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Simple Summary: Climate change is the main threat for conservation in the 21st century. Reliable
methodologies and tools for the evaluation of its impact are urgently needed. Correlative ecological
niche models (ENMs) are effective tools for predicting the future distribution of species under climate
change scenarios. Despite this, many alternative different methods have been proposed, and objective
reasons for a proper selection are unclear. Therefore, a comparative study to evaluate the consistency
of predictions of the main ENM algorithms was performed. To test the effectiveness of correlative
ENM temporal projection, we compared predictions generated using historical data and projected
to the modern climate with predictions generated using modern distribution and climate data. In
total, 600 case studies were generated, by using 25 Italian endemic plant species, 12 algorithms and
2 alternative sets of environmental variables. As a result, we highlighted the similarity of eight
algorithms and the poor performance of four.

Abstract: Correlative ecological niche modelling (ENM) is a method widely used to study the
geographic distribution of species. In recent decades, it has become a leading approach for evaluating
the most likely impacts of changing climate. When used to predict future distributions, ENM
applications involve transferring models calibrated with modern environmental data to future
conditions, usually derived from Global Climate Models (GCMs). The number of algorithms and
software packages available to estimate distributions is quite high. To experimentally assess the
effectiveness of correlative ENM temporal projection, we evaluated the transferability of models
produced using 12 different algorithms on historical and modern data. In particular, we compared
predictions generated using historical data and projected to the modern climate (simulating a “future”
condition) with predictions generated using modern distribution and climate data. The models
produced with the 12 ENM algorithms were evaluated in geographic (range size and coherence
of predictions) and environmental space (Schoener’s D index). None of the algorithms shows an
overall superior capability to correctly predict future distributions. On the contrary, a few algorithms
revealed an inadequate predictive ability. Finally, we provide hints that can be used as guideline
to plan further studies based on the adopted general workflow, useful for all studies involving
future projections.

Keywords: algorithms; distribution; endemic species; ENM; plant species; projection; SDM

1. Introduction

Correlative ecological niche models (ENMs) [1] are methods used to achieve insights
on niche and potential distribution areas of living organisms. Modern ENMs rely on
the possibility of using large databases of primary biodiversity occurrence data together
with geospatial environmental variables, to estimate coarse-grained aspects of niche di-
mensions [2], by exploiting the statistical association between spatial environmental data
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and occurrence records. These methods experienced a remarkable growth in the latest
years, due to ready-to-use data availability [3]. Global-scale databases such as the Global
Biodiversity Information Facility (GBIF) [4] and WorldClim [5] boosted the use of ENMs
for different purposes. Further reasons for the acceleration in the use of ENM techniques
is that these techniques proved their predictive capacity in many situations [6–10]. The
climate change debate and the need to find ways to answer questions about future sce-
narios further increased the expansion of these methods [11], and led to an explosion of
studies in the field of ENMs in the last decade [12–16]. In fact, correlative models are one
of the most important tools currently available to assess the potential impacts of climate
change on species distribution [17]. These studies have been boosted by the availability of
ready-to-use datasets for future climatic conditions, generated by applying Global Climate
Models (GCMs, also known as General Circulation Models) to the modern climate [18].
Commonly, models trained on modern conditions are transferred to future scenarios to
assess changes in future potential distribution caused by different emission scenarios
(e.g., [19]). Although this approach is widely adopted, potential distributions may be over-
or under-predicted [11], depending on the modelling algorithm used. Numerous different
algorithms were used to estimate the ecological niche of a species as a function of a suite
of environmental variables [20], as summarized by Franklin [21] based on the underly-
ing theories. Other differences rely on the three main possible types of biological input
data available: presence-absence, presence-background, and presence-only methods [20].
Presence-absence methods use observations of species occurrences and absences (i.e. places
where a species is actually missing). These methods discern the environmental conditions
between occupied and non-occupied habitats, providing the probability of finding a species
at each place in the study area [22]. Presence-background methods compare the available
environmental conditions in the study area (i.e., background) with the conditions used by
the species [23,24]. Sometimes presence-background methods are considered presence-only
methods, but there are actually very few true presence-only methods [25], and the most
common are envelope- and distance-based approaches. Presence-background methods are
neither presence-only nor pseudoabsence methods [26]. Background records do not imply
species pseudoabsences, but rather a spectrum of the overall available conditions [27–29].
The background is the whole study area, including those cells with presences. Since ab-
sence data are very difficult to obtain, presence-only methods have often been used [30],
by creating artificial absence data (usually called pseudoabsence data). To cope with this
conceptual mistake, different strategies have been proposed to improve the selection of an
appropriate pseudoabsence dataset [25].

A large variety of algorithms (presence only, presence-absence, and presence -background)
have been used for ENM studies [20,21,31,32]. Over the years, a few of them became
widely used and have been considered as best practices. Modern ENM studies began
with BIOCLIM, released in 1984 [33]. Then, the GARP Modelling System (GMS) [34] was
developed, and in the following years its use became widespread [32,35]. More recently,
the MAXENT approach to ENM studies [35] was proposed and, since then, it became the
standard for correlative ENM development.

