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Abstract

Background: Despite routine post-transplant viral monitoring and pre-emptive

therapy, viral infections remain a major cause of allogeneic hematopoietic cell

transplantation-relatedmorbidity andmortality.

Objective: We here aimed to prospectively assess the kinetics and the magnitude of

cytomegalovirus-(CMV), Epstein Barr virus-(EBV), and BK virus-(BKV)-specific T cell

responses post-transplant and evaluate their role in guiding therapeutic decisions by

patient risk-stratification.

Study design: The tri-virus-specific immune recovery was assessed by Elispot, in 50

consecutively transplanted patients, on days +20, +30, +60, +100, +150, +200 post-

transplant and in case of reactivation, weekly for 1month.

Results: The greatmajority of the patients experienced at least one reactivation, while

over 40% of them developed multiple reactivations from more than one of the tested

viruses, especially those transplanted frommatched or mismatched unrelated donors.

The early reconstitution of virus-specific immunity (day +20), favorably correlated

with transplant outcomes. Εxpanding levels of CMV-, EBV-, and BKV-specific T cells

(VSTs) post-reactivation coincided with decreasing viral load and control of infection.

Certain cut-offs of absolute VST numbers or net VST cell expansion post-reactivation

were determined, above which, patients with CMV or BKV reactivation had >90%

probability of complete response (CR).

Conclusion: Immunemonitoring of virus-specific T-cell reconstitution post-transplant

may allow risk-stratification of virus reactivating patients and enable patient-tailored

treatment. The identification of individuals with high probability of CR will minimize

unnecessary overtreatment and drug-associated toxicitywhile allowing candidates for

pre-emptive intervention with adoptive transfer of VSTs to be appropriately selected.
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1 INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HCT) is a poten-

tially curative treatment for hematological disorders. Among its main

hurdles however, is the profound T-cell deficiency, resulting in devel-

opment of viral infections -most commonly by cytomegalovirus (CMV),

Epstein Barr virus (EBV) and polyomavirus type I (BKV)-, and the sub-

stantial transplant-related morbidity and mortality [1,2]. The recon-

stitution of antiviral immunity post-allo-HCT is often delayed or/and

severely impaired by the immunosuppression administered to pre-

vent or treat the immunological complications of allogeneic transplan-

tation, affecting both the quantity and the quality of virus-specific

T-cells (VSTs) [3]. The importance of a specific and robust anti-viral

immune reconstitution is emphasized by the fact that strategies boost-

ing antiviral immunity, such as immunotherapy with donor- or third-

party-derived VSTs, have provided protection with 70–90% response

rates [1, 4–7].

Heretofore, clinicians relied exclusively on the viral load monitor-

ing, to guide interventions in treating viral infections post-transplant.

Given that immunity is a dynamic process, close monitoring of VST

immune reconstitution (VST-IR), may identify patients able to poten-

tially self-control viral reactivations and, eventually, provide the basis

for tailored management of antiviral therapy to those in real need

avoiding unnecessary overtreatment or/and the outgrowth of drug

resistant viral variants.

As opposed to single-virus-specific immune reconstitution, the

recovery of viral immunity against multiple viruses has been limitedly

investigated in HCT [8,9]. We here aimed, by concomitant monitoring

of IR against the most common viruses post-allo-HCT, namely CMV,

EBV, and BKV, to prospectively recognize correlations between viral

reactivation and the timing and kinetics of VST-IR, compare the recov-

ery of functional VSTswith virological outcomes and provide surrogate

markers for identifying patients able to successfully clear the infection

and fine-tuning the clinical-decisionmaking.

2 MATERIALS AND METHODS

2.1 Subjects

Fifty consecutive allo-HCT patients were included in this prospec-

tive study, approved by the Institutional Review Board of the George

Papanikolaou Hospital and performed in accordance with the Declara-

tion of Helsinki.

