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Abstract
Background: Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant 
gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. 
Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of 
tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently 
developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we 
propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify 
epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer 
Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced 
methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their 
epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the 
genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations 
between the clustered methylation and the gene expression data sets generate candidate matches within a fxed 
neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic 
regression, and their significance is quantified through permutation analysis.

Results: Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation 
sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to 
further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences 
that showed a statistically signifcant negative correlation between methylation profles and gene expression in the 
panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or 
more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially 
expressed methylation patterns between the basal and luminal subtypes.

Conclusions: Our results indicate that the proposed computational protocol is a viable platform for identifying 
epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and 
VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these 
predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and 
through common regulators.

Background
Epigenetic regulation and methylation-expression 
associations
Epigenetics refers to the study of heritable changes that
cannot be explained by changes in the DNA sequence [1-

4]. One mechanism of epigenetic regulation involves
DNA methylation of CG dinucleotides, commonly repre-
sented as CpG. It is known that around 50% of the pro-
tein-coding genes are near CpG-rich sequences, known
as CpG islands. Patterns of methylation in the CpG
islands play an important role in regulating gene expres-
sion during both normal cellular development and dis-
ease processes. Increased methylation of CpG islands
(hypermethylation) in tumor suppressor genes have been
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observed during tumor progression and metastasis as a
result of aberrant methylation patterns [5,6]. At the same
time, aberrations leading to decreased methylation of
CpG islands (hypomethylation) of oncogenes are known
to occur [7]. A review of epigenetics in cancer and the
role of DNA methylation markers can be found in [8].
Since hyper and hypomethylation of the genome are con-
sidered widespread attributes of tumors, predicting the
regulation of gene expression through CpG island methy-
lation at an epigenome level will provide a better under-
standing of the tumor pathobiology and progression.

To measure genome-wide methylation, we used Target
Amplification by Capture and Ligation (mTACL), a high-
throughput technique developed by Affymetrix Inc.,
which has been used to measure the methylation of
145,148 CpGs in the promoters of 5,472 genes for 221
samples [9]. In the mTACL approach, regions of the
genome to be analyzed (the targets) are first captured
using dU probes. Such probes contain segments of DNA
complementary to the targets with all the thymidines (T)
substituted by uridines (U), and two common primers
flanking the target sequences. mTACL has about 19,250
dU probes within the vicinity of transcriptional start sites
of 5,472 genes, with 170,000 CpGs that are potentially rel-
evant in tumorigenesis. Moreover, the dU probes were
designed so that they hybridize specifically to target
genomic DNA digested with restriction enzymes MspI
and HpyF3I, along with adaptor oligonucleotides comple-
mentary to the common primers of dU probes. All cyto-
sines (C) of the adaptor oligonucleotides were substituted
with 5'-methyl cytosine (5-mC). dU probes, adaptor oli-
gonucleotides and the target genomic regions were
hybridized using the "touchdown annealing" protocol fol-
lowed by ligation of oligonucleotides to the ends of the
target genomic DNA. After ligation, the dU probes were
removed by digestion using uracil DNA-glycosylase, leav-
ing only the target genomic DNA ligated to common
primers. Later, the target DNA was treated with bisulfite
followed by amplification using common primers and
hybridization to microarray containing 21-mer probes
that span across the CpGs in the target DNA. The extent
of CpG methylation is measured using relative signal of
two probes (probsets) for each CpG: one corresponding
to the case in which CpG(s) covered by the probe are
methylated, and the other one to the sequence in which
CpG(s) covered by the probe are unmethylated. There are
at least 3 different probe sets that cover the same CpG.
The resulting hybridization signals were translated into
methylation values using logistic regression by fitting
models of the relative probe signal to percentage methy-
lation for each CpG. The regression used artificial sam-

ples of known CpG methylation (i.e. 0, 10, 25, 50, 75 and
100%) and the quality of fit was assessed with r2.