However, the variety of existing algorithms produce different results because of
the diversity in how they represent the relationship between environmental conditions
and species occurrences [20,36]. For this reason, there is still a lack of consensus on
the “best” algorithm to use [37]. Nevertheless, most ENM studies lack true absence
data [38–41]. Additional issues in algorithm selection are related to model transferability,
i.e. the projection of a model to different places or times. Multiple studies compared the
transferability of different ENM algorithms based on occurrence data of real [42–46] and
virtual species [47]. However, most of these studies were focused on a few algorithms or a
few species and, as a consequence, comparative data available for inferences was limited.
Qiao et al. [47] performed the most exhaustive evaluation of transferability by using virtual
species, in order to overcome all common problems that affect real species (e.g., sampling
bias or limited sample size) (Table 1).
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Table 1. Previous studies focused on analysis of ENM transferability.

Reference Algorithms Species/Data Transferability Test

Randin et al. [42] GLM, GAM 54 species with more than
30 occurrences from vegetation plots

Evaluation metrics;
Kulczynski’s coefficient

Wenger and Olden [43] GLMM, ANN, R Salvelinus fontinalis (Mitchill, 1814);
Salmo trutta Linnaeus, 1758

Evaluation metrics
combined with

resampling methods

Roberts and Hamann [44] RF Modern ecosystem types Validation based on
palaeoecological records

Veloz et al. [45] BRT, MARS, MARS-COM,
GAM, GLM Fossil-pollen data Tests of niche equivalency

(D) and niche similarity (I)

Duque-Lazo et al. [46]
ANN, BRT, CART, FDA,

GAM, GLM, MaxEnt,
MARS, RF, SRE

Presence-absence data for
Phytophthora cinnamomi Rands

(presence n = 599; absence n = 1193)

Evaluation metrics;
transferability index

Qiao et al. [47]

BIOCLIM, ENFA,
CONVEXHULL, MVE,

GLM, GAM, BRT, GARP,
Maxent, KDE, MA

16 virtual species distributed across
mainland Eurasia

Sensitivity, specificity and
TSS plus volume ratio of

estimated niches

Further issues in ENM studies are related to environmental variable selection. Differ-
ent methods and practices were proposed, and the recommended best practices changed
over the years. Since the pioneering work by Busby [48,49], the use of a standard set of
19 variables soon became a common practice [33]. Over the years, different strategies have
been developed for selecting variables. Some authors proposed to use large datasets [50],
others to use a few preselected and uncorrelated variables [51]. In recent years, the use of a
high number of variables received support [52], as well as the use of dimensionality reduc-
tion via principal component analysis (PCA) on a set of variables, followed by selection of
the most important PCA axes as input for modelling [47].

The first objective in this paper is to evaluate the effectiveness of several, commonly
used, ENM algorithms when applied to the task of predicting future distributions, taking
advantage of historical and modern distribution and climatic data. In particular, to evaluate
differences in algorithm responses, we planned an analysis based on the comparison of
models constructed with historical data projected to modern climatic conditions (i.e. a real
“future” condition), and models constructed with modern data. In this way, we addressed
an experimental check of the effectiveness of model transferability to future conditions,
here simulated by the modern climate. Differently from other studies [42–47], this approach
enables evaluating transferability by direct comparison of habitat suitability maps, that
represent the focus of most investigations related with forecasting future distribution under
climate change scenarios. We expect that “best” algorithms should return distributions as
similar as possible among the two models. The second objective of this study is to evaluate
the impact of variable selection on transferability. To achieve this, we repeated the analyses
with two alternative sets of variables, the first based on the use of a few uncorrelated
and biologically meaningful variables and the second based on the use of dimensionality
reduction via PCA, starting from a large set of variables. We expect slight differences in
results between the two sets of variables.

2. Materials and Methods

The transferability of models produced by 12 different ENM algorithms was tested by
using historical and modern data. Biological data consisted of a selection of plant species
endemic to Italy, showing a well-known distribution. In total, 25 species were selected to
be modelled with each algorithm. Environmental data consisted of monthly climate time
series used to obtain derived variables. Two sets of variables were used to generate models:
the first was composed of 3 a priori selected variables, and the second of 35 variables
subjected to PCA. These environmental variables were composed of 19 bioclimatic vari-
ables [48,49], plus 16 complementary variables [53], particularly relevant in order to predict
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more accurate potential distributions [54]. For each algorithm and species a couple of
models was produced (historical-projected and modern), and then compared. In all cases,
a standardized workflow was applied. Tests of statistical significance were used to check
for significant differences.

2.1. Study Area and Environmental Variables

Climate time series were collected from CHELSAcruts (1901–2016) [18,55], a delta
change monthly climate dataset covering the years 1901–2016 for mean monthly maxi-
mum temperatures, mean monthly minimum temperatures, and monthly precipitation
sum. Both historical and modern time series were collected to gather 30 years of data.
We considered the “historical climate” as that for the period 1901–1930, and the “mod-
ern climate” as that for the period 1981–2010. Cumulative monthly precipitation and
monthly maximum and minimum temperature at 30” (DMS) spatial resolution were used
to create geospatial environmental variables by using DISMO [56] and ENVIREM [53]
packages. A total of 35 climatic variables were obtained for historical and modern times
(Supplementary Material, Table S1A).