2.2 Virological monitoring

CMV and EBV viral loads were routinely monitored by quantitative

PCR (Qiagen) on blood samples, once a week. BKV load was measured

by quantitative PCR (Geneproof) in urine every otherweek at the pres-

ence of clinical signs/symptoms or/and at request of the treating physi-

cian.

2.3 Definitions

CMV/EBV reactivation/infection was defined as increasing viremia

with >500 copies/mL in two consecutive measurements or > 1000

copies/mL in a single screenshot. BKV reactivation/infection was

defined as viruria with >107 copies/mL. Virus detection in tissue fluid

or sample accompanied by clinical symptoms was defined as viral dis-

ease.

Virus reactivating patients were classified as (i) complete respon-

ders (CRs) if there was a return of viral load to normal range and res-

olution of clinical signs/symptoms, (ii) partial responders (PRs) if there

was at least 50% decrease in viral load from baseline or 50% clinical

improvement, (iii) non-responders (NRs) when changes were insuffi-

cient to qualify as CR or PR.

2.4 Immunological monitoring by enzyme-linked
immunospot

Immunological monitoring was performed in peripheral blood sam-

ples collected at days +20, +30, +60, +100, +150, +200 post-allo-

HSCT and in case of viral reactivation, weekly for 1 month, as shown

in Figure S1. Peripheral blood mononuclear cells (PBMCs) were stimu-

latedwith peptides spanningCMVandEBVantigenswhereas BKV-STs

were firstly expanded in culture (Supplementary Information) [4,5,10],

due to their low frequency in blood. PBMCs or expanded BKV-STs

were pulsed with viral peptides (CMV: IE1, pp65; EBV: EBNA1, LMP2,

BZLF1; BKV: LT, VP1; JPT Peptide Technologies), and IFN-γ secretion
wasmeasured by enzyme-linked immunospot (Mabtech). Spot-forming

cells (SFCs) were counted on Eli.Scan (A.EL.VIS) using Eli.Analyse soft-

ware V6.2.SFC. Response, expressed as SFCs per input cells, was con-

sidered specific if total SFCs against viral antigens were ≥30/5 × 105

PBMCs or 2× 105 BKV-expanded cells.
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2.5 Statistical analysis

Analysis of viral reactivations according to donor type was based on

count methods, since each patient could have more than one reacti-

vation events. Matched sibling donors (MSDs) used as the reference

category and for each donor sub-group, incidence rates (IR) were cal-

culated as total number of events per 10,000 person-days (equivalent

to "per 100 patients per 100 days") of observation. Byar’s approxima-

tionmethodwas used for the IR confidence intervals (CIs). Differences

between groups were assessed with IR Ratios (CIs according to Wald

method) and chi-square tests, calculated using median-unbiased esti-

mation and exact methods (mid-p). This type of analysis does not take

into account the timing of the events, (whether they occur earlier or

later during the follow-up) but only the total count of observed events.

Analysis was performed in R programming environment with epitools

v0.5–10.1 package.

In order to identify factors associated with VSTs, univariate analy-

sis was performedwith non-parametricmethods (Kruskal-Wallis tests)

because their numbers were not normally distributed. Multivariate

analysis was performed with multiple linear regression model; VSTs

were log-transformed, in order tomeet themodel’s assumptions.

Non-relapse mortality (NRM) and timing of reactivation events

were analyzed with survival methods. Cumulative incidence of reacti-

vation andNRMwere calculatedwith the competing riskmodel, where

death or death from other causes, respectively, was considered a com-

peting event. Comparisons between groups were made with Gray’s

test, a modified chi-square test, while survival curves were drawn

according to Kaplan-Meier method. Analyses and curves were per-

formed in the R programming environment (v3.6.1) with "survival" and

"cmprsk" statistical packages.

To assess whether CR of viral reactivation was correlated with the

VST kinetics and could be predicted based on certain cut-offs VST

numbers or of the net increase of VSTs from the onset of reactivation

up to 2 weeks later (Delta-SFC [ΔSFC:max-VSTs minus onset-VSTs]), a

receiver operating characteristic (ROC)-curve analysis was performed.

