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Abstract

Background: Triphala is commonly used in Ayurvedic medicine to treat variety of diseases;
however its mechanism of action remains unexplored. This study elucidates the molecular
mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model.

Methods: Growth-inhibitory effects of Triphala were evaluated in Capan-2, BxPC-3 and HPDE-6
cells by Sulphoradamine-B assay. Apoptosis was determined by cell death assay and western
blotting. Triphala was administered orally to nude mice implanted with Capan-2 xenograft. Tumors
were analyzed by immunohistochemistry and western blotting.

Results: Exposure of Capan-2 cells to the aqueous extract of Triphala for 24 h resulted in the
significant decrease in the survival of cells in a dose-dependent manner with an IC50 of about 50
pg/ml. Triphala-mediated reduced cell survival correlated with induction of apoptosis, which was
associated with reactive oxygen species (ROS) generation. Triphala-induced apoptosis was linked
with phosphorylation of p53 at Ser-15 and ERK at Thr-202/Tyr-204 in Capan-2 cells. Above
mentioned effects were significantly blocked when the cells were pretreated with an antioxidant
N-acetylcysteine (NAC), suggesting the involvement of ROS generation. Pretreatment of cells with
pifithrin-a. or UO0126, specific inhibitors of p53 or MEK-1/2, significantly attenuated Triphala-
induced apoptosis. Moreover, NAC or U0I26 pretreatment significantly attenuated Triphala-
induced p53 transcriptional activity. Similarly, Triphala induced apoptosis in another pancreatic
cancer cell line BxPC-3 by activating ERK. On the other hand, Triphala failed to induce apoptosis
or activate ERK or p53 in normal human pancreatic ductal epithelial (HPDE-6) cells. Further, oral
administration of 50 mg/kg or 100 mg/kg Triphala in PBS, 5 days/week significantly suppressed the
growth of Capan-2 pancreatic tumor-xenograft. Reduced tumor-growth in Triphala fed mice was
due to increased apoptosis in the tumors cells, which was associated with increased activation of
p53 and ERK.

Conclusion: Our preclinical studies demonstrate that Triphala is effective in inhibiting the growth
of human pancreatic cancer cells in both cellular and in vivo model. Our data also suggests that the
growth inhibitory effects of Triphala is mediated by the activation of ERK and p53 and shows
potential for the treatment and/or prevention of human pancreatic cancer.
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Background

Pancreatic cancer is a leading cause of cancer-related
deaths with extremely poor prognosis [1,2]. It is estimated
that about 33,000 new cases of pancreatic cancer will be
diagnosed in the United States each year [3,4]. The low
survival rate is due to insensitivity of pancreatic cancer to
most of oncologic therapies such as chemotherapy, radio-
therapy and immunotherapy [5,6]. New therapeutic strat-
egies are therefore urgently needed to combat with this
deadly form of cancer. Several epidemiological studies
suggested that diet rich in fruits, vegetables or certain
herbs may be protective against various human malignan-
cies including pancreatic cancer [7-9].

Triphala (TPL) is the most commonly used Indian
Ayurvedic herbal formulation, consisting equal parts of
three medicinal dried plant fruits Emblica officinalis, Termi-
nalia belerica and Terminalia chebula. 1t is an important
medicine of the "Rasayana" group of Ayurveda and is
believed to promote immunity, health and longevity [10].
Rich in antioxidants, Triphala, plays an essential role in
the treatment of a wide variety of conditions such inflam-
mation, anemia, constipation, asthma, jaundice, chronic
ulcers and AIDS [10,11]. Gallic acid and ascorbic acid are
found to be the major ingredients of Triphala [12]. Recent
study suggested that Triphala significantly reduce
benzo(a)pyrene-induced forestomach tumorigenesis in
mice [13]. It has also been shown to suppress the growth
of MCEF-7 breast cancer cells and protect against radiation-
induced oxidative damage [14-16]. However, the molecu-
lar mechanism of the anticancer effects of Triphala has not
yet been established and its effect against pancreatic can-
cer not known.

In the present study, we demonstrate that Triphala signif-
icantly inhibit the proliferation of Capan-2 and BxPC-3
human pancreatic cancer cells. The apoptosis inducing
effects of Triphala in Capan-2 cells was associated with the
generation of reactive oxygen species, activation of ERK,
P53 and caspase-3 cascade. Moreover, oral administration
of Triphala significantly suppresses the growth of Capan-
2 tumor xenograft which correlates with increased apop-
tosis and activation of p53 and ERK in the tumors, in
agreement with our in vitro observations.