Environmental layers were tailored based on the distribution of the modelled species
(see below), obtaining 25 sets of climatic variables. The 25 study areas included different
portions of Italy: 16 the main portion of Italian peninsula, 6 the southern portion and
the island of Sicily, 2 the northern portion, and only 1 the whole of Italy. Each study
area was selected based on each species range. The main modelling experiment was
replicated with two combinations of environmental layers. The first group was composed
of only 3 environmental layers (annual mean temperature, annual precipitation, and annual
potential evapotranspiration) a priori selected for their biological relevance, according to
Barbet-Massin and Jetz [54] and Warren et al. [52]. The second group was composed of the
first three axes of a PCA of the 19 + 16 environmental variables calculated with DISMO
and ENVIREM (Figure 1). PCA was used to reduce dimensionality and collinearity among
variables and to improve transferability of models [47,57,58]. The PCA was performed by
using the RSTOOLBOX package [59]. A standardization was applied to equally weight all
layers. All cells of the starting raster layers were sampled to compute PCA. The two sets
of climatic variables (related to historical and modern times) were transformed by PCA
independently from each other. Overall, 50 sets of raster layers were obtained for both
historical and modern times.
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Figure 1. Schematization of the workflow used to generate the two sets of environmental layers.
Climate time series from CHELSAcruts were used to generate 35 layers. Then, two sets of variables
were organized for two groups of experiments carried out in parallel. The first set was composed
of only 3 variables (annual mean temperature, annual precipitation and annual potential evapotran-
spiration), and the second set was composed of all 35 variables and then converted in 3 summary
layers by applying a PCA ordination. Each of the two sets of variables was tailored to fit the known
distribution of each species. The procedure was applied to both historical and a modern set of
environmental layers.

2.2. Study Species and Occurrence Data

We selected 25 plant species endemic to Italy [60–70] (Supplementary Material, Table S1B).
These species were preferred for their limited and well-known distribution. The occurrence
records were collected from herbarium specimens, literature, and field observations. Most
of the records were obtained consulting Wikiplantbase #Italia [71], the Global Biodiversity
Information Facility [72], JACQ-Virtual Herbaria [73], and additional botanical literature.
Only those records dating back before 1930 or dating after 1980 were retained, in order to
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obtain two sets of data for each species: one related to historical times, and another related
to modern times (Supplementary Material, Table S1C). On average, 52% of records came
from literature data, 22% from herbarium specimens, and 26% from observations. Only
those observations judged reliable were taken into account, considering the (well-known)
distribution range of the selected species and the source of information (expert botanists).
For each species and temporal dataset, only one record per grid cell was retained. Environ-
mental outliers were detected and removed by modelling the ellipsoid niche and calculating
the Mahalanobis distance from centroids with the NTBOX package [74]. Moreover, the two
datasets were also uniform in terms of the number of records by selecting a subset of occur-
rence records who maximized the niche overlap between historical and modern datasets,
calculated with the ELLIPSENM package [75]. The modern occurrence data discarded by
the last cleaning step were used as test data, to evaluate the model prediction in modern
times. Since the filtration in the E-space depended on the selected environmental variables,
two different datasets were obtained for each species (Supplementary Material, Table S1D).

2.3. Algorithms and Packages

Habitat suitability maps were calculated using 12 different algorithms. These algo-
rithms are: Bioclim [33,48,49], Domain [76], Generalized Linear Models (GLM) [77,78],
Generalized Additive Models (GAM) [78,79], Multivariate Adaptive Regression Splines
(MARS) [80–82], Flexible Discriminant Analysis (FDA) [83–85], Classification Tree Analysis
(CTA) [86], Artificial Neural Network (ANN) [87,88], Random Forest (RF) [89,90], Support
Vector Machine (SVM) [91–93], Maximum Entropy (Maxent) [24,35,94], and Kernel Density
Estimation (KDE) [95,96]. All algorithms were used in R [97]. Bioclim, Domain, and Maxent
were run by using the DISMO package [56]. GLM, GAM, MARS, RF, and SVM were run by
using the SSDM package [6]. FDA and CTA were run by using the SDM package [98]. KDE
was run by using the HYPERVOLUME package [95]. A nine-algorithm ensemble approach
(GLM, GBM, GAM, MARS, MAXENT, RF, CTA, ANN, and FDA) was also performed by
using the Biomod2 package [99–101].

2.4. Modelling Procedures

A single workflow was adopted in order to obtain comparable results among different
algorithms. For each species and for each set of data (‘historical’ and ‘modern’ datasets),
the workflow drafted in Figure 2 was applied.
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Figure 2. General scheme of the adopted modelling workflow.