The reactivating patients’ cohort was then split at the optimal VST cut-

off, and cumulative incidences of CR between the above or below cut-

off sub-cohorts were comparedwith the competing risk model.

Data are presented as mean ± SEM or median (range) when values

follow normal or abnormal distribution, respectively. ANOVA followed

by Tukey’s test or a nonparametric Mann-Whitney U test were used

for analysis of differences between data sets or multiple comparisons,

respectively.

3 RESULTS

3.1 Patient characteristics

Fifty adult patients, who consecutively received allo-HCT, from

MSD, matched unrelated donor (MUD), mismatched unrelated donor

(MMUD), and haploidentical donor (haplo), were enrolled in the study.

Haplo-transplant recipients receiving other than unmanipulated bone

marrow cells and post-transplant Cy (PTCy) were not included in the

study (n = 2). Acute graft-versus-host-disease prophylaxis included

antithymocyte globulin (ATG), PTCy, Cyclosporin/Methotrexate,

Mycophenolate Mofetil; due to ATG’s dominant immunomodulating

effect, patients were classified as receiving or not, ATG (Table 1).

Viral prophylaxis in all patients included administration of acy-

clovir/valacyclovir (letermovir as primary anti-CMV prophylaxis

became available later during the study). Pre-emptive treatment for

CMV and EBV antigenemia included ganciclovir or foscarnet and

rituximab, respectively. BKV hemorrhagic cystitis was treated with

cidofovir. All patients received anti-viral treatment, except otherwise

indicated.

3.2 Viral episodes, IRs, and association with
transplant outcomes

From the 50 study subjects, 37 developed at least one viral reactiva-

tion from CMV, EBV, and BKV, reaching a total of 78 reactivations (28,

33, 17 CMV, EBV, BKV infections, respectively) through 200 days post-

HCT. Fourteen reactivations were diagnosed as or progressed to viral

disease (CMV:2 [retinitis, pneumonitis], EBV:1 [encephalitis], BKV:11

[hemorrhagic cystitis]; Table S1), fromwhich one (EBVencephalitis) led

to death. Themedian time to reactivation from any of the three viruses

was 35 days (CMV: 37 days [−2 −164], EBV: 28 days [7–196], BKV:

47 days [21–115]). The highest incidence of viral reactivations (67%)

was observed by day 30 post-transplant (22%, 35%, 10% forCMV, EBV,

BKV, respectively),while theoverall incidence substantially declinedby

days 100 (20%) and 200 (10%) (Figure S2). The decrease in the inci-

dence of viral reactivations over time, was inversely correlated with

VSTs reconstitution (Figure S3).

More than 40% of the patients (21/50) presented multiple reacti-

vations, with a median of two (1–6) reactivations per affected patient

(Figure 1A). TheMSD-group experienced less infectious episodes over

MUD (p < 0.003), MMUD (p = 0.002), and haplo (p = 0.13) present-

ing the lowest IR ratio (95% CI, 1 vs 2.5 vs 3 vs 2, respectively) (Fig-

ure 1B; S4 Table S2). The lower overall infection rate in the MSD

group coincided with earlier VST-IR over the other donor groups

(Figure 1Β; S5).
CMV seropositive recipients demonstrated increased (45.7% vs

23.1%), albeit not statistically significant, incidence of CMV reactiva-

tions (p = 0.15) over the seronegative hosts, given the constraints of a

relatively small number of patients assessed in each group (Table S3).

By looking at the kinetics of VSTs, at different time points and in asso-

ciation with the recipient serostatus, we observed significantly earlier

and higher CMV-specific immune reconstitution between days +30

and +100 in seropositive over seronegative hosts, probably reflect-

ing boost immune responses to the increased rate of reactivations in

seropositive patients (Figure S6). Similar, albeit not significant, kinetics

of EBV-ST reconstitution was observed in EBV seropositive recipients

(Table S3, Figure S6).

