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Antibodies targeting programmed death receptor-1 (PD-1)/programmed death ligand-1
(PD-L1) have been considered breakthrough therapies for a variety of solid and
hematological malignancies. Although cytotoxic T cells play an important antitumor role
during checkpoint blockade, they still show a potential killing effect on tumor types
showing loss of/low major histocompatibility complex (MHC) expression and/or low
neoantigen load; this knowledge has shifted the focus of researchers toward
mechanisms of action other than T cell-driven immune responses. Evidence suggests
that the blockade of the PD-1/PD-L1 axis may also improve natural killer (NK)-cell function
and activity through direct or indirect mechanisms, which enhances antitumor cytotoxic
effects; although important, this topic has been neglected in previous studies. Recently,
some studies have reported evidence of PD-1 and PD-L1 expression in human NK cells,
performed exploration of the intrinsic mechanism by which PD-1/PD-L1 blockade
enhances NK-cell responses, and made some progress. This article summarizes the
recent advances regarding the expression of PD-1 and PD-L1 molecules on the surface of
NK cells as well as the interaction between anti-PD-1/PD-L1 drugs and NK cells and
associated molecular mechanisms in the tumor microenvironment.

Keywords: tumor, immune checkpoint inhibitor, natural killer cell, programmed death receptor-1, programmed
death-ligand 1
1 INTRODUCTION

Antibodies targeting programmed death receptor-1 (PD-1) and programmed death ligand 1 (PD-
L1) have been approved for the treatment of a variety of solid and hematologic malignancies;
patients with various malignancies and even those with a very advanced disease showed durable
responses to this treatment (1–3). However, only 10–20% of patients with different tumor types
respond well to PD-1/PD-L1 blocking therapy (3, 4). In addition, treatment with anti-PD-1/PD-L1
monoclonal antibodies (mAbs) can lead to unexplained clinical responses of tumors with no or
low expression of major histocompatibility complex (MHC) and/or PD-L1 (2, 4, 5). Therefore, a
better understanding of the mechanisms of action of anti-PD-L1 (or anti-PD-1) mAb therapy
and the impact of this therapy on each component of the tumor immune microenvironment
will help improve the precision of cancer immunotherapeutics in the future. Most believe
that antibodies targeting PD-1 and PD-L1 are largely only beneficial for eliciting T cell-driven
responses, but accumulating evidence suggests that blocking the PD-1/PD-L1 axis may also improve
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natural killer (NK)-cell function and activity and enhance
antitumor cytotoxicity through direct/indirect but crucial
mechanisms. For example, Hodgkin lymphoma cells with
defective MHC class I expression responds well to anti-PD-1
mAb therapy, which suggests the presence of immune responses
that are independent of cytotoxic CD8+T cells, inhibited by PD-
1, and rescued by anti-PD-1 therapy (5–7). NK cells show MHC-
independent antitumor cytotoxicity, which allows them to
exhibit killing effects on many tumor types with absent or low
MHC expression and/or low neoantigen burden. Recently, some
studies have reported evidence of PD-1 and PD-L1 expression in
human NK cells (8, 9). In vivo mechanistic studies on whether
and how PD-1 or PD-L1 plays a role in NK-cell response to
tumors and whether and how PD-1/PD-L1 blockade mobilizes
NK cell response remain scarce; however, with the development
of multi-omics and high-throughput sequencing technologies,
the understanding of this field has gradually deepened and
progressed. Based on this knowledge, in this article, we
comprehensively review the expression of PD-1 and PD-L1
molecules on the surface of NK cells and discuss the
interactions between anti-PD-1/PD-L1 drugs and NK cells in
the tumor microenvironment (TME) as well as the associated
molecular mechanisms.
2 NK CELL FUNCTION AND PHENOTYPE