Identifying epigenetically regulated genes
This paper discusses how a novel computational protocol
can be used to integrate CpG methylation and gene
expression data sets to systematically identify epigeneti-
cally regulated genes. Our assumption is that the effect of
DNA methylation on gene expression is local and limited
to the promoter region. A computational protocol on the
exploratory analysis of epigenetic regulation using cou-
pled methylation and expression data was proposed by
Sjahputera et al. [10]. Their work investigated differential
methylation hybridization and associated gene expres-
sion data to build a relational data space for non-Hodg-
kin's lymphoma. Fuzzy set theory is used to identify
epigenetically regulated genes from the relational data
space. In this process, methylation-expression associa-
tions were transformed into a logarithmic map, which
was divided into four discriminative quadrants. Each
quadrant represented one out of four gene regulation
behaviors (i.e., hypermethylation and up-regulation;
hypomethylation and up-regulation; hypermethylation
and down-regulation; and hypomethylation and down-
regulation). Clustering was applied to sets of associations,
and the epigenetic regulation was determined from the
cluster's location and quadrant's membership. A mea-
surement of confidence is then computed from the prob-
abilities involved in the determination of the clusters.
This computational framework suffers from a number of
limitations in the context of the high-dimensionality
mTACL technology: (i) processing time of the high-vol-
ume relational data may be prohibitive; (ii) fuzzy cluster-
ing approaches are iterative and sensitive to the initial
conditions, which may lead to unstable solutions; (iii) the
division of quadrants is arbitrary and too rigid to incor-
porate the natural scale of data; and (iv) confidence in the
solution is not established in terms of statistical signifi-
cance (i.e., p-value).

To overcome the issues described above, we first
reduced the dimensionality of the methylation data to
alleviate the computational load resulting from the data.
Consequently, this enables the efficient correlative analy-
sis and assignment of p-values through permutation anal-
ysis that otherwise would be unmanageable in the
original space. To this end, we used the following two-
step clustering approach: (i) grouping along the genome
to reveal regions with high concentration of assayed
methylation sites, and (ii) clustering of methylation pro-
files within each region to identify similar methylation
patterns. For the latter, we used spectral clustering, as it
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offers a number of advantages. For instance, it is noniter-
ative; it can identify clusters along nonlinear boundaries;
and it has been proven to outperform other techniques
[11,12]. Its improved performance is attributed to the
transformation of data into a higher-dimensional space,
which requires less complex problem solving than in the
original data space [13]. Here, a K-Spectral Clustering
(KSC) is employed, and optimal input parameters are
determined automatically. Secondly, associations
between clustered methylation and gene expression data
sets are produced by setting a fixed constraint of 20,000
base pairs in the vicinity of either 5' or 3' ends to match
methylation sites to their genes. Finally, prediction and
ranking of epigenetic regulated genes is performed based
on logistic regressions of the methylation-expression
associations onto an exponential curve. This logistic
approach is flexible enough to incorporate any data scale
and distribution, and does not contain rigid and arbitrary
definitions that could limit its application. Finally, the sig-
nificance of the logistic regression is verified by permuta-
tion analysis and computing the p-value.

Computational protocol
The proposed computational protocol for identifying epi-
genetically regulated genes consists of three steps (Figure
1): (i) dimensionality reduction of the methylation profile,
which is comprised of two sub-steps: (i.i) clustering of
methylation profiles on the basis of proximity, and (i.ii)
clustering within methylation sub-regions on the basis of
similarity; (ii) association of the clustered methylation
data to gene expression data; and (iii) logistic regression
and ranking of the methylation-expression associations.
Software and data can be downloaded at http://
vision.lbl.gov/Software.

Dimensionality reduction
Genome-wide methylation measurements in CpG islands
produce a high-volume data that make it computationally
unmanageable for association, ranking, and required per-
mutation analyses. Therefore, dimensionality reduction is
a necessity and is implemented by us with two steps: (i)
clustering on the basis of proximity of methylation sites
within each chromosome along the genome; and (ii) clus-
tering on the basis of similarity among methylation pro-
files across cell lines.

- Clustering on the basis of proximity: In this step,
regions of concentration are identified by the proximity
of CpG methylation sites along the genome. In each chro-
mosome, methylation sites adjoining within 2,000 base
pairs are aggregated and form distinct regions from
methylation sites adjoined by more than 2,000 base pairs.
Such regions provide a spatial context for methylation
sites, grouping and isolating distant chromosomal
regions. This is an important step for subsequent cluster-
ing based on the similarity of methylation profiles.

- Clustering on the basis of similarity: In this step,
methylation profiles are clustered to identify cross-simi-
larities within each region. Prior to the clustering, how-
ever, methylation profiles are pre-processed and
represented by the largest principal components, which
embed 99% of the data underlying variance. This is a
standard approach and well documented in the machine
learning literature. Clustering high-dimensional data in
their principal component space results in lower compu-
tational complexity and lower risk from the curse of
dimensionality [14]. The clustering method used here is
unsupervised, and based on K-Spectral Clustering (KSC)
[13], as discussed below.