At a median follow-up of 284 days (range 56–592), the NRM

was 30% and significantly associated with the occurrence of viral
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TABLE 1 Clinical characteristics of the study population

Patients, n 50

Age, median years (range) 40.5 (17–69)

Sex, n (%)

Male 30 (60)

Female 20 (40)

Diagnosis, n (%)

Acutemyeloblastic leukemia 21 (42)

Acute lymphoblastic leukemia 13 (26)

Myelodysplastic syndrome 5 (10)

Myeloproliferative neoplasms 4 (8)

Hodgkin lymphoma 3 (6)

Chronic lymphocytic leukemia (CLL) 2 (4)

Non-Hodgkin lymphoma 1 (2)

Multiple myeloma 1 (2)

Conditioning regimen, n (%)

Myeloablative 38 (76)

RIC 12 (24)

Donor type, n (%)

Matched sibling donor 17 (34)

Matched unrelated donor 20 (40)

Mismatched unrelated donor 8 (16)

Haploidentical 5 (10)

Stem cell source, n (%)

Bonemarrow 5 (10)

Peripheral blood stem cells 45 (90)

Donor/recipient CMV serostatus, n (%)

Positive/positive (D+/R+) 28 (56)

Negative/positive (D-/R+) 7 (14)

Positive/negative (D+/R-) 7 (14)

Negative/negative (D-/R-) 6 (12)

Unknown 2 (4)

Donor/recipient EBV serostatus, n (%)

Positive/positive (D+/R+) 34 (68)

Negative/positive (D-/R+) 5 (10)

Positive/negative (D+/R-) 4 (8)

Negative/negative (D-/R-) 3 (6)

Unknown 4 (8)

Acute GvHD, n (%)

grade 0–I 38 (76)

grade II–IV 12 (24)

ATG-based GvHD prophylaxis or

treatment, n (%)

ATG 35 (70)

No ATG 15 (30)

Abbreviations: ATG, anti-thymocyte globulin; CMV, cytomegalovirus; EBV,

Epstein-Barr virus; GvHD, graft-versus-host disease GvHD; RIC, reduced

intensity conditioning.

reactivations; 15 of 38 patients (40%) who developed at least one

reactivation succumbed to transplant complications, whereas none

of the 12 (0%) non-reactivating patients died from other than relapse

causes (p= 0.01; Figure 2A). The higher NRMamong virus reactivating

over virus non-reactivating patients resulted in lower OS (52.7%, Δm
12 months vs 91.7%, Δm not reached, p = 0.03) (Figure 2B). Viral

reactivations had a limited impact on relapse rates (≥1 reactivation vs

no reactivation: 10.5% vs 8.3%, p= ns; Figure 2C).

3.3 Viral reactivation and VST-IR

To better understand the temporal relationship between viral reac-

tivations and VST-IR, we compared the CMV- and EBV-ST levels at

reactivation onset between recipients who developed infection as

per the definition and “low-viremic” patients who experienced CMV

and EBV DNAemia without reaching the threshold values above

which viremia was considered infection and treated. The low-viremic

patients had significantly higher numbers of cytokine-producing

VSTs at reactivation onset than those who ultimately developed

viral infection (Figure 3A), suggesting that functional VSTs protected

patients against the development of relevant infections. Notably, VSTs

markedly expanded from baseline in all viremic patients relative to

non-viremic subjects (Figures 3B and 3C), suggesting that antigen

stimulation triggers VST proliferation.

3.4 Risk factors for impaired VST-IR

To identify risk factors for delayed or/and impaired VST-IR, the VST

levels at an early time point (day +20), were checked against differ-

ent variables in univariate and multivariate analysis. ATG administra-

tion was strongly associated with significantly lower CMV-, EBV-, and

BKV-ST levels both in the univariate andmultivariate analysis whereas

donor type (mismatched vs matched) did not retain significance in the

multivariate analysis (Figure 4). Notably, steroid administration raised

as a contributing factor toward delayed reconstitution of EBV-specific

T-cell immunity only in themultivariate analysis, probably due to a con-

founding effect of the other covariates in the univariate analysis.