Each set of data was initially split in a training set and a testing set [20], and then
a habitat suitability map was calculated by using one of the algorithms. By repeating
this step 10 times, an averaged habitat suitability map was obtained. The basic workflow
was applied to 12 different procedures, 11 of them based on single algorithms and 1 on
ensemble algorithms (Table 2). To cope with the lack of real absence data where needed (see
Table 2), we randomly generated pseudoabsence occurrences in the study area [25,34]. For
each procedure, the default or commonly used settings were used, because our goal was to
compare different methods and algorithms under those commonly adopted parameters
widely used by the scientific community (Table 2). All averaged habitat suitability maps
were converted into binary maps by applying a probabilistic approach, in which a logistic
function was used to convert environmental suitability into a probability of occurrence [102].
For each species, the appropriate conversion curve was automatically determined based on
of the calculated species prevalence.
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Table 2. Summary of the different procedures used in the present work. Commonly adopted
parameters were selected in all procedures.

Procedure Type and
Algorithm Data Input Package (Version) Background/Pseudoabsence Cells

BIOCLIM Single (BIOCLIM) Presence only Dismo (1.1-4) 1000 background cells
Domain Single (Domain) Presence only Dismo (1.1-4) 1000 background cells

GLM Single (GLM) Presence-pseudoabsence SSDM (0.2.8) 1000 pseudoabsence cells
GAM Single (GAM) Presence-pseudoabsence SSDM (0.2.8) 1000 pseudoabsence cells
MARS Single (MARS) Presence-pseudoabsence SSDM (0.2.8) 1000 pseudoabsence cells
FDA Single (FDA) Presence-pseudoabsence sdm (1.0-89) Pseudoabsences = presence cells
CTA Single (CTA) Presence-pseudoabsence sdm (1.0-89) Pseudoabsences = presence cells
RF Single (RF) Presence-pseudoabsence SSDM (0.2.8) Pseudoabsences = presence cells

SVM Single (SVM) Presence-pseudoabsence SSDM (0.2.8) Pseudoabsences = presence cells
Maxent Single (Maxent) Presence background Dismo (1.1-4) 10,000 background cells

Biomod2

Ensemble (GLM,
GBM, GAM, MARS,

Maxent, RF, CTA,
ANN, and FDA)

Presence-pseudoabsence biomod2 (3.4.11) Pseudoabsences = presence cells × 10

KDE Single (KDE) Presence only Hypervolume (2.0.12) 1000 background cells

For each species and for each modelling procedure, a pair of present potential distri-
butions was obtained and then compared (Figure 3: Distributions 1 and 2). The first was
obtained with historical biological data (1910–1930) and historical environmental variables
projected to modern climatic conditions. It represents a predicted ‘future’ distribution of
a species based on historical data and climate. The second was obtained with modern
biological data (1980–present) and modern environmental variables, and represents the
modern potential distribution of a species.
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Figure 3. General scheme of the comparison of potential distributions.

The comparison of each pair of potential distribution was carried out on both habitat
suitability and binary maps. To compare each pair, three different values were calculated:
the Schoener’s D index [103], the percentage of stable cells, and the range size variation.

The Schoener’s D index was calculated from habitat suitability maps according to
Warren et al. [104], and is a measure of similarity. The percentage of stable cells and
the range size variation were calculated from binary maps. The percentage of stable
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cells was calculated by considering the number of ‘presence’ cells found in both poten-
tial distributions with respect to the total. It represents a measure of the stability of a
given method. The range size variation was calculated by comparing the ‘modern’ po-
tential distribution (Figure 3: Distribution 2) with the ‘projected’ potential distribution
(Figure 3: Distribution 1), and shows the percentage of sites interested by changes (either
gain or loss). It represents the tendency of a given procedure to overestimate or underesti-
mate the results, when used to forecast future potential distributions.

All modelling applications involving the transfer of model predictions should be
accompanied by precautionary and exploratory analyses to identify regions of strict extrap-
olation and better-characterize the degree of novelty of areas to which model rules are to
be transferred [105]. To characterize the extrapolation risk associated with model transfer
to different scenarios (i.e. the projection of a model built with historical data to modern
conditions) the Mobility-Oriented Parity analysis (MOP) [106] was performed on each set
of environmental layers and for each species. The analysis was performed by using the
Kuenm package [107] with the default parametrization (percentage of values sampled from
the calibration region = 10%, distance matrix for each fixed number of rows = 2000).

2.5. Model Evaluation Metrics

Because no consensus currently exists regarding the most appropriate method to
validate and interpret a model, we used five different evaluation metrics: the area under the
curve of the receiver operating characteristic plot based on the training (AUCTRAIN) and test-
ing data (AUCTEST) [20]; the difference between training and testing AUC (AUCDIFF) [108];
the 10% omission rate [109]; the partial ROC (pROC) (threshold 5%) [110].

The training and testing AUC are a measure of statistical significance of a model
and determine whether observed predictions of evaluation data differ from null expecta-
tions [20]. The difference between training and testing AUC quantifies overfitting [108].
Omission rates at 10% is a threshold-dependent test to measure performance, which indi-
cates how well models created with training data predict test occurrences [20,107]. Partial
ROC is another measure of statistical significance of a model [110], proposed to solve the
flaws highlighted by Lobo et al. [111] and Jiménez-Valverde [112].

To evaluate the quality of predictions related to the present (‘projected’ and ‘modern’
distributions, Figure 3), the Continuous Boyce Index (CBI) value [113] was calculated by
using independent modern occurrence cells for each species and for each procedure.