NK cells are mainly involved in killing microbes and malignantly
transformed allogeneic and autologous cells without prior
sensitization and exhibit non-MHC-restricted antitumor
cytotoxicity (10). Activated NK cells exert a strong cytotoxic effect
by inducing the secretionof cytotoxicmediators and the production
of inflammatory cytokines and chemokines through integration of
adhesion molecules and receptor signaling activation (11).
According to the CD56 density on the cell surface, NK cells can
be divided into CD56dim (~90%) and CD56dim (~10%) cells (12).
CD56bright mainly performs immunoregulatory function by
secreting cytokines, while CD56dim mainly performs cytolytic
function by secreting granzyme B and perforin, which enhance
the expression of immunoglobulin-like receptors and Fcg receptor
III (FcgRIII)/CD16 (13, 14). Induction and regulation of NK cell
function is mediated by a range of activating or inhibitory surface
receptors. In humans, the main activating receptors involved in
target-cell killing include natural cytotoxic receptors (NCRs)
(including NKp46, NKp30, and NKp44) and NKG2D (15).
FcgRIII is also an activating receptor that is mainly expressed by
CD56dimNK cells and is essential for antibody-dependent cell-
mediated cytotoxicity (ADCC) against IgG-coated target cells
(16). Conversely, MHC class I antigen-specific inhibitory
receptors on the surface of NK cells, namely, killer cell
immunog lobu l in- l ike r ecep tor s (KIRs ) , l eukocy te
immunoglobulin-like receptors (LIRs), and natural killer group
2 A (NKG2A), tightly regulate the cytotoxicity mediated by these
cells and theproductionof lymphokines, by recognizing selfMHC-I
antigens (17, 18). In addition, several non-MHC-specific inhibitory
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NK receptors have been identified, including classical cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), PD-1, and T cell
immunoreceptor with Ig and immunoreceptor tyrosine-based
inhibitory motif (ITIM) domains (TIGIT), CD96, lymphocyte-
activation gene 3 (LAG-3), and T cell immunoglobulin-3 (TIM-3)
(19). Sheffer M et al. (20) systematically defined the molecular
signature of human tumor cells that determines their sensitivity to
human allogeneic NK cells and found that the transcriptional
signature of NK cell-sensitive tumor cells correlates with immune
checkpoint inhibitor (ICI) resistance in clinical samples. The study
has also applied genome-scale CRISPR-based gene editing screens
in several solid tumor cell lines to functionally interrogate which
genes in tumor cells regulate responses to NK cells. Tumor cells
escape immune responses by regulating the expression of inhibitory
receptors on NK cells, and in this context, PD-1/PD-L1 axis has
been studied extensively; understanding the expression of NK cell
surface receptors and their role in the functional activity ofNK cells
is essential for the development of effective immunotherapies.
3 PD-1/PD-L1 ON NK CELLS:
EXPRESSION, REGULATION, AND
EFFECTS ON CELL FUNCTION

3.1 PD-1 on NK Cells: Expression,
Regulation, and Effect on Cell Function
PD-1 is a member of the immunoglobulin superfamily. It can be
expressed on various immune cells, including T (CD4+ and
CD8+) cells, B cells, bone marrow cells, NK cells, and other
innate lymphocytes (ILCs) (21–23). When bound to ligands
(PD-L1 and PD-L2) that may be expressed on tumor cells, PD-
1 may play a role in impairing antitumor effects and facilitating
tumor immune escape (21–23). In recent years, researchers have
shown interest in targeting PD-1 to increase NK activity.
However, PD-1 expression on NK cells is diverse and difficult
to clarify. High expression of PD-1 on NK cells can be detected in
the peripheral blood of approximately one-quarter of healthy
individuals (22). PD-1, which is usually not expressed on
CD56bright NK cells, is confined to fully mature NK cells of
NKG2A−KIR+CD57+CD56dim phenotype (24). In the TMEs of
various cancers, such as ovarian cancer (ascites), Kaposi’s
sarcoma (peripheral blood), renal cell carcinoma, and multiple
myeloma, the proportion of PD-1+ NK cells and the expression
of PD-1 on NK cells increase (25–28). PD-1 expression on
peripheral and tumor infiltrating NK cells from patients with
digestive cancers was increased (29). In addition, chronic
infections such as those caused by human immunodeficiency
virus (HIV), hepatit is C virus (HCV), and human
cytomegalovirus (HCMV) have also been shown to enhance
PD-1 expression on NK cells (30, 31).

PD-1, an important checkpoint of NK activation, is more
abundantly expressed in activated NK cells than in inactivated
NK cells (9). Functional and phenotypic assays showed that PD-
1+ NK cells had the highest functional activity when stimulated
and that most of these cells expressed activation markers (CD69
May 2022 | Volume 13 | Article 886931
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and Sca-1) (32). A higher frequency of circulating PD-1+ NK
cells (mean > 9%) was associated with a better overall survival
(OS) in patients with head and neck cancers (HNCs) (33), which
indicates that PD-1+ NK cells are not necessarily inactive in PD-
L1+ tumors but may only be inhibited from killing tumor cells.
The interaction of PD-1 with its ligands provides a negative
signal for the activation of NK cells, which causes the NK cells to
express a dysfunctional, exhausted phenotype (26) and an
inhibited antitumor ability (29). Several murine tumor models
have shown that PD-1+ NK cells present at the site of PD-L1+