3.5 VST-IR and clinical outcome

VST-IR correlated with the clinical outcome; the majority of patients

not developingVSTs failed to control infection, while patientswithVST

rebounds either cleared the infection or developed only low viremia.

This positive correlation between VST-IR and successful viral control

after allo-HCT and vice versa is shown in three representative cases.

The first patient reactivated EBV but did not develop detectable EBV-

specific response and succumbed toEBVencephalitis despite receiving

rituximab. The second, who rapidly amplified EBV-STs, effectively con-

trolled the viral burden. The third patientwho reactivated BKV and did

not develop sustained presence of BKV-STs, suffered from prolonged
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F IGURE 1 Viral reactivations (A) per donor group. Each bar represents the observation time per patient, grouped by donor type. Occurrence
of viral reactivation up to day 200 (squares: CMV, circles: EBV, triangles: BKV) or death (‘x’) is marked on the bar. (B) Per donor group in accordance
with early (day 20) virus-specific immune reconstitution. The squares with whiskers represent incidence rate of infections from all viruses per type
of donor (95% confidence intervals). Incidence rate ratios and p-values were based on exact mid-pmethods. The boxplots depict the distribution of
total VSTs on day 20 post-allo-HCT for each type of transplant. Outliers are shown as dots
Abbreviations: BKV, BK virus; CMV, cytomegalovirus; EBV, Epstein Barr virus; Haplo, haploidentical donor; MMUD,mismatched unrelated donor;
MSD, matched sibling donor; MUD, matched unrelated donor; SFC, spot forming cells.

F IGURE 2 Cumulative incidence of non-relapsemortality (A), overall survival (B), and relapse (C) according to reactivation status
(Kaplan-Meier curves with 95% confidence intervals [grey zones], p-value derived fromCox proportional hazards’ model (B) or modified Cox
subdistribution hazards model (A, C))

hemorrhagic cystitis despite cidofovir treatment (Figures 5A-5C). To

better understand the role of VSTs in controlling viral reactivations,

reactivating patients were classified based on their response. As

regards CMV, CRs presented a massive CMV-ST expansion, followed

by a dramatic decrease in viral load and effective control of the

reactivation/disease (Figure 5D). In contrast, at reactivation onset,

partial and no responders (PRs/NRs) had significantly lower CMV-STs

which either did not expand or profoundly delayed to rebound over

CRs (p = 0.039), ultimately being unable to control CMV. Likewise,

among patients with BKV reactivations, CRs had higher VST numbers

at reactivation onset (p = 0.0031) which coincided with strong T-cell

responses leading to resolution of BKV replication and shedding, in

contrast to PRs/NRswhere the limited or delayed recovery of BKV-STs

couldn’t control the increasing viral burden (Figure 5E). A similar,

albeit less distinct, correlation was observed in patients with EBV

reactivations (Figure 5F). When subgrouping only those patients who

developed viral diseases (n = 14 in total, Table S1), again CRs (n = 9)

presented higher median VST numbers at reactivation onset and
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F IGURE 3 VSTs and viral reactivations. (A) CMV-ST and EBV-ST
levels at the onset of reactivations in patients who experienced CMV
and EBVDNAemia without reaching the threshold values for
receiving treatment (low-viremic patients, grey bars) and in patients
who ultimately developed CMV and EBV infection (viremic, black
bars). Bars represent themean value within each group, and error bars
are the standard error of themean. Differences between data sets
were analyzed usingMann-Whitney test (**p= 0.0016 and
*p= 0.0207). (B and C) CMV-ST (B) and EBV-ST (C) expansion in
individual patients who developed viral reactivations (infection or low
viremia) relative to those subjects who did not (non-viremic). Each dot
represents one patient, and the lines represent themean value within
each group and the standard error of themean. Differences between
data sets were analyzed using unpaired one-tailed t-test (*p> 0.05)
Abbreviations: CMV-STs, CMV-specific T cells; EBV-STs, EBV-specific
T cells; SFC, spot-forming cells; VSTs, virus-specific T cells.