2.6. Final Evaluations of Procedures Response

The application of 12 modelling procedures to 25 species led to 300 case studies (i.e.,
comparisons of model pairs). The results related to Schoener’s D index, percentage of stable
cells and range size variation were used altogether to generate a scatter plot. For the output
of each procedure (represented as a single point in the scatter plot) a final evaluation value
was obtained by calculating the Euclidean distance (d) from a point that represents the best
theoretical performance, i.e. a performance characterized by D index equal to 1, a range
size variation equal to 0, and a percentage of stable cells equal to 100.

2.7. Data Analysis

To check for statistically significant differences among procedures concerning D index,
percentage of stable cells, range size variation and distance (d), the Kruskal-Wallis test [114]
followed by the post hoc Mann-Whitney test [115,116] and Bonferroni correction were used.
The same approach was also used to compare differences between CBI calculated on the
‘modern’ and ‘projected’ potential distributions. Only differences showing p < 0.01 were
considered statistically significant.

3. Results

Multiple results were collected by applying a single workflow on two different datasets,
so that we will show them separately based on the different environmental variables used
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each time. Each result was obtained by modelling 25 plant species with 12 different
procedures, for a total of 600 cases (Supplementary Material S2 and S3).

3.1. Performance of the Predictions
3.1.1. Set I: Three Environmental Variables

Based on the three main values used to evaluate the overall performance of each
procedure (D index, range size variation, and stability) and on the final evaluation value
(distance), only a few procedures showed significant differences in predictive ability. The
Kruskal-Wallis analysis showed statistically significant differences concerning D index
(p = 1.983 × 10−19), stability (p = 1.026 × 10−13), and distance (p = 9.937 × 10−14), but not
concerning range size variation (p = 0.089). The pairwise Mann-Whitney tests identified
17 cases of significant differences concerning stability and distance, and 21 cases concerning
D index (Table 3 and Supplementary Material, Table S4A,B).

Table 3. Results of pairwise Mann-Whitney tests for the values of distance (three variables). A total of
17 cases of statistically significant differences were highlighted. × = statistically significant difference.

Bioclim Biomod2 CTA Domain FDA GAM GLM KDE MARS Maxent RF SVM

Bioclim
Biomod2 -

CTA - -
Domain - - -

FDA - - - -
GAM - - - - ×
GLM - - - - - ×
KDE - - - - × - ×

MARS × × × × × × × -
Maxent - - - - - × - × ×

RF - - - - - - - - × -
SVM - - - - - - - × × - -

The values of D index, range size variation, stability, and distance (d) calculated for
each procedure are summarized in Supplementary Material, Table S4C–F. The scatter plots
show the single results obtained for each species and procedure (Figure 4A) and the mean
results for each procedure (Figure 4B). Most of the procedures are characterized by a range
size variation near to 0 (<|2|%). In 51 cases, a variation between |2|% and |5|% was
observed. In only seven cases, the variation was higher than |5|%. The stability is variable,
with FDA, SVM, and Maxent that scored high values (>40%). RF, GLM, CTA, Bioclim,
and Biomod2 scored intermediate values (between 30% and 40%). Low values (<30%)
were obtained by Domain, GAM, KDE, and MARS. The D index values are similar: five
procedures obtained values higher than 0.8, and six procedures between 0.7 and 0.8. Only
MARS obtained values lower than 0.7. Overall, the values of distance (d) range from 99.97
to 13.96. The mean values calculated for each procedure describe three main cases: low-
distance procedures (d < 60) (FDA, SVM), intermediate-distance procedures (60 ≤ d ≤ 70)
(Maxent, RF, GLM, CTA, Bioclim, and Biomod2) and high distance procedure (d > 70)
(Domain, GAM, KDE, and MARS).
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Summary CBI values (for both ‘projected’ and ‘modern’ procedures) are reported
in Supplementary Material, Table S4G−H. The Kruskal-Wallis analysis on the projected
CBI values shows a statistically significant difference among procedures (p = 8.3 × 10−4)
and the pairwise Mann-Whitney tests identified only three cases of significant differences
related to Maxent, RF, and SVM versus Bioclim.

The comparison of the CBI values for each pair of habitat suitability maps (‘modern’
and ‘projected’) highlighted a significant difference for three procedures (KDE, MARS, and
RF), characterized by higher CBI score for the ‘modern’ procedure. The procedures that
obtained mean CBI scores greater than 0.7 for both ‘projected’ and ‘modern’ maps were 9
(Biomod2, CTA, Domain, FDA, GAM, GLM, Maxent, RF, and SVM).
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3.1.2. Set II: 35 Environmental Variables and Dimensionality Reduction via PCA

The Kruskal-Wallis analysis on the three main values used to evaluate the overall
performance of each procedure (D index, range size variation, and stability), and on
the final evaluation value (distance) showed statistically significant differences for D
index (2.47 × 10−17), stability (p = 1.74 × 10−10), and distance (p = 1.73 × 10−10). The
pairwise Mann-Whitney tests identified 10 cases of significant differences concerning
stability and distance, and 19 cases concerning D index (Table 4 and Supplementary
Material, Table S5A,B).