Figure 1 Computational pipeline. The computational pipeline for identification of epigenetically regulated genes from a panel of breast cancer cell 
lines. It was developed with the aim of (i) reducing the dimensionality of the methylation data, comprised of two sub-steps: (i.i) clustering of methy-
lation profiles on the basis of proximity, and (i.ii) clustering within methylation sub-regions on the basis of similarity; (ii) associating the reduced meth-
ylation data to gene expression data; and (iii) ranking the methylation-expression associations according to their epigenetic regulation

assignment of p−value

Methylation−expression
association

Logistic regression and

Cluster on the 

basis of 

similarity

basis of

proximity

Reduction of methylation data 

Cluster on the 

http://vision.lbl.gov/Software
http://vision.lbl.gov/Software


Loss et al. BMC Bioinformatics 2010, 11:305
http://www.biomedcentral.com/1471-2105/11/305

Page 4 of 14
Given a set of methylation profiles (s1,...sn) across l cell
line principal components, the algorithm starts by com-
puting an affinity matrix A whose diagonal elements Aii =
0 and off-diagonal elements are

Next, the k largest principal components are computed
from the matrix

where D is a diagonal matrix whose Di,i elements are the

sum of A's i-th row. Let X be the n × k matrix that is

formed by the k largest principal components of L. K-

means clustering [15] is then applied to the normalized

matrix Y, whose elements are represented by

. Finally, the methylation profiles Si

receive the same clustering assignment proposed for Y by

k-means, i.e., a profile is assigned to cluster j if and only if

row Yi is assigned to cluster j.

The above formulation of KSC requires parameter set-

ting for the variables σ and k. σ determines the magnitude

of the exponential decay in the computation of the affin-

ity matrix A. Its value plays a role on the determination of

boundaries between adjacent clusters. k specifies the

number of clusters, which controls the amount of data

quantization, but is often difficult to be determined in

practice. A simple yet effective strategy to infer these

parameters involves clustering with different combina-

tions of the parameters and estimating the compactness

of the inferred clusters. One way to characterize cluster

compactness is to measure the cluster's internal homoge-

neity over external heterogeneity [16]. This relation can

be mathematically defined by the ratio of , where W is

the maximum distance between a point within a cluster

and its center, and B is the minimum distance between

two cluster centers. In our implementation, we partition

the space of k and σ into fixed intervals, perform KSC for

each enumerated pair of variables, and select the pair that

produces the minimum measure of compactness. A rep-

resentative methylation profile for each cluster is then

computed by averaging all methylation measurements

across cell lines. We tested this approach on synthetic

data with linear and nonlinear boundaries to predict the

validity of the results. Figure 2 demonstrates the selection

of KSC's optimal parameters σ and k for synthetic data

equally distributed into three concentric circles. The

compactness measures, produced by each pair of param-

eters, are then normalized and shown as a heat map. The

minimum value is marked by the blue box.
Methylation-Expression Association
Each representative methylation site, averaged over
members of the same cluster, is associated with a gene or
a set of genes. The association uses only the methylation
site and the gene's probe set base range. A gene may have
multiple probe sets in the expression data, which cover
different portions of a chromosome. These associations
are created for representative methylation sites being (i)
within a gene probe set, or (ii) within a 20,000-base-pair
window adjacent to the gene probe set. The latter
accounts for natural uncertainties for locating a potential
CpG island along the DNA.
Logistic regression and assignment of p-value
In order to characterize a negative correlation between
the methylation and expression data (i.e., hypermethyla-
tion and down-regulation; and hypomethylation and up-
regulation), we perform logistic regression of the methy-
lation-expression associations. To this end, we experi-
mented with several functional representations and
propose a generic model, with flexible degrees of free-
dom, corresponding to an exponential curve of the form:

where E and M are respectively the expression and
methylation measurements for each cell line, and a, b,
and c are the free variables of the logistic model. Evalua-
tion of the logistic regression on synthetic data reveals
that expected inverse relationship between expression
and methylation can be correctly ranked (Figure 3). Note
that R is the correlation coefficient by which the associa-
tions are ranked. It reflects the quality of the logistic
regression and, consequently, the method's confidence in
an epigenetic regulation.