Methods

Chemicals and Antibodies

Triphala (TPL) was obtained from Tansukh Herbal Corpo-
ration (Lucknow, India). Anti-actin, sulforhodamine B
(SRB), and N-Acetyl-Cysteine (NAC) were purchased
from Sigma (St. Louis, MO). The Antibodies against phos-
pho-H2A.X (Ser-139), caspase-9, caspase-3, cleaved cas-
pase-3, poly (ADP-ribose) polymerase (PARP), cleaved
PARP, phospho-ERK (Thr-202/Tyr-204), phospho-P53
(Ser-15), phospho-ATM (Ser-1981), phospho-MEK-1
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(Ser-217/221), ERK, and P53 were purchased from Cell
Signaling (Danvers, MA). The cell death detection ELISA
kit was obtained from Roche Diagnostic Gmbh (Man-
nheim, Germany) and P53 transcription factor assay kit
was procured from TransAM (Carlsbad, CA). Enhanced
chemiluminescence kit was bought from Perkin Elmer
Life Science Products (Boston, MA). The specific probe
DCFDA was obtained from Molecular Probes (Eugene,
OR). U0126 (ERK specific inhibitor), and Pifithrin-a (p53
specific inhibitor) were obtained from Calbiochem (San
Diego, CA). NE-PER Nuclear and Cytoplasmic extraction
reagent kit was acquired from Pierce biotechnology
(Rockford. IL).

Cell Culture

Human pancreatic cancer cell line Capan-2 and BxPC-3
were purchased from American Type Culture Collection
(Rockville, MD). Capan-2 cells express wild type p53
whereas BxPC-3 cells harbor mutated p53. Monolayer cul-
tures of Capan-2 cells were maintained in McCoy's
medium and BxPC-3 cells in RPMI 1640 medium supple-
mented with 10% fetal bovine serum, PSN antibiotic mix-
ture (10 ml/L) (Gibco BRL, Grand Island, NY). The
cultures were maintained at 37°C in a humidified cham-
ber of 95% air and 5% CO2. Normal human pancreatic
ductal epithelial cells (HPDE-6) were a generous gift from
Dr. Ming-Sound Tsao, University of Toronto, Toronto,
Canada. The long term culture of pancreatic ductal epithe-
lial cells derived from normal and benign adult human
pancreata was achieved by infection with a retrovirus con-
taining the E6 and E7 genes of the human papilioma virus
16. These cells were considered as near normal pancreatic
epithelial cells. The genetic characterization and mainte-
nance of primary culture of HPDE-6 cells were done as
described previously [17,18].

Cell Survival Assays

The effect of Triphala on the survival of Capan-2, BxPC-3,
and HPDE-6 cells was determined by Sulforhodamine B
assay. Briefly, 5000 cells were plated in 96 well plates and
allowed to attach overnight. The medium was replaced
with fresh medium containing varying concentrations of
Triphala, which was dissolved in PBS and filtered through
0.22 um before use. Plates were developed as described by
us previously [19,20] and read at 570 nm using Bio Kinet-
ics plate reader.

Determination of Apoptosis

Apoptosis induction in control and Triphala treated cells
was determined by cell death detection ELISA kit accord-
ing to manufacturer's instructions. Briefly, cytoplasmic
histone associated DNA fragments from control or
Triphala treated cells were extracted and incubated in the
microtiter plate coated with anti-histone antibody. Subse-
quently, after color development the absorbance of the
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samples was read at 405 nm using Biokinetics EL340
microplate reader.

Generation of reactive oxygen species (ROS)

The generation of ROS was evaluated by measuring the
levels of hydrogen peroxide produced in the cells by flow
cytometry. Levels of hydrogen peroxide in control and
Triphala treated cells was determined by staining the cells
with 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate
(DCFDA). DCFDA is cell permeable and is cleaved by
non-specific esterases and oxidized by peroxides pro-
duced in the cells to form fluorescent 2',7'-dichlorofluo-
rescin (DCF). The intensity of DCF fluorescence is
proportional to the amount of peroxide produced in the
cells. Briefly, 0.5 x 10° cells were plated in 25 cm2 flasks
and allowed to attach overnight. After treatment of
Capan-2 cells with Triphala, cells were further incubated
with 5 uM DCFDA at 37 °C for 15 min. Subsequently, cells
were washed and resuspended in PBS and analyzed for
DCF fluorescence by using a Coulter XL flow cytometer.
Approximately 20,000 cells were evaluated for each sam-
ple. In all determinations, cell debris and clumps were
excluded from the analysis.

Western blot analysis

Capan-2 cells were exposed to varying concentrations of
Triphala for the indicated time periods, washed twice with
ice-cold PBS and lysed on ice as described by us previously
[19,20]. Tumors obtained from control and Triphala
treated mice were washed with cold PBS, minced and
homogenized in above-mentioned lysis buffer. The cell/
tumor lysate was cleared by centrifugation at 14,000 x g
for 30 min. Lysate containing 60 pug protein was resolved
by 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) and the proteins were transferred
onto polyvinylidene fluoride (PVDF) membrane. After
blocking with 5% non-fat dry milk in Tris buffered saline,
membrane was incubated with the desired primary anti-
body overnight. Subsequently, the membrane was incu-
bated with appropriate secondary antibody, and the
immunoreactive bands were visualized using enhanced
chemiluminescence kit according to the manufacturer's
instructions. Each membrane was stripped and re-probed
with antibody against actin (1:40000 dilution) to ensure
equal protein loading.

ERK kinase activity

Control and Triphala-treated cells were lysed on ice by
lysis buffer as described above. Approximately 500 pg pro-
tein lysate was incubated overnight with 15 pl immobi-
lized antibody bead slurry at 4°C and centrifuged at
14,000 x g for 30 seconds at 4°C. Pellet was washed with
PBS and resuspended in 50 pl of kinase buffer supple-
mented with 200 uM ATP and substrate and incubated for
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30 minutes at 30°C. The protein was resolved by gel elec-
trophoresis.