Table 4. Results of pairwise Mann-Whitney tests for the summary values of distance (first three axes
of PCA [35 variables]). A total of 10 cases of statistically significant differences were highlighted.
× = statistically significant difference.

Bioclim Biomod2 CTA Domain FDA GAM GLM KDE MARS Maxent RF SVM

Bioclim
Biomod2 -

CTA - -
Domain - - -

FDA - - - -
GAM - - - - -
GLM - - - - - -
KDE - - - - × - -

MARS × × × × × × × -
Maxent - - - - - - - - ×

RF - - - - - - - - × -
SVM - - - - - - - - - - -

The values of range size variation, stability, D index, and distance calculated for all
procedures are summarized in Supplementary Material, Table S5C–F. The scatter plots show
the single results (Figure 5A) and the mean results (Figure 5B) for all procedures. Most of
the procedures are characterized by range size variation near to 0 (<|2|%). In 57 cases,
variations between |2|% and |5|% were observed. In only 14 cases the variation was
>|5|%. Several procedures scored similar results concerning stability. Only FDA scored
a high value (>40%). GLM, SVM, Maxent, CTA, Biomod2, and RF scored intermediate
values (between 30% and 40%). Low values (<30%) were obtained by Bioclim, Domain,
GAM, KDE, and MARS. The D index values are similar: three procedures obtained values
higher than 0.8, and seven procedures values between 0.7 and 0.8. Only MARS and Bioclim
obtained values lower than 0.7. Overall, the values of distance (d) range from 100.02 to 22.72.
The mean values calculated for each procedure describe three main cases: low-distance
procedures (d < 60) (FDA), intermediate-distance procedures (60 ≤ d ≤ 70) (GLM, SVM,
Maxent, CTA, Biomod2, and RF), and high-distance procedures (d > 70) (Bioclim, Domain,
GAM, KDE, and MARS).

Summary CBI values (for both ‘projected’ and ‘modern’ procedures) are reported in
Supplementary Material, Table S5G. No statistically significant difference among proce-
dures concerning CBI was found. The comparison of the CBI values for each pair of habitat
suitability maps (‘modern’ and ‘projected’) highlighted a significant difference for six pro-
cedures (Biomod2, CTA, KDE, MARS, RF, and SVM), characterized by higher CBI score for
the ‘modern’ procedure. The procedures that obtained mean CBI scores greater than 0.7
for both ‘projected’ and ‘modern’ maps were 7 (Biomod2, CTA, GAM, KDE, Maxent, RF,
and SVM).
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3.2. Evaluation Metrics of the Predictions

The complete list of evaluation metrics acquired in all modelling procedures is reported
in Supplementary Material S6 (only three environmental variables) and in Supplementary
Material S7 (first three axes of PCA [35 variables]). The evaluation metrics calculated
for each pair of procedures (‘present’ and ‘projected’) were comparable, with no evident
difference. The AUC values did not highlight significant differences among historical and
modern models, in all procedures.

3.3. Evaluation of the Transferability

MOP analyses confirmed the transferability of models through the different scenarios
selected for this study, albeit differences between the procedures based on three environ-
mental layers and those based on PCA were observed. In general, the extrapolation risk
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(i.e., the lack of similar environmental combinations) across historical and modern times
was low for all selected study areas. When only three environmental layers were used,
the areas of strict extrapolation identified by MOP analysis represented less than 1% of
the entire surface in 14 cases, 1–2% in 6 cases, and 2–4% in 5 cases. When the first three
axes of a PCA based on 35 environmental layers were used, the areas of strict extrapolation
identified by MOP analysis represented less than 1% of the entire surface in 18 cases, 1–2%
in 2 cases, and 4–9% in 5 cases. MOP analysis confirms that all potential distributions
obtained with the different modelling procedures were calculated inside the environmental
ranges on which models were originally calibrated. The complete list of results obtained
with MOP analysis is reported in Supplementary Material S8.

4. Discussion

The application of a standardized modelling protocol to 25 Italian endemic plant
species, 12 different procedures and 2 sets of environmental variables allowed to experi-
mentally show that ENM transfers to future conditions are effective. This is of particular
relevance, because model transfers are widely used in investigations focused on the study
of the effects of climate change on species distribution [11–19].