A eij
s si j= − −� �2 22/ .s

L D AD= − −1 2 1 2/ / ,

Y X Xij ij j ij= ∑/ ( ) /2 1 2

W
B

E ae cb M= +− × ,



Loss et al. BMC Bioinformatics 2010, 11:305
http://www.biomedcentral.com/1471-2105/11/305

Page 5 of 14
where SSR = �(Efit - mean(E))2 and SSE = �(Efit - E)2, and
R = 1 indicates a perfect fit to the model. The correspond-
ing p-value is estimated for each association by comput-
ing:

The p-value is computed by comparing the value of R
resulting from the curve regression, and the values of Rm,
m = 1, 2,...,M, resulting from M attempts for fitting the
same curve after permuting the methylation measure-
ments of each association. In our implementation, M is
set at 10,000.

Results and Discussion
Data sets
The raw data was composed of 145,148 CpG methylation
measurements containing, among others, the chromo-

some number, chromosomal sampling site, and the meth-
ylation profile across 58 cell lines. We filtered the original
array to 137,688 CpG methylation sites, which contained
valid chromosomal annotation data. With respect to gene
expression data, we used publicly available data for a the
panel of breast cancer cell lines [17]. Each array consists
of 22,215 probe sets containing both luminal and basal
subtypes. Forty-five cell lines were found in common
between the ICBP expression data and the mTACL meth-
ylation data, and only data for the common cell lines were
used for analysis (see Table 1). All expression measure-
ments were transformed from the logarithmic scale to
decimal units and normalized between 0-100% across the
whole data set so the measurements were consistent with
methylation.

Dimensionality reduction
The first clustering step grouped the 137,688 methylation
sites on the Affymetrix array into 5,785 distinct clusters
(regions of concentration) across 23 chromosomes. Out
of these 5,785 regions, the second clustering step gener-
ated 14,505 clusters, and produced representative methy-
lation patterns by averaging the cluster's respective

R
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=

+
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Figure 2 Optimization example. We tested our clustering approach on synthetic data with linear and non-linear boundaries to predict the validity 
of the results on real data. This example shows the determination of KSC's optimal parameters σ and k for the solution of a problem with samples 
distributed into three concentric circles. Each combination of σ and k produces a compactness value. The solution is selected from the set of param-
eters which produced the minimum value of compactness (marked by the blue box)
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Figure 3 Logistic regression. Evaluation of the logistic regression on synthetic data reveals that expected inverse relationship between expression 
and methylation can be correctly ranked. R is the correlation coefficient and determines the quality of the logistic regression. The associations are or-
dered according to their R value and reflect the strength of the method's confidence on an epigenetic regulation. The logistic approach is flexible 
enough to incorporate any data scale and distribution, and does not contain rigid and arbitrary definitions that could limit its application
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members. Note that this result represents a reduction of
around 90% from the original raw data. Furthermore, 99%
of the cell line's principal components' variance was
found to be concentrated in 12 to 14 components, which
reveals a high correlation between cell lines. Subsequent
associations between the reduced methylation data and
the gene expression generated 18,312 associations.

Logistic regression and assignment of p-value
Table 2 shows the top 58 genes predicted as epigenetically
regulated according to the logistic model and computed
p-values. Methylation-expression associations for five
well-known epigenetically regulated genes (i.e., collagen 1
a2 (COL1A2), trefoil factor 1 (TFF1), topoisomerase IIa
(TOP2A), cyclin-dependent kinase inhibitor 2A
(CDKN2A), and vav 3 guanine nucleotide exchange fac-
tor (VAV3)) are also plotted on the right side for refer-
ence. One can note that the methylation patterns are
highly heterogeneous for the panel of breast cancer cell
lines.

We have compared the percentage of selected markers
with two cancer-specific gene data sets of (i) 5900 genes
that The Cancer Genome Atlas Project (TCGA) is target-
ing for sequencing [18], and (ii) genes that were selected
using Prediction Analysis of Microarrays (PAM) data as
described in [17]. The TCGA gene set represents genes
that are widely expressed in cancer whereas PAM gene
set represents breast cancer subtypes. We found that 66%
and 22% of our gene list are also in the TCGA and the
PAM data sets, respectively. This analysis is promising
since (i) the TCGA gene list is not specific to breast tis-
sue, and (ii) the PAM data set does not incorporate meth-
ylation data; thus, by incorporating methylation data, a
reduced number of biomarkers can be hypothesized.