tumors exhibit an exhaustive phenotype and that PD-1/PD-L1
interaction strongly inhibits NK cell-mediated antitumor
immunity (32). Overall, PD-1+ NK cells exhibit enhanced
apoptotic sensitivity, reduced cytolytic activity, impaired
cytotoxic and cytokine production efficiencies, and reduced
proliferative capacity in PD-L1+ tumors (24, 29). In addition,
immune cells in TME can also affect NK cells by expressing PD-
L1. For example, tumor-associated neutrophils (TANs) can
impair the cytotoxicity and infiltration capacity of NK cells,
and downregulation of CCR1 leads to diminished infiltration
capacity of NK cells and reduced responsiveness of the NK-
activating receptors NKp46 and NKG2D (34); CD56dimPD-1+

NK cells expressed in patients with Hodgkin lymphoma are
efficiently inhibited by PD-L1-expressing myeloid cells (35).

The molecular mechanisms regulating PD-1 expression in
human NK cells have not yet been elucidated. Signaling by
cells and/or soluble factors in the TME may play a major role,
and cytokines may mediate crosstalk between different immune
checkpoints. For example, it has been demonstrated that tumor-
derived interleukin (IL)-18 increases the immunosuppressive
CD56dimCD16dim/- NK cell fraction in patients with triple-
negative breast cancer (TNBC) and induces the expression of
PD-1 in these cells (36). The G-CSF/STAT3 pathway and IL-18
are responsible for upregulating PD-L1 expression on TANs and
NK cells, respectively; transforming growth factor-b (TGF-b)
and interferon-g (IFN-g) impair NK cell cytotoxicity by
upregulating the expressions of PD-L1 and PD-1 on tumor cells
and NK cells, respectively (37). In addition, chemotherapeutic
agents can upregulate PD-1 expression on NK cells and
PD-L1 expression on tumor cells through nuclear factor
kappa B (NF-kB) (38). In future studies, it is important to
identify the mechanisms that lead to the expression of PD-1
on NK cells in the TME and their importance in NK cell-
based immunotherapy.

3.2 PD-L1 on NK Cells: Expression,
Regulation, and Effect on Cell Function
IFN-g secreted by activated T cells can stimulate the upregulation
of PD-L1 expression on the surface of tumor cells and transmit
inhibitory signals to T cells after PD-L1–PD-1 binding, which
results in T cell dysfunction and tumor immune escape (39). PD-
L1 is reported to be expressed on tumor cells as well as immune
cells within the TME, including antigen presenting cells (APCs)
(mainly macrophages and dendritic cells [DCs]), activated/
depleted T and B lymphocytes, regulatory T cells (Tregs), and
NK cells (8, 40). According to a comprehensive review by Sun
Frontiers in Immunology | www.frontiersin.org 3
et al. (41), the regulation of PD-L1 expression and function
occurs at different levels. Several inflammatory mediators,
including TNF-a, IFN-g, IL-10, IL-17, and C5a, are inducers of
PD-L1 expression (42–44). The JAK/STAT, RAS/MAPK, and
PTEN-PI3K/AKT pathways are involved in the control of PD-L1
gene expression through different downstream transcription
factors, such as STAT1, STAT3, IRF1, IRF3, HIF-1a, MYC,
JUN, BRD4, and NF-kB (45). Corresponding DNA-binding
elements other than IRF3 have been described on the PD-L1
gene promoter (46–48). Other regulatory mechanisms include
microRNA (e.g., miR-513, miR-34a, miR-200, and miR-570)-
mediated post-transcriptional repression and the presence of
soluble PD-L1 (sPD-L1) in the blood, which may compete with
membrane-bound PD-L1 for binding to PD-1 to regulate cell
surface PD-L1 expression (41, 49).