Nuclear P53 transcription activity assay

Nuclear extract from control and Triphala treated cells was
prepared using NE-PER Nuclear and Cytoplasmic extrac-
tion reagent kit. P53 transcription activity was measured
by the TransAM P53 kit according to the manufacturer's
instructions. Briefly, about 10 pg nuclear extract was incu-
bated with binding buffer for 1 hour at room temperature
followed by addition of p53 antibody. Subsequently, after
color development the absorbance of the samples was
read at 450 nm using Biokinetics EL340 microplate reader
with a reference wavelength of 655 nm.

In vivo xenograft experiment

Female athymic nude mice (NCR nu/nu) were purchased
from Tacomics. The use of athymic nude mice and their
treatment was approved by the Institutional Animal Care
and Use Committee (IACUC), University of Pittsburgh
and Texas Tech University Health Sciences Center, and all
the experiments were carried out in strict compliance with
their regulations. Mice were kept on antioxidant free AIN-
76A special diet a week before starting the experiment.
Tumor xenograft in athymic nude mice was performed as
described by us previously [21]. Briefly, 1 x 10¢ Capan-2
cells in 0.1 ml PBS were injected subcutaneously in both
the flanks of nude mice. Mice were divided randomly into
three groups with 5 mice in each group. Since each mouse
had two tumors, every group consisted of 10 tumors.
Group 1 served as controls and received 0.1 ml PBS by
oral gavage. Group 2 received 50 mg Triphala/Kg body
weight five times a week (Monday-Friday), Group 3
received 100 mg Triphala/Kg five times a week (Monday-
Friday) respectively in 0.1 ml PBS by oral gavage. Treat-
ment started the same day after tumor cell implantation.
Triphala was dissolved in PBS and filtered through 0.22
um before administering to the mice. Control mice
received PBS only. Tumors were measured by Vernier cal-
ipers three times a week (Monday, Wednesday, Friday)
and each mouse was weighed twice a week (Monday and
Friday).

Apoptosis measurement in human tumor xenografts

Paraffin-embedded tissue sections (4 um in thickness)
were stained by hematoxylin and eosin (H&E). Apoptosis
was measured by TUNEL staining kit according to the
manufacturer's instructions. Briefly, tissue sections were
incubated with proteinase K (20 pg/ml in 10 mM Tris-
HCI, pH 7.4) for 15 min at 37°C. DNA breaks were then
labeled with terminal deoxytransferase (TdT) and bioti-
nylated deoxy UTP. Staining without TdT enzyme or the
biotinylated substrate was used as negative controls.
Endogenous peroxidase activity was quenched by incu-
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bating the slides in 3% hydrogen peroxide, followed by
washing in PBS.

Immunohistochemistry

Immunohistochemical staining was performed on 4 pm
paraffin-embedded tissue sections using ABC avidin/
biotin method. Briefly, paraffin sections were deparaffin-
ized and rehydrated. Endogenous peroxide activity was
quenched by incubating sections in xylene/ethanol for 15
min. To unmask antigens, slides were digested for 10 min-
utes at 37 °C by using pepsin. Slides were incubated with
antibodies against phospho-ERK (1:100), phospho-p53
(1:200) overnight at 4 °C. After incubating with secondary
antibody (1:100), immunoreactive products were devel-
oped using 3,3'-diaminobenzidine (DAB) as the chro-
mogen with standardized development times.

Densitometric scanning and statistical analysis

The intensity of immunoreactive bands was determined
using a densitometer (Molecular Dynamics, Sunnyvale,
CA) equipped with Image QuaNT software. Results are
expressed as mean values with 95% confidence intervals.
All statistical calculations were performed using InStat
software and GraphPad Prizm 4.0. Non parametric analy-
sis of variance (ANOVA) followed by Bonferroni post hoc
multiple comparison tests were used to test the statistical
significance between multiple control and treated groups.
Student t test was used to compare control and treated
group only. Differences were considered significant at P <
0.05.

Results

Effects of Triphala on the survival of human pancreatic
cancer cells and induction of apoptosis

We first examined the effects of Triphala on the growth of
Capan-2 human pancreatic cancer cells. Exposure of cells
with aqueous extract of Triphala for 24 h resulted in the
significant reduced survival of cells in a dose-dependent
manner with an IC5, of about 50 pg/ml (Fig 1A). In order
to determine the mechanism of the antiproliferative
effects of Triphala, experiments were carried out to meas-
ure the levels of cytoplasmic histone associated DNA frag-
ments using cell death detection ELISA kit. Treatment of
cells with 40 pg/ml or 60 pg/ml Triphala for 24 h resulted
in increased number of apoptotic cells ranging from 2.9 to
6.0 folds over control (Fig 1B). To confirm the induction
of apoptosis by Triphala, we determined the activation of
caspase-3 and PARP in control and Triphala treated cells
by western blotting. Treatment of Capan-2 cells with
Triphala for 24 h caused significant activation of caspase-
9, caspase-3 and PARP, as is apparent by the appearance
of their cleaved products at 37 and 39 kDa (caspase-9), 19
and 17 kDa (caspase-3) and 89 kDa (PARP) (Fig 1C), sug-
gesting that apoptosis induced by Triphala in these cells is
mediated by caspase-3 cascade.
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Triphala causes DNA damage resulting in the activation of
P53 in Capan-2 cells