reached higher VST peaks (Δm100 SFC /2–5 × 105 cells [0–1222] and

Δm 1,238 SFC/2-5 × 105 cells [323–1700], respectively) over PR/NRs

(n = 5) (Δm 0 SFC /2-5 × 105 cells [0–22] and Δm 242 SFC/2-5 × 105

cells [65–1377]) (p= 0.1 and p= 0.04, respectively) (Figure S7).

3.6 Predicting CRs and guiding therapeutic
decision based on certain levels of virus-specific
immunity

To determine a threshold for protective VST immunity, thus avoiding

overtreatment or stratifying patients to different therapy options,

we performed ROC analysis. In CRs, the absolute VST values at

reactivation and the net increase (ΔSFC) of VSTs from the onset of

reactivation up to 2 weeks later (ΔSFC:max-VSTs minus onset-VSTs)

were compared to their counterparts of PRs/NRs. A cutoff ≥ 63 and

≥ 22 SFC/2–5 × 105 cells for CMV and BKV respectively, at time of

reactivation, was found optimal, allowing discrimination with high

sensitivity and specificity of patients who cleared the infection over

PRs/NRs (p = 0.04, p = 0.005, respectively; Table 2, Figures 6A and

6B). Moreover, a ΔSFC ≥ 132 CMV and ≥ 156 BKV/2-5 × 105 cells,

1–2 weeks post-reactivation was predictive with high sensitivity and

specificity of a CR (p = 0.01, p ≤ 0.05, respectively; Table 2, Figures 6C

and 6D). Importantly, CMV reactivating patients in whom either of

the CR predictive criteria was fulfilled (SFCs ≥ 63 or ΔSFC ≥ 132) had

94% probability of CR as compared to only 40% probability of CR of

those having both values below cut-off (HR:4.96, 95% CI 1.42–17.31,

p = 0.004) (Figure 6E). More strikingly, BKV reactivating patients

reaching either one of theCR predictive cut-offs, had 100%probability

of CR as compared to 0% of patients having both SFCs ≤ 21 and

ΔSFC ≤ 155 (p = 0.004; HR not provided due to small sample size,

Figure 6F).

Although ROC analysis did not provide predictive values for EBV-

specific-IR (Figures S8A and S8B), a rapid and considerable EBV-ST

expansion during the initial phase of EBV reactivation was sugges-

tive of subsequent endogenous viral control. Indeed, we used EBV-ST

expansion as a tool for clinical decision making and patient-tailored

management, in three EBV-reactivating patients in whom the EBV-ST

levels and viral load were closely monitored from the onset of viral

reactivation onwards. Based on a rapid and significant EBV-ST expan-

sion during the initial phase of reactivation (median ΔSFC 2 weeks

post-reactivation: 365 SFC/5 × 105 cells, range: 107–855), those

patients remained under close monitoring without receiving antivi-

ral pharmacotherapy. Notably, in all patients, EBV reactivation was

effectively controlled by the spontaneously expanded endogenous

EBV-STs without any treatment (representatively depicted in Figure

S8C).