IFN-g is one of the most studied inducers of PD-L1 expression
in tumors, and NF-kB (a major transcription factor of
inflammation and immunity) is involved in NK cell activation
to regulate IFN-g production (50). Researchers have proposed
that NF-kB directly induces PD-L1 gene transcription by binding
to the latter’s promoter and that it post-transcriptionally regulates
PD-L1 through an indirect pathway; thus, NF-kB may be a key
positive regulator of PD-L1 expression in tumors (51). In
addition, the PD-L1 promoter contains a hypoxia-inducible
factor 1-alpha (HIF-1a) response element (52, 53), which drives
the IKK-b gene transcription through a hypoxia response element
present in the promoter while supporting NF-kB pathway
activation by directly inducing p65 (54, 55); NF-kB can also
induce HIF-1a transcription by directly binding to the HIF-1a
promoter (56). Thus, both HIF-1a and NF-kB pathways can
initiate and maintain PD-L1 expression and reinforce each other
through positive feedback. Thus, the possibility that these
signaling pathways can regulate PD-L1 expression in NK cells
must be explored. A recent study confirmed that some myeloid
leukemia cell lines and acute myeloid leukemia (AML) blasts from
patients can induce PD-L1 signaling in NK cells through the
PI3K/AKT/NF-kB pathway (8). Notably, the expression levels of
two activating antigens, CD69 and CD25, were significantly
higher in PD-L1+ NK cells than in PD-L1- NK cells, which
indicates that PD-L1+ NK cells show an increase in antitumor
cytotoxic effector function and IFN-g-mediated CD69 expression.
The study revealed that the higher the sensitivity of the target
cells to NK cell cytotoxicity (due to its negative correlation
with MHC-I molecule expression), the greater the directness
of the cell-cell contact between NK cells and target cells, the
higher the expression of PD-L1, and the stronger the activation of
CD69 NK cells (8). Therefore, PD-L1 expression on NK cells
may serve as an in vivo biomarker for sensitivity to NK cell
lysis in patients with tumors. Nonetheless, the expression
and function of PD-L1 on NK cells and the involvement
of PD-L1+ NK cells in anti-PD-L1 mAb therapy has not
been comprehensively explored. An improvement in the
understanding of PD-L1 expression on NK cells and signaling
regulatory mechanisms is essential to understand tumor and
immune cell biological characteristics and to develop NK cell-
based antitumor immunotherapy.
May 2022 | Volume 13 | Article 886931
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4 EFFECTS OF ANTI-PD-1/PD-L1
ANTIBODIES ON NK CELL FUNCTION
AND CORRESPONDING REGULATORY
MECHANISMS

Existing literature has shown the potential benefits of anti-PD-1/
PD-L1 therapy in rescuing and/or improving NK cell function
and improving antitumor immune responses (28, 29, 33, 57).
Researchers have found that disrupting the PD-1/PD-L1
interaction can enhance the killing effect of NK cells on tumor
cells of mice with several cancers, and in some models, PD-1/PD-
L1 blockers are completely ineffective when mouse NK cells are
depleted (32). In humanized (Hu) NOD.Cg-PrkdcscidIl2rgtm1Wjl/
SzJ (NSG) mice xenografted with dedifferentiated liposarcoma
(DDLPS), abundance of hCD8+ T subsets, such as hCD8+

IFN-g+, hCD8+PD-1+, and hCD8+Ki-67+ cells, and hNK
subsets, such as hCD56+IFN-g+, hCD56+PD-1+, and
hCD56+Ki-67+ cells, is functionally associated with anti-PD-1
effects (58). In addition, a significant increase in the number of
activated hCD56+NKp46+NKG2D+ NK cells was also detected,
which indicates that NK cells play a pivotal role in the antitumor
effect of anti-PD-1 therapy (58).

PD-1/PD-L1 blocking may rescue multiple aspects of NK cell-
mediated antitumor immune activity (Figure 1). Firstly, most
studies have shown that PD-1 expression on the surface of NK
cells is upregulated in the TME, and this expression plays a
negative immunoregulatory role after binding to the
corresponding ligands and is associated with poor tumor
prognosis (29, 32, 33). PD-1/PD-L1 blockade can activate NK
cells by preventing inhibitory signals between PD-1+ NK cells
and PD-L1+ target cells. Secondly, the activity of NK cells is
determined by a series of activation and inhibition signals, and
PD-1 blockade via antibodies activates some positive regulatory
Frontiers in Immunology | www.frontiersin.org 4
signaling pathways or prevents other intracellular inhibitory
signals (8); furthermore, the unique ADCC effect of NK cells
may be activated and enhanced by some PD-1/PD-L1 blockers,
and this effect triggers strong antitumor activity (59). In addition,
anti-PD-1/PD-L1 therapy may indirectly affect NK cell function
through other immune cells in the TME (60, 61). NK cells may,
in turn, enhance tumor immune responsiveness to PD-1
antibodies by affecting other immune factors in the TME.
These mechanisms are reviewed in detail below.