Next we set out to investigate the mechanism of Triphala-
induced apoptosis. We observed that Triphala treatment
for 24 h caused significant phosphorylation of H2A.X at
Ser-139 in a dose and time-dependent manner, suggesting
the presence of DNA double strand breaks (Fig 2A-B). It
is well known that in response to DNA damage, p53 is
normally activated by ATM [22]. We observed that treat-
ment of cells with Triphala caused subtle but statistically
significant activation of ATM as evident by phosphoryla-
tion at Ser 1981 (Fig 2A). Our results further demonstrate
that Triphala treatment resulted in the significant stabili-
zation of p53 as evident by its phosphorylation at Ser-15
and increased protein level, in a dose and time dependent
manner (Fig 2A-B). In fact, significant activation of p53
was noticed just after 1 h treatment with Triphala, which
corroborated well with the DNA damage, also occurring at
the same time (Fig 2B). Activation of p53 was further con-
firmed by evaluating the transcriptional activity of p53 in
control and treated cells. As shown in Fig 2C, Triphala
treatment for 24 h resulted in about 3 to 6 fold increased
nuclear transcriptional activity of p53 in the cells as com-
pared to control. Next we examined the expression of p21,
which is the downstream molecule regulated by p53. Our
results clearly indicate that Triphala treatment cause mas-
sive induction of p21 as compared to control (Fig 2A). To
further confirm the involvement of p53 in Triphala-
induced apoptosis, cells were pretreated with pifithrin-a
(p53 specific inhibitor) prior to treatment with 60 ug/ml
Triphala for 4 h. Pharmacologically blocking p53 activa-
tion almost completely abrogated Triphala-induced apop-
tosis as observed by PARP cleavage (Fig 2D) and ELISA
based apoptosis assay (Fig 2D). These results indicate that
apoptosis by Triphala in Capan-2 cells is mediated by p53
signaling pathway.

Activation of ERK by Triphala

Since we observed DNA damage and activation and stabi-
lization of p53 by Triphala treatment, we next determined
whether MAPK plays any role in p53 activation, as has
been suggested in previous studies [23,24]. As shown in
Fig 3A, treatment of cells with varying concentration of
Triphala for 24 h caused considerable activation (phos-
phorylation) of ERK without causing any change at the
protein level. In a time-dependent experiment, activation
of ERK by 60 pg/ml Triphala was as early as 1 h and sus-
tained for the duration of the experiment (Fig 3A).
Triphala mediated activation of ERK was further verified
by kinase activity of ERK by determining the phosphoryla-
tion of its downstream substrate Elk-1. Triphala caused
increased phosphorylation of Elk-1 at Ser-383 in a dose-
dependent manner (Fig 3B). In addition, Triphala caused
phosphorylation of MEK-1 at Ser 217/221, which is the
upstream regulator of ERK (Fig 3A). To further confirm

Page 4 of 16

(page number not for citation purposes)



BMC Cancer 2008, 8:294 http://www.biomedcentral.com/1471-2407/8/294

A 120+

)
—_
o
o
[

(o]
o
[

60+

40-

Cell Survival (%

20- [3

0

) ) ) ) ) ) ) ) ) v
0 10 20 30 40 50 60 70 80 90 100
TPL Concentration (ug/ml)

B 2.4=-
2 T 2.1+
Sg s E

' 581'8-
£258% 154
0B 8 =
ET 8 g 1.29
g 8 a0 0.9+
2 2 £ 4,
o g 22 064
3 <=5 0.3-
0.0-

0 20 40 60
TPL Concentration (ug/ml)

24h treatment

M,
39,37 KD — . ‘ Caspase-9 (cleaved)

19,17 KD Caspase-3 (cleaved)

116,89 KD = PARP

45 KD e ity emeni SN Actin

0 20 40 60
TPL concentration (ug/ml)

Figure | (see legend on next page)

Page 5 of 16

(page number not for citation purposes)



BMC Cancer 2008, 8:294

http://www.biomedcentral.com/1471-2407/8/294
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Antiproliferative and apoptosis-inducing effects of Triphala in human pancreatic cancer cell line Capan-2. A)
Cells were cultured in the presence of varying concentrations of Triphala (5—100 pg/ml) for 24 hours. Cell proliferation was
measured by Sulphorhodamine B assay with eight replicates per Triphala concentration. Results of data are derived from three
independent experiments and expressed as percent survival of Triphala treated cells compared to that of PBS treated control
cells. B) Cells were treated with 20, 40 and 60 pg/ml Triphala for 24 hours. Cytoplasmic histone-associated DNA fragments
were determined using cell death detection kit. The data represents mean + SD of two independent experiments with 3 repli-
cate in each experiment. C) Cells were treated with 20-60 pg/ml Triphala 24 hours. Subsequently cell lysates were prepared
and 60 pg total protein was subjected to sodium dodecyl-polyacrylamide gel electrophresis followed by immunoblot analyses.
The expression of caspase-9, caspase-3 and PARP were detected using appropriate antibodies. Blot was stripped and reprobed
with anti-actin antibody to ensure equal protein loading. These experiments were performed 2-3 times independently, with
similar results obtained in each experiment. *Statistically different compared with PBS-treated control (P < 0.05).

the role of ERK in Triphala-induced apoptosis, cells were
pretreated with MEK-1/2 inhibitor U0126 prior to treat-
ment with 60 pg/ml Triphala for 4 h. As shown in Fig 3C,
blocking ERK activation by U0126, nearly completely pro-
tected the cells from Triphala-induced apoptosis. These
results clearly suggest that Triphala-induced apoptosis is
mediated by ERK.