However, no algorithm included in this study showed optimal projection abilities
when applied to the task of predict future distribution. Several algorithms had comparably
good results (CTA, FDA, GLM, Maxent, RF, SVM, and Biomod2), and a few relatively bad
results (Bioclim, Domain, GAM, KDE, and MARS). Similar results were achieved for both
tested sets of environmental variables (only three variables vs. first three axes of PCA).
Statistical significance tests applied to the summary values of distance (d) highlighted a few
differences among the different procedures. Only MARS was always different from other
procedures, obtaining extraordinarily low scores in all tests aimed to assess the quality of
future projections. In no case significant differences concerning range size variation were
highlighted. This means that all procedures are equally capable to estimate changes of
range size. On the contrary, statistically significant differences were highlighted concerning
stability and D index scores. This means that not all procedures identify the same areas
and the same niche. Statistical differences between projected CBI scores were found only
when models were based on 3 environmental variables, but not when they were based on
the first 3 axes of a PCA from 35 environmental variables. These differences concerned
only Maxent, RF, SVM vs. Bioclim. Projected and modern CBI scores for each procedure
showed significant differences for RF, KDE, and MARS (for both sets of variables), and
for Biomod2, CTA, and SVM (PCA), in all cases characterized by markedly higher CBI
scores in modern models. RF, Biomod2, and SVM achieved particularly high CBI scores
in modern models, albeit only RF showed significantly higher CBI scores, using both sets
of environmental variables. This means that this algorithm is particularly well suited in
research aimed to study species potential distribution in current times (e.g., to discover
new populations) [117,118]. The differences between the mean values calculated for each
procedure (Supplementary Material S9) allow only a rough comparison of results. In
general, two algorithms returned overall better results (SVM and FDA), five returned
intermediate results (Maxent, RF, CTA, Biomod2, and GLM) and five the worst results
(Bioclim, Domain, GAM, KDE, and especially MARS). FDA is the procedure showing
the lowest distance, d = 53.91/55.01 when models were built with three environmental
variables or PCA, respectively. This is mostly due to the high percentage of stability and to
a range size variation near 0. When models were built using three environmental variables,
the mean value of distance calculated with SVM was d = 56.25, the second lowest distance
among all procedures. When models were built using the first three axes of PCA, the
performance of SVM slightly decreased, as a consequence of a lower level of stability.
Maxent and GLM were characterized by only relatively higher values of distance, in a
range between d = 60–65. All other procedures scored high values of distance (d > 65),
particularly high (d > 80) with GAM, KDE, and MARS.
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Previous research [119] highlighted the impossibility to find a single ‘best’ algorithm,
and our results fully confirm this view. Previous studies on transferability [42–46] high-
lighted some better-performing algorithms, but comparing a few algorithms and/or a few
species. A recent investigation [47] performed with 11 algorithms and 16 virtual species
highlighted that none of the investigated algorithms accurately estimated the fundamental
niche of species. Our results, albeit based on potential distribution and not on fundamental
niche, are fully congruent with this study.

Three main factors are responsible for the similarity among procedures we docu-
mented in this study: (1) the decision to average results across 10 replicate runs; (2) the
application of subsampling as resampling method in all procedures, and (3) the absence of
extrapolation risks in the investigated study areas.

Contrarily to the results provided by Generalized Linear Models (GLM), Ecological
Niche Factor Analyses (ENFA), or BIOCLIM, which are always identical for the same
dataset [23,33], machine learning methods always return slightly different results [24,94],
so that replication is crucial.

The use of subsampling selection together with replications enables avoiding deter-
ministic results and to obtain stochastic results, in order to quantify the variability and
uncertainty in model outputs [20,120,121]. According to the latter authors, this topic is
neglected in many studies. Indeed, our results suggest that differences among different
algorithms can be reduced by adopting strategies aimed to achieve stochastic outcomes.
Thus, the recommendation by Sillero and Barbosa [31] about the need to replicate models
should be extended to algorithms and methods, when strategies to achieve stochastic
results are adopted.

The impact of interpolation and extrapolation on transferability was highlighted in
several studies, as the fact that interpolation causes less problems than extrapolation [122].
Owens et al. [106] suggested to perform a series of preliminary and exploratory analyses
(MESS, MOP) [105,106] in all niche modelling applications involving transfer of model
predictions. In this study, MOP analysis was performed and confirmed the absence of
relevant extrapolation risks due to the emergence of non-analog climates in future scenarios
for both sets of environmental variables. Some algorithms deal with issues related to
extrapolation better than others [123], and possible differences in model responses could
be related to extrapolation, absent in our study.

Both sets of environmental variables generated comparable outcomes. Consequently,
the two alternative strategies for environmental variables selection can be considered
equally good. Despite this, many authors highlighted the need to incorporate biological
realism into the ENM process [52,58,124], so that the use of a few variables selected for their
biological relevance should be preferred. Warren et al. [52] also highlighted the discrepancy
between abstract evaluation metrics and biological plausibility of models, especially when
built starting from a high number of environmental variables. A systematic review of 201
studies [125] further pointed out that model prediction and biology of real populations
lack of correlation, especially when predictions are not tested with independent data to
evaluate the reliability of the distribution hypotheses.

Our study provides a new method to evaluate the transferability of models, useful to
compare predictions in geographical space, and further stresses that there is not a single
‘best’ performing algorithm to forecast the future distribution of living organisms under
climate change scenarios. The possible use of a diverse suite of algorithms to achieve similar
results was confirmed. However, several factors (replication, resampling method, absence
of extrapolation risk in the study area) could be equally important as the selection of the
algorithm itself. In our experiment, since the aim was to assess the effectiveness of temporal
projection in commonly used approaches, we did not optimize or tune each algorithm,
albeit this practice is surely possible. Our results are useful as empirical guidelines to
select the best modelling settings, especially for studies related to stenochorous plant
species [126].