Epigenetically regulated genes
Our protocol has identified 58 genes that are epigeneti-
cally regulated. Here, we briefly discuss COL1A2,

TOP2A, VAV3, CDKN2A, and TFF1 (genes underlined in
Table 2 and respective methylation-expression associa-
tions shown in Figure 4), by comparing them against
known literature. Methylation maps for 58 genes in rela-
tion to the regulated genes are shown in Additional file 1.

COL1A2 plays important role in collagen production
and tumor development [19], and is hypermethylated and
down-regulated in about 40% of the ICBP cell lines. Let
us assume that hypermethylation and up-regulation
accounts for measurements above the 50% threshold. It is
interesting to note that our method has identified epige-
netic regulation of COL1A2 even in the presence of only
3 up-regulated cell lines. These 3 lines are not outliers as
the computational protocol has generated a hypothesis
for further bioinformatics analysis. Epigenetic regulation
of COL1A2 is consistent with the published literature,
which suggests that its down-regulation correlates with
hypermethylation, and is a frequent event in breast can-
cer cell lines such as MCF7 and HS578T [19]. Further-
more, aberrant methylation of COL1A2 has been
identified in medulloblastoma and hepatoma [20,21],
where biallelic methylation of COL1A2 was observed in
77% of medulloblastomas, in addition to be shown to dis-
tinguish histological subtypes of tumors [20]. TOP2A is
an enzyme involved in controlling the topological state of
the DNA machinery. Approximately 50% of ICBP cell
lines are hypomethylated and up-regulated TOP2A.
TOP2A is (i) a good prognostic marker in breast cancer
and response to therapy [22], (ii) a prognostic factor for
ER-positive breast cancer [23], and (iii) is epigenetically
regulated for cellular assembly and organization in lym-
phoblastoid cell lines [24].

TFF1's function is not well known to date. However, it
has been widely studied because of its presence in human
tumors. For example, a recent study has identified and
validated over-expression of TFF1 in breast carcinoma
[25]. Another study has concluded decreased methylation

Table 1: Panel of cell lines.

600MPE AU565 BT20 BT474 BT483

BT549 CAMA1 DU4475 HBL100 HCC1143

HCC1187 HCC1428 HCC1500 HCC1569 HCC1599

HCC1937 HCC1954 HCC202 HCC2185 HCC38

HCC3153 HCC70 HS578T LY2 MCF10A

MCF12A MCF7 MDAMB157 MDAMB231 MDAMB361

MDAMB415 MDAMB435 MDAMB453 MDAMB468 SKBR3

SUM1315 SUM149PT SUM159PT SUM185PE SUM44PE

SUM52PE T47D UACC812 ZR751 ZR75B

Forty-five cell lines were found in common between the ICBP expression and the mTACL methylation data. The cell lines listed here formed 
the gene signature used in our analysis.
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Table 2: Gene ranking.

Gene R p-Value

COL1A2 0.888126 0.001200

S100A2 0.770036 0.008100

TFF1 0.764194 0.000000

INHBA 0.761402 0.000400

WNT5A 0.731727 0.002700

GJA1 0.722746 0.000300

GNG11 0.722025 0.000600

GSTM3 0.693819 0.000000

IGFBP5 0.684982 0.000000

IFI16 0.615905 0.002200

FDXR 0.611562 0.000500

CTGF 0.594878 0.000000

NUPR1 0.586186 0.000100

GSTP1 0.560942 0.004200

CYP1B1 0.550128 0.000200

TOP2A 0.522335 0.009000

ESR1 0.518515 0.015700

IFITM3 0.514558 0.002600

MX1 0.503719 0.012400

CDKN2A 0.500448 0.008800

CD44 0.496155 0.034700

MTHFD1 0.494175 0.028900

VAV3 0.481777 0.000800

TFAP2A 0.474620 0.000200

HOXA9 0.473453 0.000000

DHRS2 0.454703 0.009000

CBFA2T3 0.443504 0.021400

ZIC1 0.435035 0.016000

LITAF 0.434958 0.001700

ADAM12 0.428524 0.016000

IFITM2 0.421762 0.019400

EFS 0.412792 0.007300

TACSTD2 0.407764 0.006500

GSTO1 0.390240 0.010400

CGREF1 0.372320 0.000000

MAFB 0.366501 0.011300

CAMK2N1 0.353566 0.008600

SEMA3F 0.348895 0.000000

RAB25 0.347329 0.023900

ANXA13 0.341399 0.012600

ALCAM 0.335584 0.009400

EIF4B 0.328433 0.000000

GATA3 0.328377 0.008500
levels in breast tumor cells [26], while a much older study