4 DISCUSSION

Despite improvements in anti-viral pharmacotherapy, CMV, EBV, and

BKV reactivations remain a leading cause of morbidity and mortality
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F IGURE 4 Risk factors for impaired virus-specific immunity. Virus-specific T-cells on day 20–30, according to categorical variables.
Distribution of VSTs is shown as boxplot/dot plot combination. p-values for univariate analysis (p) are calculated with Kruskal-Wallis
non-parametric statistics. Multivariate p-values (pm) are calculated withmultiple linear regression on the log-transformed VST values. Significant
differences are indicated in bold. Key: donor type; matched (sibling/unrelated) versus mismatched (unrelated/haplo); *multivariate analysis’
p-values estimate differences from reference category (both seronegative)
Abbreviations: aGvHD, acute GvHD; ATG, anti-thymocyte globulin; BKV-STs, BK virus-specific T cells; CMV-STs, cytomegalovirus-specific T cells;
cGvHD, chronic GvHD; D, donor; EBV-STs, Epstein Barr virus-specific T cells; GvHD, graft-versus-host-disease; R, recipient; RIC, reduced intensity
conditioning.

TABLE 2 Sensitivity and specificity of threshold levels of VSTs and their correspondingΔSFC post reactivation

Value Threshold Sensitivity (%) Specificity (%) Optimal threshold

CMV-STs at reactivation >54.5 68.42 85.71

>62.5 68.42 100 >62.5 CMV-STs

>68 63.16 100

BKV-STs at reactivation >3 87.5 80

>21 87.5 100 >21 BKV-STs

>47.5 75 100

CMV-STΔSFC post-reactivation >104 73.33 71.43

>131.5 73.33 85.71 >131.5 CMV-STΔSFC

>157.5 66.67 85.71

BKV-STΔSFC post-reactivation >43.5 100 60

>155.5 100 80 >155.5 BKV-STΔSFC

>263.5 83.33 80

Abbreviations: BKV-STs, BK virus-specific T cells; CMV-STs, cytomegalovirus-specific T cells.
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F IGURE 5 Successful viral control associated with robust VST recovery. (A-C) Individual patient graphs of viral load and VST reconstitution.
(A) Example of a patient who reactivated EBV but failed to develop EBV-STs and succumbed to EBV encephalitis. (B) Example of a subject who
effectively controlled EBV after reactivation and subsequent expansion of EBV-STs. (C) Example of a subject who reactivated BKV, did not develop
sustained numbers of BKV-STs, and suffered from severe, painful, and persistent hemorrhagic cystitis. Dotted lines and solid lines illustrate viral
loads and VSTs, respectively. (D-F) Expansion of CMV-STs (D), BKV-STs (E), and EBV-STs (F) in association with viral loads between CRs and
PRs/NRs. Dotted lines illustrate viral loads and solid lines illustrate VSTs. Black lines illustrate CRs, and grey lines illustrate PRs/NRs. Differences
between data sets were analyzed usingMann-Whitney test (*p< 0.043, **p< 0.006, and ****p< 0.0001)
Abbreviations: BKV-STs, BKV-specific T cells; CMV-STs, CMV-specific T cells; CRs, complete responders; EBV-STs, EBV-specific T cells; PRs/NRs,
partial and non-responders; SFC, spot-forming cells; wk, week.

following allo-HCT [1, 2]. Unidimensional guidance of prophylactic,

pre-emptive, and therapeutic interventions in transplant recipients

by monitoring the viral load without also considering the status

of virus-specific immunity, often results in unnecessary treatment,

treatment-related toxicities, or/and emergence of drug resistance.

On the other hand, a diagnostic tool to safely predict the presence of

functional cellular immunity and thus the subsequent successful con-

trol of viral infections remains elusive. We here, prospectively focused

on the timing, kinetics, and magnitude of VST-IR to common post-

transplant viruses (CMV, EBV, and BKV), as a means to risk-stratify

patients with viral reactivations and fine-tuning the clinical-decision

making.

In total, 74% of patients developed CMV or/and EBV or/and BKV

reactivations, with a median of two viral episodes/patient. Apart

from the substantial morbidity, and in agreement with other reports

[11–17], viral reactivations from these three viruses, correlated also

with adverse outcomes as regards OS and NRM, thus underscoring

the magnitude of the indirect mortality induced by viral infections and

their treatment. The huge human and financial cost associatedwith the

management of viral infections post-transplant provides both a scien-

tific andeconomic rationale for patient risk-stratification, so as to avoid

unnecessary treatment in those patients who have acquired functional

virus-specific immunity or to proceed with interventions such as VST

immunotherapy for those at high-risk.