Biology 2022, 11, 1219 14 of 19

Although we did our utmost to plan a modelling experiment aimed to test the pre-
dictive ability of ENM algorithms, multiple factors could have influenced the results. All
species used in this study are Italian endemic plants. This type of species is character-
ized by pros and cons. An important favorable aspect is represented by the limited and
well-defined range of each taxon, investigated through long-term floristic studies. On the
other hand, most of these species are also characterized by small population size and, as a
consequence, the availability of occurrence data is scarce when compared to widespread
species [126]. All collected distribution data was obtained from herbarium specimens,
literature, and observations, in most of the cases without original georeferencing. Addition-
ally, this “second-step” georeferentiation could be a source of bias. For practical reasons,
the number of tested combinations of environmental variables was limited, because an
increment in combinations leads quickly to a prohibitive number of cases.

To overcome these limitations, further analyses aimed to test the predictive ability
of ENMs under different scenarios could take advantage from the use of virtual species
with known niche properties. This type of data could provide abundant and controlled
occurrence [47,102,127], and reduce possible problems by eliminating errors that affect data
of real species, as, e.g., sampling bias, limited sample size, and complex species interactions.
Another source of error could be generated by the need to convert habitat suitability maps
into binary potential presence/absence maps. Although binary conversion simplifies
the interpretation of distribution maps, this step could deeply alter the outcomes of a
model [128]. Further improvements could be achieved by testing different combinations
of algorithms and resampling methods. Wenger and Olden [43] already investigated
the influence of different resampling methods on the transferability of models. Thus,
an exhaustive evaluation of several resampling methods [129–131] could provide new
best practices for a correct evaluation of future potential distributions. Finally, major
improvements for enhancing temporal projection could be achieved by developing proper
methods to quantify and evaluate the uncertainty associated with prediction [12,132,133], a
topic not addressed in this study.

5. Conclusions

The aim of our study was to experimentally check the effectiveness of model trans-
ferability of historical occurrence and climatic data to modern conditions, simulating a
real “future”. We confirm that all the 12 investigated algorithms are effective in model
transferability. Most of the algorithms (Biomod2, CTA, FDA, GLM, Maxent, RF, and SVM)
performed in a similar way. Only five algorithms (Bioclim, Domain, GAM, KDE, and
MARS) showed a worse predictive ability. Incidentally, RF resulted particularly good in
modelling niches in absence of temporal projection. These findings highlight that a diverse
suite of algorithms is capable to generate similar predictions and, as a consequence, that
a stringent prior choice of algorithm is not needed. However, the overall similarity high-
lighted here is certainly due also to the standardized workflow adopted to build the models:
averaging several replicated models, using subsampling as resampling method, checking
for absence of extrapolation risk in the selected study areas. These “additional settings” in
modelling experiments could be equally important as algorithm selection for the quality
of predictions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11081219/s1: S.1: Supplementary information about species,
study areas and environmental variables. S.2: Results of all modelling procedures obtained by using
three bioclimatic variables. S.3: Results of all modelling procedures obtained by using the first three
axes of a principal component analysis (PCA) on the 35 bioclimatic variables. S.4: Results of all
comparisons based on procedures obtained by using three bioclimatic variables. S.5: Results of all
comparisons based on procedures obtained by using the first three axes of a principal component
analysis (PCA) of the 35 bioclimatic variables. S.6: Complete list of evaluation metrics calculated
for all modelling procedures based on the use of three environmental variables. S.7: Complete list
of evaluation metrics calculated for all modelling procedures based on the use of 35 environmental
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variables converted into 3 layers by applying dimensionality reduction technique (PCA). S.8: Results
of MOP analysis conducted on each set of environmental variables. S.9: Summary values (range size
variation, stability, D index, distance, CBI Projected, CBI Present) grouped according to procedures.
Table S1A: Complete list of environmental variables used in this study; Table S1B: List of the endemic
species selected in this study; Table S1C,D: Occurrence records available for each species; Table S4A:
Results of pairwise Mann-Whitney tests for the values of Schoener’s D-index (3 variables); Table
S4B: Results of pairwise Mann-Whitney tests for the values of stability (3 variables); Table S4C:
Summary values of ‘Range Size variation’ (3 variables); Table S4D: Summary values of ‘stability’
(3 variables); Table S4E: Summary values of ‘D-index’ (3 variables); Table S4F: Summary values
of ‘distance’ (3 variables); Table S4G: Summary results of CBI for present and projected potential
distributions (3 variables); Table S4H: Results of pairwise Mann-Whitney tests for the values of CBI
when projected (3 variables); Table S5A: Results of pairwise Mann-Whitney tests for the values of
Schoener’s D-index (first 3 axes of PCA); Table S5B: Results of pairwise Mann-Whitney tests for the
values of stability (first 3 axes of PCA); Table S5C: Summary values of ‘Range Size variation’ (first
3 axes of PCA); Table S5D: Summary values of ‘stability’ (first 3 axes of PCA); Table S5E: Summary
values of ‘D-index’ (first 3 axes of PCA); Table S5F: Summary values of ‘distance’ (first 3 axes of
PCA); Table S5G: Summary results of CBI for present and projected potential distributions (first
3 axes of PCA)
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