DNA damage-induced activated ERK activates p53

ERK has been shown to get activated in response to DNA
damage and further phosphorylate p53 [24]; however,
this correlation is still not clearly established. In our
experiments, we observed that both p53 and ERK get acti-
vated as early as 1 h after Triphala treatment. We therefore
next wanted to determine whether ERK activates p53 in
our system. Cells were pretreated with 20 pM MEK-1/2
inhibitor U0126 prior to treatment with Triphala for 4 h
and then p53 was evaluated by western blotting and p53
transcriptional activity. Our results demonstrate that
blocking ERK by U0126, partially blocked phosphoryla-
tion of p53 at Ser-15 (Fig 3D). However, U0126 com-
pletely blocked Triphala-induced p53 transcriptional
activity as shown in Fig 3E. These results suggest that ERK
may be upstream regulator of p53 in our model. Never-
theless, other pathways may also be functional in Triphala
mediated DNA damaged cells leading to apoptosis.

Triphala-induced ROS generation triggers ERK activation
and apoptosis in Capan-2 cells

Next important step was to determine the mechanism by
which Triphala activates ERK and/or p53. Several studies
including ours have implicated reactive oxygen species
(ROS) as a possible mechanism for DNA damage and
induction of apoptosis [20,21,25,26]. We therefore
wanted to know whether Triphala-mediated activation of
ERK, p53 and apoptosis in our model is associated with
ROS generation. Generation of ROS was determined by
flow cytometery in Capan-2 cells treated with 60 pg/ml
Triphala at different time intervals. As shown in Fig 4A,
Triphala treatment increased ROS generation over control
as early as 0.5 h and sustained for the duration of the

experiment. For example, 1 h treatment of cells with
Triphala caused about 3.2 folds increase in ROS as com-
pared to control. To investigate whether ROS generation
contributes to activation of ERK and p53 and induction of
apoptosis in our model, cells were pretreated with 5 mM
antioxidant NAC prior to treatment with Triphala for 4 h.
As shown in Fig 4B, NAC pretreatment almost completely
blocked the activation of ERK induced by Triphala. P53
activation was however partially attenuated by NAC treat-
ment (Fig 4B). Nonetheless, NAC pretreatment almost
completely blocked Triphala-induced p53 transcriptional
activity (Fig 4C). Furthermore, our results clearly demon-
strate that NAC pretreatment conferred complete protec-
tion against Triphala-induced apoptosis as evaluated by
PARP cleavage and histone-associated DNA fragmenta-
tion (Fig 4B, D). These results suggest that Triphala-medi-
ated ROS may be responsible for ERK and/or p53
activation leading to induction of apoptosis.

Effect of Triphala is not cell specific

Effects of Triphala were also evaluated in BxPC-3 (harbor-
ing mutated p53) human pancreatic cancer cells and
HPDE-6 (normal human pancreatic ductal epithelial)
cells. Treatment of BxPC-3 cells with varying concentra-
tion of Triphala for 24 h resulted in the reduced survival
of cells with an IC50 of about 85 pg/ml (Fig 5A). Similar
to Capan-2 cells, Triphala treatment caused early and sus-
tained activation of ERK in BxPC-3 cells (data not shown).
Blocking ERK activation by U0126 completely blocked
Triphala-induced apoptosis as shown by PARP cleavage
(Fig 5B). On the other hand, Triphala failed to induce any
cytotoxic effects on the survival of normal HPDE-6 cells
(Fig 5C). Similarly, Triphala treatment did not caused any
change in p53 transcriptional activity (Fig 5D) nor acti-
vated ERK or p53 and failed to activate caspase-3 and
PARP in HPDE-6 cells (Fig 5E).

Triphala inhibits the growth of Capan-2 human pancreatic
tumor xenografts in vivo

The next most important step was to determine whether
Triphala administration can suppress the growth of pan-
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Figure 2 (see previous page)

Triphala causes DNA damage and activates p53 in Capan-2 cells. A) Cells were treated with Triphala for 24 h and 60
g total protein was separated by SDS-PAGE. The expression of p-H2A.X (Ser-139), p-ATM (Ser-1981), p-p53 (Ser-15), p53,
and p21| were detected using appropriate antibodies. The blot was stripped and reprobed with the anti-actin antibody to
ensure the equal protein loading. B) Time-dependent treatment cells with 60 pg/ml Triphala. C) Transcriptional activity of p53
in cells treated with Triphala for 24 h using TransAM p53 transcription assay kit. D) Effect of p53 inhibitor on Triphala induced
apoptosis. Cells were pretreated with 30 uM pifithrin-a, p53 specific inhibitor for | hour followed by exposure to 60 pig/ml
Triphala for 4 h in the presence of inhibitor. Apoptosis was determined by western blot or cell death detection kit. These
assays were performed 2-3 times independently and obtained similar results. Statistical significance was determined by one-
way ANOVA followed by Bonferroni's post hoc analysis for multiple comparisons. * Significantly different compared with PBS-
treated control (P < 0.05). **Significantly different compared with Triphala treatment (P < 0.05).