RAB21 0.321558 0.012700

PTN 0.320676 0.030900

PYCARD 0.319203 0.035600

MAPK13 0.316035 0.013700

IGFBP2 0.315176 0.021300

S100A6 0.310833 0.033000

C12orf24 0.310481 0.020100

IGFBP7 0.309320 0.049000

ALDH4A1 0.302697 0.000000

APITD1 0.296412 0.000000

CRABP2 0.285055 0.048900

ITGB4 0.281394 0.031500

BMP1 0.279983 0.001700

UNG 0.275001 0.000000

FAM134A 0.268202 0.043500

Top 58 genes predicted as epigenetically regulated according to 
our logistic model and p-value calculation.
Methylation-expression associations for underlined genes are 
shown in Figure 4.

Table 2: Gene ranking. (Continued)
states that TFF1 expression is regulated by DNA methyla-
tion in breast cancer [27]. VAV3 is a nucleotide exchange
factor that activates rearrangement of actin filament, and
its association shows that only 4 cell lines are hypermeth-
ylated. Epigenetic regulation of VAV3 is consistent with a
recent report showing that 83% of breast tumors overex-
press VAV3 [28].

CDKN2A is part of the cell cycle machinery and is an
important tumor suppressor gene. Our analysis indicates
that CDKN2A is hypermethylated and down-regulated in
only about 30% of the samples, whereas the majority of
the samples are hypomethylated and down-regulated.
This discrepancy can be explained by DNA copy number
loss or CDKN2A mutation, which is frequently associ-
ated with pathophysiology of certain types of cancers,
including breast cancer [29-32].

Subnetwork enrichment analysis
Although gene-by-gene analysis is a traditional and viable
bioinformatics approach, modern analyses can benefit
from enrichment strategies. Here, we have applied the
predicted 58 genes for subnetwork enrichment through
Pathway Studio. It is noteworthy that (i) 35 common reg-
ulators with 6 or more predicted genes have been identi-
fied, and (ii) that these regulators are of the type
"Pathway". Table 3 lists the top 10 subnetworks according
to their p-value. A complete spreadsheet of the common
regulators and their targets can be found in Additional
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Figure 4 Methylation-expression associations. Five genes with known (based on the literature) epigenetic regulation demonstrate that logistic 
regression is appropriate as a model system. It is clear that the methylation patterns are highly heterogeneous for the panel of breast cancer cell lines
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file 2. Analysis of these subnetworks suggests that epige-
netic regulation of individual genes occurs in a coordi-
nated fashion and through common regulators. An
example is shown in Figure 5, where Jun/Fos complex has
been shown to be a common regulator for a number of
predicted epigenetic biomarkers. Jun and Fos, together
with the AP1 transcription factor, drive expression of a
number of genes necessary for cell cycle progression,
including S100A2. S100A2 was also predicted by our pro-
tocol and has been implicated in breast cancer and its
repression in tumor cells is mediated by site-specific
methylation [33]. Figure 6 shows interaction of two com-
mon regulators and predicted epigenetic markers. Sub-
network enrichment and the presence of a large number

of common regulators further substantiate our method-
ology.

Subtype-specific epigenetic regulation
One aspect of data analysis in cancer biology is to identify
subtypes within the tumor lines. Our analysis indicates
that there is evidence of subtype methylation with respect
to the previous classification of basal A, basal B, and
luminal lines, where these subtypes were shown to have
DNA copy number changes similar to those of the
respective subtypes found in primary breast tumors [17].
Our protocol suggests that the luminal marker GATA3
and basal marker CD44 are (i) epigenetically regulated
and (ii) cell line specific. For example, Figure 7 indicates

Table 3: Subnetwork enrichment.