4.1 Direct Interaction of Anti-PD-1/PD-L1
Antibodies With NK Cells
4.1.1 Anti-PD-1/PD-L1 Antibodies Block PD-1/PD-L1
Inhibitory Signaling in NK Cells
As discussed above, the binding of PD-L1 expressed by tumor
cell surface to PD-1 expressed by activated NK cells potentially
inhibits NK cell-dependent immune surveillance and mediates
antitumor immune responses. However, studies on the
mechanism by which PD-1 inhibits NK cell response against
tumors and the possibility of inducing NK cell responses via PD-
1/PD-L1 blockade are still scarce. In one study, CD16- or ILCs-
activated NK cells showed upregulated expression of PD-1, as
well as CD69, CD107a, IFN-g, and granzyme B; however, the
expression of these molecules was downregulated and that of
CD16 surface density was significantly downregulated after the
binding of PD-1 to PD-L1 (33). PD-1 blockade increased NK cell
activation and cytotoxicity, but only in patients with HNCs
showing high PD-L1 expression (33). Another study used anti-
PD-1/PD-L1 antibodies to block the interaction between PD-
1and PD-L1 and found that this strategy could help reverse PD-1
inhibition and the dysfunctional state of PD-1+ NK cells. This
blockade leads to a significant increase in NK cell cytotoxicity
and cytokine production, inhibition of tumor growth in vivo, and
FIGURE 1 | Effects of anti-PD-1/PD-L1 antibodies on NK cell function and corresponding regulatory mechanisms. Direct interaction of anti-PD-1/PD-L1 antibodies with NK
cells: ①Anti-PD-1/PD-L1 antibodies block PD-1/PD-L1 inhibitory signaling in NK cells; ②Anti-PD-1/PD-L1 antibodies enhance PD-L1+ NK-cell antitumor activity; ③Anti-PD-1/
PD-L1 antibodies enhance the ADCC effect of NK cells; ④Anti-PD-1/PD-L1 bispecific antibodies induce phenotypic transformation of NK cells; Indirect interaction of anti-PD-1/
PD-L1 antibodies with NK cells: ⑤Anti-PD-1/PD-L1 antibodies indirectly reverse NK cell exhaustion by affecting CD8+ T cell activity; ⑥Anti-PD-1/PD-L1 antibodies relieve the
inhibition of NK cell function by affecting Tregs. KIRs, killer cell immunoglobulin-like receptors; LIRs, leukocyte immunoglobulin-like receptors; NKG2A, natural killer group 2 A;
CTLA-4, cytotoxicT-lymphocyte-associated protein 4; IL, interleukin; NCE, NK cell exhaustion; PD-1, programmed death receptor-1; PD-L1, programmed death-ligand 1;
MHC, major histocompatibility complex; TGF-b, transformation growth factor-b; IFN-g, interferon-g; Tregs, regulatory T cells; CSF-1, colony-stimulating factor 1; EGFR,
epidermal growth factor receptor; NK cell, natural killer cell; TAMs, tumor-associated macrophages; MDSCs, myeloid-derived suppressor cells.
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obvious improvement in NK cell-based antitumor response (32).
Similarly, a previous study found that blocking PD-1/PD-L1
signaling on the surface of NK cells significantly enhanced IFN-g
production, CD107a expression, and cell degranulation, and
inhibited NK cell apoptosis in vitro. More importantly, PD-1
blocking antibody was found to significantly inhibit the growth
of xenograft tumors, and NK depletion completely abolished this
inhibition of tumor growth (29). However, inhibition of tumor
growth could be completely abolished by NK depletion.
Furthermore, PD-1 may exert its inhibitory effect on NK cells
by interfering with AKT activation, and PD-1/PD-L1 blockade
activates NK cells by enhancing the PI3K/AKT signaling
pathway in them (29). In addition, anti-PD-1/PD-L1
antibodies can enhance the secretion of tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) by inhibiting PD-1 in
NK cells, effectively improving the antitumor activity of these
cells (62). IFN-b has been shown to activate NK cells and induce
cytotoxicity against tumor cells by upregulating NK cell-surface
membrane-bound and soluble TRAIL expression, which leads to
subsequent activation of the TRAIL receptor signaling pathway
and apoptosis in nasopharyngeal carcinoma (NPC) cells (62).
Subsequently, blocking the PD-1/PD-L1 checkpoint in the
presence of IFN-b further increased the killing activity of NK
cells against NPC cells, and this suggests that blocking PD-1 in
activated NK cells may increase the secretion of soluble TRAIL
and contribute to the killing of TRAIL NPC cells (62). This study
revealed a new mechanism by which IFN-b and anti-PD-1
antibodies enhance the antitumor effect of NK cells and
provide ideas for the therapeutic strategy of the combination of
IFN-b and anti-PD-1.