creatic tumor xenograft and whether Triphala causes
apoptosis in the tumor cells in vivo. Based on our convinc-
ing in vitro results, we hypothesized that Triphala treat-
ment would inhibit in vivo pancreatic tumor growth by
activating ERK/p53 leading to apoptosis in the tumor
cells. In order to test our hypothesis, pancreatic tumor
xenografts were implanted in athymic nude mice by
injecting 1 x 10° Capan-2 cells subcutaneously followed
by administration of aqueous extract of 50 mg/kg or 100
mg/kg Triphala five days a week by oral gavage. The con-
trol animals received PBS only. Our results demonstrate
that the growth of tumor was significantly inhibited in the
mice that were treated with Triphala as compared with the
growth of tumors in control mice (Fig 6A). For instance,
at day 32 the average tumor volume in control mice was
139.7 + 9.4 mm3 as compared with 72.2 + 4.0 mm3in 50
mg/kg or 66.9 + 3.0 mm?3 in 100 mg/kg Triphala treated
mice, which was approximately half the size of tumor in
control mice (Fig 6A). The average body weight of control
and Triphala treated mice did not changed significantly
throughout the duration of the experiment (Fig 6B).
Moreover, Triphala treated mice did not showed any signs
of discomfort or impaired movement. These results sug-
gest that both the doses of Triphala were equally effective
in inhibiting the growth of Capan-2 xenograft.

Triphala administration activated ERK, p53 and apoptosis
in tumors

To further investigate the mechanism of reduced tumor
growth by Triphala treatment, tumor tissues from control
and Triphala treated mice were examined by immunohis-
tochemistry and western blotting. Significantly higher
counts of brown apoptotic bodies (as evaluated by
TUNEL assay) were observed in the tumors from Triphala
treated mice as compared with controls indicating that
tumor growth inhibition in Triphala treated mice was due
to increased apoptosis (Fig 6C). These results were further
confirmed by western blot analysis of tumor lysates of
control and Triphala treated mice. Cleaved fragments of
caspase-3 and PARP were observed in the lysates of
tumors from Triphala treated mice as compared to con-
trols (Fig 6D). To gain further insight into the mechanism

for increased apoptosis in response to Triphala treatment,
we determined the activation of ERK and p53. As shown
in Fig 6C, enormous staining of phospho-ERK was
observed in the tumor sections from Triphala treated
mice. Similarly, increased staining for phospho-p53 was
also observed in response to Triphala treatment (Fig 6C).
These results were further complemented by western blots
where we observed increased phosphorylation of ERK
without any change in the protein level in the tumors
from Triphala treated mice. On the other hand, increased
phosphorylation as well as protein expression of p53 was
observed in Triphala treated tumors as compared to con-
trol tumors. These in vivo observations are in agreement
with our in vitro data in Capan-2 cells. On the whole, our
results indicate that Triphala mediated suppression of
pancreatic tumor xenograft was associated with the activa-
tion of ERK and p53 leading to increased apoptosis in the
tumor cells.

Discussion

Triphala has been used for centuries in Ayurvedic medi-
cine to treat various types of gastrointestinal-related disor-
ders; however, the molecular mechanisms of Triphala
have not been studied yet. In the present studies, we dem-
onstrate that aqueous extract of Triphala is effective in
inhibiting the growth of pancreatic cancer cells in culture
as well as in the in vivo model. Our results reveal that
Triphala treatment drastically reduces the survival of
Capan-2 and BxPC-3 human pancreatic cancer cells in a
dose-dependent manner. On the other hand, Triphala
failed to cause any cytotoxic effects on the growth of
HPDE-6 near normal pancreatic epithelial cells. Suppres-
sion of pancreatic cancer cell growth by Triphala in our
model was due to induction of apoptosis, which in turn
was associated with generation of ROS. Pretreatment of
Capan-2 cells with antioxidant NAC blocked ROS genera-
tion and completely protected the cells from Triphala-
induced apoptosis. Our results also demonstrate that
Triphala treatment caused DNA damage resulting in the
activation of ATM and ERK leading to stabilization of p53.
Blocking ERK activation by MEK-1/2 inhibitor U0126 or
p53 activation by pifithrin-o completely protected Capan-
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Activation of ERK by Triphala. A) Cells were treated with varying concentrations of Triphala for 24 h or with 60 pg/ml
Triphala for different time intervals in a time-dependent experiment. Expression and phosphorylation of ERK (Thr-202/Tyr-
204) and MEK-1 (Ser-217/221) was determined by western blotting. B) The effect of Triphala on the kinase activity of ERK was
determined using a kit from Cell Signaling Technology, measuring the phosphorylation of Elk-1 at Ser-383. C, D) Effect of ERK
inhibitor on Triphala induced apoptosis and activation of p53. Cells were pretreated with 20 uM U0126, MEK-| inhibitor for |
hour followed by exposure to 60 pg/ml Triphala for 4 h in the presence of inhibitor. Apoptosis and p53 was determined by
western blot or using cell death detection kit. E) Effect of pifithrin and U0126 on the transcriptional activation of p53. These
assays were performed 2-3 times independently with similar results. Statistical significance was determined by one-way
ANOVA followed by Bonferroni's post hoc analysis for multiple comparisons. *Significantly different compared with PBS-
treated control (P < 0.05). **Significantly different compared with Triphala treatment (P < 0.05).

