule, to generate complex and diverse 
data samples. The core of our QCBM model is a parameterized quantum 
state ||ψ(θ)⟩, where θ denotes the parameters or ansatz of our quantum 
circuit. As per the Born rule, given a measurement basis, which is com-
monly the computational basis in our case, the probability of observing 
a specific outcome |x⟩ is expressed as ∣〈x∣ψ(θ)〉∣2.

Training a QCBM involves optimizing the parameters of the 
quantum circuit to produce a probability distribution that closely 
approximates the target distribution (probability computed by Chem-
istry42 reward values). This process is fundamentally iterative, where 
the quantum circuit parameters, denoted as θ, are adjusted in each 
step to reduce the discrepancy between the generated and target 

distributions. A classical optimization algorithm recommends adjust-
ing parameters, which operates on the basis of the feedback received 
from the evaluation of the circuit’s output. At each iteration, the quan-
tum circuit is sampled to produce a set of states. These states are then 
compared against the target distribution and the difference between 
them informs the direction and magnitude of parameter adjustments in 
the quantum circuit. This iterative process continues until the distribu-
tion generated by the QCBM closely aligns with the target distribution 
or until a predefined convergence criterion is met.

In the context of QCBM training, the exact NLL functions as the 
primary loss function, providing a quantitative measure of the differ-
ence between the distributions. The exact NLL for a QCBM is the nega-
tive sum of the logarithms of the probabilities that the quantum circuit 
assigns to the states in the training dataset. Mathematically, this is 
represented as NLL (θ) = −∑x∈D logpθ(x), where D is the set of data points 
and pθ(x) is the probability of observing state x under the current 
parameters θ of the quantum circuit. Minimizing the NLL involves 
adjusting θ such that the quantum circuit’s output distribution increas-
ingly resembles the empirical distribution of the data. This optimiza-
tion is typically carried out using gradient-based methods or other 
heuristic techniques suited to the quantum computing context. In our 
project, we used COBYLA for our optimizer. As the NLL decreases, the 
fidelity of the QCBM in modeling the target distribution correspond-
ingly increases, indicating successful training of the quantum model.

Extended Data Fig. 5 shows the QCBM architecture and illustrates 
its associated ansatz. We used linear topology for our project. Our 
QCBM model was built with 16 qubits and four layers and we had 96 
parameters to optimize in total. The initial probability of the sam-
ples, P(X(i)), was computed on the basis of the rewards returned by 
the Chemistry42 model. These reward-based probabilities were then 
passed through a softmax function to ensure that they were normal-
ized and fell within the range of 0–1. The resulting values served as the 
‘true’ probabilities of the samples and were used as the target values 
during the model’s training process.

Algorithm 2. Algorithm 2 provides the pseudocode outlining the train-
ing regimen for the QCBM model. This process delineates the iterative 
optimization of the QCBM parameters.

1: Initialize: QCBM model with a certain number of qubits and layers
2: Set: Parameterized quantum state ||ψ(θ)⟩
3: while not converged do
4:    Compute exact NLL loss function
5:    Compute gradient of exact NLL with respect to θ
6:    Adjust parameters using an optimizer
7:    Validate the sample and compute its reward value
8:    if sample is valid then
9:        Compute rewards for the sample
10:        Adjust probabilities P(Xi) on the basis of the rewards
11:        Train QCBM model with adjusted probabilities
12:    end If
13: end while

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study, along 
with the generative model, are available via Zenodo at https://doi.org/ 
10.5281/zenodo.11137638 (ref. 73).

Code availability
The full code for running our generative model is available via Zenodo 
at https://doi.org/10.5281/zenodo.11137638 (ref. 73).
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Extended Data Fig. 1 | Comparative Benchmarking of Quantum and Classical 
Ligand Design Methods. (A, B) Comparative analysis of our hybrid approaches 
with varied priors. The performance of the Quantum Circuit Born Machine 
(QCBM) was assessed using both a quantum simulator (Sim) and a hardware 
backend (HW), and contrasted with a Multi-bases QCBM (MQCBM) operating 
solely on a quantum simulator (Sim), as well as an LSTM model devoid of 
quantum priors (representing a fully classical architecture). We calculated 
the number of generated molecules that met a series of synthesizability and 
stability criteria as stipulated by the Tartarus benchmarking platform (referred 
to as Local Filters)26 and by Chemistry42 (referred to as Chemistry42 Filters). To 
generate Figure A, we repeated the experiments five times, sampling n=1,000 
compounds in each repetition and applying the filter. The reported values 
represent the mean for each data point, with error bars indicating the standard 
deviation across the repetitions (Mean ± Std.). more detailed is reported in 
Supplementary Information Table S3.2. (C) Success rate of generating molecules 
that meet Tartarus’s filter criteria as a function of the number of qubits used in 
modeling priors for the QCBM. We Comparative Benchmarking of Quantum 
and Classical Ligand Design Methods. (A, B) Comparative analysis of our hybrid 