Common regulator Predicted biomarkers p-value

GF S100A6,CD44,CDKN2A,CTGF,ESR1,IGFBP5,TFF1,GSTP1 2.86E-07

IGFBP2,GJA1,WNT5A,NUPR1,S100A2

Jun/Fos CD44,CYP1B1,CDKN2A,CTGF,ESR1,IGFBP5,TFF1,GSTP1 1.68E-06

GJA1,PTN,COL1A2,S100A2,IFI16

EGF CD44,CTGF,ESR1,IGFBP5,TFF1,KRT18,INHBA,IGFBP2 4.09E-06

GJA1,PTN,COL1A2,S100A2

TP53 CD44,CDKN2A,ESR1,SEMA3F,ANXA1,TFAP2A,COL1A2,LITAF 8.52E-06

S100A2,TOP2A,FDXR,IFI16

BMP2 CTGF,IGFBP5,INHBA,GJA1,WNT5A,CRABP2,COL1A2,ZIC1 8.56E-06

MAPK GATA3,CD44,CDKN2A,CTGF,ESR1,IGFBP5,MAFB,TFF1 9.57E-06

IGFBP2,GJA1,TFAP2A,COL1A2

PKA CYP1B1, CTGF, ESR1, IGFBP5, TFF1, KRT18, INHBA, IGFBP2 1.04E-05

GJA1, TFAP2A

TNF S100A6,CD44,CYP1B1,CTGF,ESR1,IGFBP5,TFF1,GSTP1 1.71E-05

INHBA,GJA1,PTN,IGFBP7,TFAP2A,COL1A2,MX1

SRC CD44,CTGF,ESR1,TFF1,KRT18,IGFBP2,COL1A2 2.30E-05

TGF family GATA3,CD44,CDKN2A,CTGF,IGFBP5,INHBA,GJA1,IGFBP7 2.89E-05

CRABP2,COL1A2,VAV3

Top 10 lowest p-valued pathways identified by subnetwork enrichment analysis of the predicted 58 genes through Pathway Studio (see 
complete list in Additional file 2). Common regulator, genes involved and respective p-values are shown. The occurrence of multiple predicted 
markers within the same pathway suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common 
regulators.



Loss et al. BMC Bioinformatics 2010, 11:305
http://www.biomedcentral.com/1471-2105/11/305

Page 11 of 14
that luminal lines have low expression as a function of
methylation for CD44 (basal A and B-specific genes),
although the basal lines are epigenetically regulated; and
(ii) the opposite holds for GATA3 (luminal-specific
genes).

Conclusions
In this paper, we proposed a computational pipeline for
identifying epigenetically regulated genes for a panel of
breast cancer cell lines. The protocol avoids excessive
computational complexity through a step-wise reduction
of methylation data for the required expression data asso-
ciations. To this end, a twofold clustering approach
explored both the proximity of methylation sites and sim-
ilarities among methylation profiles across cell lines. K-
Spectral Clustering was presented and used in the latter
step. As a result of data clustering, a number of represen-

tative methylation profiles were generated for direct asso-
ciation with candidate genes. Epigenetic regulation was
estimated from logistic regressions of the methylation-
expression associations and its significance verified
through the computed p-value. The computational pipe-
line was applied to a panel of 45 breast cancer cell lines,
and the protocol identified a list of 58 genes, including
COL1A2, TOP2A, TFF1, and VAV3, whose key roles in
epigenetic regulation are consistent with known litera-
ture. Subnetwork enrichment of these markers identified
35 common regulators of the type "Pathway" with 6 or
more predicted genes, further suggesting that epigenetic
regulation of individual genes occurs in a coordinated
fashion and through common regulators. Our current
efforts focus on associating methylation data with the
therapeutic responses and other biological data derived
from the same panel of cell lines.

Figure 5 Subnetwork enrichment (Jun/Fos). Jun/Fos complex has been shown to be a common regulator for 13 of the predicted epigenetic bio-
markers. Jun/Fos' subnetwork's statistical significance (p-value) is 1.68E-06, as shown in Table 3, row 2. Together with the AP1 transcription factor, Jun 
and Fos drive expression of a number of genes necessary for cell cycle progression
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Figure 6 Subnetwork enrichment (Jun/Fos and GP). Interaction of two common regulators and their relations to 17 of the predicted epigenetic 
markers (Table 3, rows 1 and 2). Subnetwork enrichment and the presence of a large number of common regulators further substantiate our meth-
odology

Figure 7 Cell line subtypes. Methylation-expression associations for CD44 (basal A and B specific gene) and GATA3 (luminal specific gene) according 
to the cellular subtype. There is evidence that the methylation pattern reflects the basal and luminal subtypes in breast cancer cell lines
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