2 (wild type p53) cells from Triphala-induced apoptosis.
Similarly, U0126 treatment blocked Triphala-induced
apoptosis in BxPC-3 (mutated p53) cells, suggesting ERK
as a molecular target of Triphala in pancreatic cancer cells.
Further, orally feeding 50 mg/kg or 100 mg/kg Triphala to
nude mice significantly retarded the growth of Capan-2
pancreatic tumor xenograft. Tumors from Triphala treated
mice demonstrated increased apoptosis in the tumor cells,
which was due to the activation of ERK and p53. To the
best of our knowledge, this is the first study to report the
molecular mechanism of the chemotherapeutic effects of
Triphala against pancreatic cancer.

Reactive oxygen species (ROS) are the known mediators
of intracellular signaling cascades. Excessive production of
ROS nonetheless leads to oxidative stress, loss of cell func-
tion and apoptosis or necrosis [25-28]. Our results reveal
that Triphala-induced apoptosis in pancreatic cancer cells
is initiated by ROS generation, the effect of which can be
blocked by antioxidant NAC. Several previous studies
including those from our laboratory have implicated ROS
as a possible mechanism for DNA damage and induction
of apoptosis [26,28-31]. DNA damage plays a critical role
in maintaining genomic integrity. Tumor cells exhibit
genetic instability causing functional inactivation of p53
that plays an important role in DNA damage checkpoint
pathways. In response to DNA damage, p53 is stabilized
through phosphorylation at Ser 15 by ATM [22,32,33].
The effects of Triphala are compatible with this assertion.
Our results do indicate that Triphala treatment causes
DNA damage as depicted by increased phosphorylation of
H2A X at Ser 139, an indicator for the presence of DNA
double-strand breaks.

DNA damage has been shown to activate the kinase activ-
ity of ATM, which subsequently modifies a number of
downstream targets including phosphorylation of p53 at
Ser 15 at the N-terminus [33,34]. Our studies reveal that
Triphala treatment activates ATM by phosphorylation at
Ser 1981. Moreover, our results also demonstrate
increased protein expression and phosphorylation of p53
at Ser 15 in response to Triphala treatment. Stabilization

of p53 by Triphala was further confirmed by nuclear tran-
scriptional activity of p53. Induction of apoptosis by
Triphala was almost completely blocked when the cells
were pretreated with p53 specific inhibitor pifithrin, signi-
fying the role of p53 in Triphala-induced apoptosis in
pancreatic cancer cells.

A number of studies have shown the importance of ERK
signaling pathway in regulating apoptosis [35-38].
Although, ERK pathway delivers a survival signal, quite a
few recent studies have linked the activation of ERK with
induction of apoptosis by various chemopreventive and
chemotherapeutic agents [39-41]. In fact, oxidants have
been shown to activate ERK by taking over the growth fac-
tor receptor signaling pathways [42-46]. Moreover, ERK
may get activated in response to DNA damage and can
phosphorylate p53 in vitro [23,24,47-49]. We found that
exposure of Capan-2 or BxPC-3 cells with apoptosis-
inducing concentration of Triphala results in a rapid and
sustained activation of ERK in a concentration and time-
dependent manner. Triphala mediated activation of ERK
as well as apoptosis was completely abolished by MEK-1
inhibitor. MEK-1, which is an upstream of ERK, is also
activated by Triphala in Capan-2 cells. Further, we
observed that p53 is transcriptionaly regulated by ERK in
response to Triphala treatment suggesting ERK as an
upstream regulator of p53 in Capan-2 cells. We also
observed that Triphala induce apoptosis by ERK activation
in BxPC-3 cells, which has mutated p53. This is in part
consistent with the observation that activated ERK lead to
apoptosis after DNA damage in a p53 independent man-
ner [49]. On the other hand, Triphala is not at all toxic to
HPDE-6 normal pancreatic epithelial cells and does not
activate ERK, p53 or caspases. Taken together, our results
indicate ERK as a possible molecular target of Triphala in
pancreatic cancer cells.