Although the correlation between VST presence and viral control

has been demonstrated post-solid organ transplantation for all three

viruses [18–27], reports in the HCT setting mostly have focused on

CMV [16,28–56]. In our study, by simultaneously monitoring func-

tional T-cell immunity against a broad spectrum of clinically problem-

atic viruses after allo-HCT, in conjunction with viral load, we showed
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F IGURE 6 Receiver operating characteristic (ROC) curves of CMV- and BKV-ST levels displaying as outcome the complete response. (A and B)
ROC curves of the number of CMV-STs (A) and BKV-STs (B) at reactivation, displaying complete response as the outcome. (C andD) ROC curves of
theΔSFC of CMV-STs (C) and BKV-STs (D) 2 weeks post-reactivation, displaying complete response as the outcome. (E and F) Cumulative
incidence of complete response according to the predictive for CR cut-offs of CMV-ST and BKV-ST absolute SFCs at reactivation (E) or theirΔSFC
post-reactivation (F) in comparison with the combo variable of both SFCs andΔSFC below cut-off values. The grey zones represent confidence
intervals of 95%

that VST rebounds, even in patients with viral diseases, were associ-

ated with marked reductions of the relevant viral loads and a favor-

able clinical outcome. Further supporting that even subclinical levels of

viral replicationboost antigen-experiencedT-cell reconstitution [8,28],

viral reactivating patients (infected or low viremic) demonstrated

considerable VST expansion from baseline relative to non-viremic

subjects.

The VST-IR was serially measured by the levels of CD3+ CMV-,

EBV-, and BKV-STs in PBMCs. Others have proposed monitoring of

CD8+ CMV-STs as a prognostic tool to identify allo-HCT patients

at high risk for CMV-infections [52, 57], however, by evaluating only

CD8+ cells, and given the importance of CD4+ STs in controlling infec-

tions [58], the clinical responsemay bemisinterpreted or/and underes-

timated.

Hematopoietic stem cell transplant physicians will more accu-

rately guide their therapeutic decisions if immune competence against

viruses could be precisely estimated, enabling the discrimination of

patients with solid antiviral immunity and high probability of CR from

those having low probability of clearing the infection and being depen-

dent on pre-emptive interventions. Several groups, focusing on CMV,

have tried to identify VST thresholds predictive of protection from

viral reactivation [59–62]. Instead,we here provide, a predictionmodel

that could identify with at least 94% probability, among CMV and BKV

reactivating patients, those who could successfully clear the infec-

tion, based on certain VST levels at reactivation or their max ΔSFC
1–2 weeks later. Although ROC analysis couldn’t provide CR predic-

tive cut-offs in EBV reactivating patients, three patients for whomhigh

EBV-VSTs at reactivationwere detected, and a considerable expansion

was measured in the following 2 weeks, cleared EBV infection without

receiving rituximab.

Notwithstanding the need for validation of the predictive cut-offs

for viral complete response in a larger, multicenter study, our data

stress out the importance of monitoring VST-IR by functional assays

that can be used to risk-stratify transplanted patients with viral

infections and guide their clinical management. The identification of

patients at low risk formorbidity andmortality from viral reactivations

will minimize unnecessary overtreatment and drug-associated toxicity.

On the other hand, identification of patients at-risk might lead to

pre-emptive intervention with intense antiviral pharmacotherapy

or virus-specific immunotherapy. Guided pre-emptive therapeutic

choices based on the actual individual risk for controlling viral infec-

tions will potentially result in lower morbidity and better survival

chances in allo-HCT patients as well as substantially decrease the

post-transplant care cost.
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