Recently, researchers have found that repetitive irradiation
can increase PD-L1 levels in non-small cell lung carcinoma
(NSCLC) cells while reducing NKG2D ligand levels, which
may reduce the sensitivity of lung tumor cells to the cytotoxic
effect of NK cells and the possibility that tumor cells escape
immune responses (63). Mechanistic studies revealed that IL-6-
MEK/ERK signaling contributes most significantly to the
upregulation of PD-L1 or downregulation of NKG2D ligand in
radioresistant cells (63), while in another similar study, IL‐6‐
JAK/STAT3 signaling was shown to contribute significantly to
this process (64). Subsequently, researchers examined PD‐1
levels in NK cells and found that PD‐1 expression could not be
detected in primary NK cells, but this expression increased when
NK cells were exposed to tumor cells; in other words, there was a
PD‐L1/PD‐1 interaction between tumor cells and NK cells,
which inhibited the activity of NK cells (63). When
neutralizing antibodies against PD-L1 were added to
radioresistant cell/NK cell co-cultures, this resistance was
reduced and the susceptibility of tumor cells to NK cell
cytotoxicity increased, presumably because PD‐L1/PD‐1
interaction was blocked (63). In addition, the added PD-L1
antibodies effectively reversed NK cell activity by releasing PD-
1 from the PD-L1–PD-1 complex; these antibodies also
effectively reversed the expression of NKG2D ligand on tumor
cells, which further enhanced the killing ability of NK cells
against tumor cells (63). In summary, the PD-1/PD-L1 axis is
Frontiers in Immunology | www.frontiersin.org 5
an inhibitory/regulatory signal for the interaction between tumor
cells and NK cells, and blocking of PD-1/PD-L1 interaction may
be an effective antitumor immunotherapeutic strategy that is
based on the reversal of NK cell dysfunction.

4.1.2 Anti-PD-1/PD-L1 Antibodies Enhance PD-L1+

NK-Cell Antitumor Activity
Anti-PD-1/L1 mAbs may act on NK cells through other non-
PD-1 dependent pathways in addition to the PD-1/PD-L1
pathway. Upon encountering and being activated by NK-
susceptible tumor cells, NK cells not only secrete cytokines and
cytolytic granules, but also upregulate the expression of PD-L1
on their own surface through the PI3K/AKT/NF-kB pathway (8).
This population of PD-L1+ NK cells is essential for the antitumor
activity of PD-L1 mAbs. Upon application of atezolizumab, an
mAb medication against PD-L1, PD-L1+ NK cells express
significantly increased levels of granzyme B, IFN-g, and
CD107a, which results in a significant increase in antitumor
activity and ultimately a significant decrease in tumor burden in
mice (8). Furthermore, it was confirmed that anti-PD-L1 mAbs
directly activate PD-L1+ NK cells through the p38/NF-kB
pathway in PD-L1− tumors (8). Upregulation of PD-L1 by NK
cells, as well as the direct effect of atezolizumab on NK cells, leads
to NF-kB activation, which creates a positive feedback loop in the
presence of excessive immunotherapeutic agents to consistently
induce PD-L1 expression and further activate NK cells (8). In the
loop, the binding of anti-PD-L1 mAbs to PD-L1 upregulates PD-
L1 expression on the surface of NK cells, thus, increasing the
number of binding sites for the drug; this, in turn, leads to
sustained activation of p38, which further transmits strong
activation signals to NK cells to maintain their cytotoxic and
cytokine secretion characteristics (8). The study suggested that
anti-PD-L1 mAb therapy has a unique therapeutic effect against
PD-L1-negative tumors (8). Based on the fact that PD-L1+ NK
cells act through a PD-1-independent pathway, the discovery
of new antitumor mechanisms provides insights into the
activation of NK cells and a potential explanation for the
response to anti-PD-L1 mAb therapy in some patients who
lack PD-L1 expression.

4.1.3 Anti-PD-1/PD-L1 Antibodies Enhance the
ADCC Effect of NK Cells
Most PD-1/PD-L1 inhibitors (including nivolumab,
pembrolizumab, etc.) have human IgG4 which has low
fragment crystallizable (Fc) effector activity. These would be
expected to have low ADCC. Atezolizumab is aglycosylated
and would be expected to have no ADCC. These all prevent
potent ADCC against non-tumor cells expressing PD-L1.
However, avelumab, a fully human IgG1 anti-PD-L1 mAb
containing a wild-type Fc that induces ADCC (65), has shown
toxicity and efficacy similar to those of Fc-modified anti-PD-1/
PD-L1 mAbs in several phase I and II clinical trials (66).
FcgRIIIA expressed on NK cells can activate NK cell-induced
cytotoxicity by recognizing the Fc portion of tumor-bound
antibodies and releasing cytotoxic factors and cytokines that
recruit and activate other immune cells with specific antitumor
May 2022 | Volume 13 | Article 886931
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activity in the presence of tumor antigen-targeting antibodies
(16). Investigators have demonstrated that avelumab triggers and
enhances NK cell-mediated ADCC against TNBC cells
expressing a certain level of PD-L1, which results in a
significant increase in tumor cell lysis. Park et al. (59) also
demonstrated that when NK cells were co-cultured with wild-
type Fc anti-PD-L1 mAbs, which can induce ADCC effects on
NK cells, the cytotoxicity against PD-L1-positive tumor cell lines
was significantly enhanced. Therefore, some anti-PD-L1 mAbs
may act as both tumor antigen-targeting antibodies and anti-PD-
L1 inhibitors, which leads to the activation of NK cell and CD8+