Pancreatic tumor growth inhibition and induction of
apoptosis in vivo was observed by the oral administration
of 50 mg/kg or 100 mg/kg Triphala 5 times a week. Our
results are consistent with previous studies where Triphala
was shown to be effective in suppressing the growth of
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Figure 4

Triphala causes ROS generation in Capan-2 cells. A) Cells treated with 60 pg/ml Triphala for indicated time points were
analyzed for DCF fluorescence (ROS generation) by flow cytometry after staining the cells with DCFDA. These experiments
were repeated twice and obtained similar results. B) Activation of ERK, p53 and apoptosis by ROS can be abrogated by NAC.
Cells were pretreated with 5 mM NAC for | hour and then treated with 60 pg/ml Triphala for 4 h. p-ERK, p-p53 and cleaved
PARP were determined by western blotting as described in the method section. The blot was stripped and reprobed with anti-
actin antibody to ensure equal protein loading. C) Effect of NAC on the transcriptional activity of p53. D) Apoptosis in NAC
and Triphala treated cells was determined using cell death detection kit. Statistical significance in the treated group compared
with control was analyzed by one-way ANOVA followed by Bonferroni's post hoc analysis. *Significantly different compared
with PBS-treated control (P < 0.05). **Significantly different compared with Triphala treatment (P < 0.05).
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Effect of Triphala is not cell specific. A) Effect of Triphala was evaluated on the survival of BxPC-3 (mutated p53) pancre-
atic cancer cell line, as described in Method section. B) Effect of ERK inhibitor on Triphala induced apoptosis. Cells were pre-
treated with 20 uM U026, for | hour followed by exposure to 80 ng/ml Triphala for 4 h in the presence of inhibitor. C) Effect
of Triphala on the survival of HPDE-6, normal human pancreatic ductal epithelial cells. D) Transcriptional activity of p53 in
HPDE-6 cells treated with Triphala for 24 h as described in Method section. E) Effect of Triphala on the activation of ERK, p53,
caspase-3 and PARP in HPDE-6 cells. The blots was stripped and reprobed with anti-actin antibody to ensure equal protein
loading. These assays were performed 2-3 times independently and obtained similar results. Statistical significance was deter-
mined by one-way ANOVA followed by Bonferroni's post hoc analysis for comparisons.
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In vivo antitumor activity of Triphala in a xenograft model. About | x 10¢ Capan-2 cells were injected subcutaneously
on both left and right flanks of each athymic nude mouse and randomly assigned to three groups with 5 mice each group. Mice
were fed with 50 mg/kg, or 100 mg/kg Triphala, 5 days/week by oral gavage. Control animals received PBS only. Tumors were
measured by vernier calipers three times a week (Monday, Wednesday and Friday) once each mouse had palpable tumors.
Each mouse was weighed twice a week (Monday and Friday). A) Average tumor volume in control (), 50 mg/kg Triphala (V)
and 100 mg/kg Triphala treatment (®). B) Average body weights of control and Triphala treated mice. Each data represents
mean + S.E. Error bars represent 95% confidence interval. *Statistically significantly different compared with control as ana-
lyzed by one-way ANOVA followed by Dunnett's test (P < 0.05). C) Tumor sections from control and Triphala treated mice
were processed for H&E staining and immunohistochemistry for TUNEL, p-ERK and p-p53 staining. Each section was analyzed
under the microscope at 200 X magnification and the number of stain positive cells were counted from three independent
places on the slide. D) Immunoblot analysis for the expression of p-ERK (Thr-202/Tyr-204), p-p53 (Ser-15), ERK, and p53 using
tumor lysates from control and Triphala treated mice. The blots were stripped and reprobed with actin antibody for equal pro-

tein loading. The numbers are the numerical representation of the mean densitometry values normalized to actin. These
experiments were performed twice independently with similar results. Statistical significance was determined by one-way
ANOVA followed by Bonferroni's post hoc analysis for comparisons.

Barc-95 (mouse thymic lymphoma) xenograft in mice
[15]. Although, pharmacokinetics of Triphala in humans
has not been determined, it has been used safely for cen-
turies in the Ayuervedic medicinal system in India for the
treatment of various gastrointestinal-related disorders.
The effective dose of Triphala in our animal model for
suppressing tumor growth, if extrapolated to humans
ranges from 4 to 8 grams per day for a person weighing 70
kg. These doses of Triphala come within the dose range
already being used by humans in countries such as India.
The overall incidence of pancreatic cancer is approxi-
mately 8-10 cases per 100,000 persons per year in the
USA [50-52]. In other countries the incidence may vary
from 8-12 cases per 100,000 persons per year [51-53].
However, in some areas of the world, pancreatic cancer is
sporadic; for instance, the incidence of pancreatic cancer
in India is less than 2 cases per 100,000 persons per year
[51-53]. It is tempting to speculate that the low incidence
of pancreatic cancer in India may in part be due to con-
sumption of Triphala or one of its constituent Amla (rich
in ascorbic acid). Nevertheless, detailed epidemiological
studies are required to substantiate this assumption. Inter-
estingly, a very recent study demonstrated the anti-
tumoral effects of ascorbic acid (component of Triphala)
against ovarian, pancreatic and glioblastoma xenografts in
mice [54]. Our recent studies have observed that Amla is
also very effective against pancreatic cancer (manuscript
communicated).

Conclusion

Taken together, our studies demonstrate that Triphala-
induced apoptosis in human pancreatic cancer cells is
mediated by the activation of ERK and p53, which in turn
is initiated by ROS generation. Moreover, oral administra-
tion of Triphala significantly suppress the growth of pan-
creatic tumor xenograft in nude mice by inducing
apoptosis and activation of ERK and p53 in the tumor

cells, a mechanism similar to that we observed in vitro.
Our results thus provide a rationale for the development
of Triphala as chemopreventive or chemotherapeutic
agent against pancreatic cancer in the clinical practice.
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