approaches with varied priors. The performance of the Quantum Circuit Born 
Machine (QCBM) was assessed using both a quantum simulator (Sim) and a 
hardware backend (HW), and contrasted with a Multi-bases QCBM (MQCBM) 
operating solely on a quantum simulator (Sim), as well as an LSTM model devoid 
of quantum priors (representing a fully classical architecture). We calculated the 
number of generated molecules that met a series of synthesizability and stability 
criteria as stipulated by the Tartarus benchmarking platform (referred to as Local 
Filters)26 and by Chemistry42 (referred to as Chemistry42 Filters). To generate 
Figure A, we repeated the experiments five times, sampling n=1,000 compounds 
in each repetition and applying the filter. The reported values represent the 
mean for each data point, with error bars indicating the standard deviation 
across the repetitions (Mean ± Std.). more detailed is reported in Supplementary 
Information Table S3.2. (C) Success rate of generating molecules that meet 
Tartarus’s filter criteria as a function of the number of qubits used in modeling 
priors for the QCBM. We repeated the experiments five times, sampling n=5,000 
compounds in each repetition and applying the filter. The reported values 
represent the mean for each data point, with error bars indicating the standard 
deviation across the repetitions.
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Extended Data Fig. 2 | Protein-detected NMR experiments. Protein-detected 
NMR experiments elucidate the binding mode of Compound 18-2 to KRAS-G12D. 
(A) Significant chemical shift perturbations (CSPs) and intensity changes due 
to chemical exchange are observed upon binding to the compound. Residues 
lining the Switch-II pocket that show significant CSPs are highlighted in the inset, 
including Gly10 (from the P-loop), Phe78 and Gly77 (from the α-2 helix adjacent 
to the Switch-II region), Ser89, and Asp92 (from the β-4 sheet). (B) The CSP values 

are mapped onto the G12D structure and displayed in a color gradient. Residues 
that could not be assigned are shown in grey. The majority of significant CSPs are 
observed near the Switch-II pocket; however, CSPs are also noted in the α-1 helix, 
Switch-I, and α-4 regions, possibly indicating conformational changes upon 
binding to the compound. (C) Zoomed-in region of the protein, highlighting 
residues from the Switch-II pocket that exhibit CSPs.
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Extended Data Fig. 3 | Quantum-Enhanced Generative Model for Drug 
Discovery Applications. (B) Hybrid model combining a Quantum Circuit Born 
Machine (QCBM) with Long Short-Term Memory (LSTM). This model iteratively 
trains using prior samples from quantum hardware. (A) Integration method of 
prior samples into the LSTM architecture. Molecular information (in SELFIES 

encoding) and quantum data are merged by addition or concatenation. The 
resultant samples, X’(t), are then input to the LSTM cell. (C) Quantum prior 
component described as a QCBM, generating samples from quantum hardware 
each training epoch and trains with a reward value, P (x)=Softmax(R(x)), 
calculated using Chemistry42 or a local filter.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-024-02526-3

Extended Data Fig. 4 | Pharmacophore Model Depiction. Pharmacophore 
Model Depiction for KRAS Inhibitor TH-Z816 Based on the Co-crystallized Ligand 
Structure Analyzed with Chemistry42 (PDB: 7EW9). This figure illustrates the 
key pharmacophoric features identified from the ligand structure of TH-Z816 
bound to KRAS G12D. A blue sphere represents a critical ring system that 

supports structural integrity, a green sphere highlights a hydrophobic moiety 
essential for binding affinity, and a cyan sphere indicates a hydrogen bond donor 
that contributes to interaction specificity with the KRAS protein. The protein 
structure is shown on the right, while the pharmacophore interactions within the 
KRAS Switch-II binding pocket are detailed on the left.
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Extended Data Fig. 5 | Quantum Circuit Born Machine (QCBM) Model. 
Schematic representation of the Quantum Circuit Born Machine (QCBM) 
implemented in our numerical experiments, illustrating a variational quantum 
circuit with a configuration of three layers and four qubits. In practice, our 
numerical experiments utilized a system with 16 qubits. The depicted quantum 

gates, including parameterized rotations (Rx, Rz) and entangling CNOT gates, are 
orchestrated to evolve the initial state |0⟩ into a complex quantum state ||Ψ(0)⟩. 
The outcome is measured, and the resulting data are used by the classical 
optimizer to iteratively refine the parameters θ, thus leading the circuit towards 
an optimal solution for ligand generation.
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