T cell and improvement in therapeutic efficacy.
The magnitude of the ADCC effect of NK cells evoked by

anti-PD-L1 mAbs may be modulated by other factors. First,
polymorphisms in FcgRIIIA may affect NK cell-mediated
interindividual variability in the ADCC effect (67). Although
this association was identified in studies involving different
tumor antigen-targeting mAbs of the IgG1 isotype (rituximab,
trastuzumab, and cetuximab), it may not be generalizable to
different settings (68). Preliminary in vitro results showed that
avelumab-mediated ADCC was more effective in patients with
NK cells expressing the high-affinity CD16 valine (V) allele than
in those with NK cells expressing the low-affinity phenylalanine
(F) allele and F/F genotype (65); however, this difference in
effectiveness needs to be verified in clinical studies. Second, the
release of some cytokines, such as IL-2 and IL-15, as well as
subsequently stimulated IFN-g, can stimulate the enhancement
of avelumab-triggered cytokine production and degranulation in
NK cells while increasing lytic activity against tumor cells (67). In
addition, in a previous study, investigators enhanced the ADCC
of avelumab against many types of cancer cells through
epigenetic priming of NK cells and tumors (69). This evidence
suggests that therapeutic strategies that block PD-1/PD-L1 while
inducing the ADCC action of NK cells may enhance existing
immunotherapeutic efficacy. Considering that the magnitude of
NK cell-based ADCC effects induced by anti-PD-L1 mAbs can
be regulated by some factors such as immunomodulators (IL-15
or IL-2), combining drugs targeting these factors (67) may
improve the effectiveness of immunotherapeutic strategy.

4.1.4 Anti-PD-1/PD-L1 Bispecific Antibodies Induce
Phenotypic Transformation of NK Cells
Bromodomain proteins, such as BRD1 and BRD4, play a role in
the development of immune and hematological cells and in the
regulation of tumor inflammation (70–72). In a previous study
on high-grade serous ovarian cancer (HGSC), BRD1 expression
was found to be low in tumor cells and high in immune cells,
which is associated with significant downregulation of T cell- and
NK cell-surface activity markers (GZMA, GZMB, IFNG, and
NKG7) and upregulation of the naïve T cell marker TCF7 (73).
This study performed immune function and single-cell RNA-seq
transcriptional profiling of novel HGSC organoid/immune cell
co-cultures treated with unique bispecific anti-PD-1/PD-L1
antibodies versus monospecific anti-PD-1 or anti-PD-L1
antibodies (control) (73). It revealed that bispecific antibodies
uniquely induced a transition from inert to more active and
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cytotoxic NK cell phenotypes and a transition from naïve to
more active and cytotoxic progenitor-exhausted phenotypes of
CD8+ T cells after treatment. It was further found that these
superior cell state changes were driven in part by the
downregulation of BRD1 expression induced by bispecific
antibodies in immune cells (73). The inhibitory effect of the
small molecule inhibitor, BAY-299, on BRD1 partially leads to
increased NK cell maturation, activation, and tumor cell killing
via alteration of the chromatin pathway of key immune
transcription factors (e.g., GATA3, TBX21, and TBXT),
induces similar state transitions in immune cells in vitro and
in vivo and demonstrates the in vivo efficacy of bispecific
antibodies (73). Therefore, changes in the activity and
cytotoxic status of NK cells and T cells may be the key to
driving the induction of effective antitumor immune responses
using bispecific antibodies, by partially eliminating some TME-
driven dysfunction through epigenetic changes (BRD1
downregulation or inhibition).

4.2 Indirect Interaction of Anti-PD-1/PD-L1
Antibodies With NK Cells
4.2.1 Anti-PD-1/PD-L1 Antibodies Indirectly Reverse
NK Cell Exhaustion by Affecting T Cell Activity
Regulative effects of NK and CD8+ T cells on each other have
been reported in many infection models (74, 75) and antigen-
independent IL-2 models (76), and PD-1/PD-L1 inhibitors may
indirectly alter NK cell function by affecting CD8+ T cell activity.
NK cell exhaustion (NCE) has been identified as a self-regulatory
mechanism responsible for inducing dysfunctional phenotypes
to prevent exacerbated immune responses under conditions of
chronic stimulation (77), and it is a crucial mechanism involved
in tumor or viral evasion of immune responses. IL-2 is a
pleiotropic cytokine that activates T cells, NK cells, and
dendritic cells. IL-2 binds to IL-2 receptors (IL-2Rs), including
CD32 (IL-2Rgc), CD122 (IL-2Rb), and CD25 (IL-2Ra). IL-2Rs
showed different affinities for cytokines, with CD25 (IL-2Ra)
having the highest IL-2 affinity. CD25 is constitutively expressed
on Tregs; therefore, IL-2 treatment can lead to the expansion of
these cells, thus mediating NK and CD8+ T cell suppression
through multiple mechanisms (76, 78, 79). A recent study
evaluated the role of the PD-1/PD-L1 pathway in NK cell
activation, function, and depletion in a mouse model of IL-2-
dependent depletion (80) and found that anti-PD-1 therapy
provides an activating advantage to CD8+ T cells in the
competition for IL-2 by promoting CD8+ T cell expansion,
activation, and functional phenotype; consequently, the
quantity of stimulatory cytokines available to NK cells becomes
limited, which results in a delayed NCE, improved NK cell
activation, higher proliferative capacity, and enhanced
granzyme B production. This evidence suggests that the
phenotypic and functional benefits observed after the chronic
stimulation of NK cells by anti-PD-1 therapy are indirectly
mediated by the effect of anti-PD-1 antibodies on CD8+ T
cells, rather than by the direct effect of anti-PD-1 drugs on NK
cells; this can be demonstrated by the reversal of the benefit of
anti-PD-1 therapy on NK cells by the depletion of CD8+ T cells.
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Disruption of the balance between NK and CD8+ T cells affects
the homeostatic response to each other’s stimuli, and this
resource competition (i.e., IL-2) delays the onset of NCE. Thus,
there is a delicate balance between CD8+ T cells, Tregs, and NK
cells that is partly regulated by their ability to respond to
cytokines. Achieving a balance between these immune cells
may be important for achieving long-term efficacy of
immunotherapy. Although dual regulation between CD8+ T
cells and NK cells is caused by competition for space and
resources, direct or indirect lysis, and functional inhibition,
these two populations can also work together to mount a
stronger response. Another study found that dual blockade of
PD-1 and IL-10 enhanced cytokine secretion, NK degranulation,
and killing target cell function of NK cells by restoring HIV-
specific CD4+ T cell function, thus establishing a previously
unappreciated relationship between CD4+ T cell injury and NK
cell depletion in HIV infection (81). This important evidence
also fully suggests that PD-1 blockade may enhance
immunotherapy by improving collaboration between CD4+ T
cells and NK cells.

4.2.2 Anti-PD-1/PD-L1 Antibodies Relieve the
Inhibition of NK Cell Function by Affecting Tregs
Immunosuppressive cells such as tumor-associated macrophages
(TAMs), myeloid-derived suppressor cells (MDSCs), and Tregs
in the TME inhibit NK cell proliferation, infiltration, and
activation by secreting immunosuppressive cytokines (TGF-b
and IL-10) or by interfering with NK cell receptor expression and
activation; thus, these cells facilitate tumor immune escape and
promote progression and metastasis (82, 83). It can, therefore, be
hypothesized that PD-1/PD-L1 blockade prevents the induction
of immunosuppression and improves NK cell efficacy to increase
the survival of a tumor-bearing animal. A previous study showed
that anti-PD-L1 therapy has no direct effect on the cytotoxicity
or cytokine secretion of PD-1-negative PM21 particle-expanded
NK cells in response to PD-L1+ targets in vitro; however,
secretion of a large quantity of IFN-g by NK cells significantly
improved antitumor efficacy, and long-lasting retention of their
cytotoxic phenotype by NK cells can be observed in vivo (84).
Thus, the investigators continued to explore the specific
mechanism by which anti-PD-L1 therapy enhances the
antitumor efficacy of NK cells. They found that PM21-NK cells
are highly cytotoxic to tumor cells and secrete IFN-g upon
stimulation, which leads to the induction of PD-L1 expression
in tumors and consequently to the induction and in situ
proliferation of Tregs in the TME (84). Subsequently, blockade
of PD-L1 mitigated the induction of Treg expansion and
associated immunosuppressive responses, which in turn
improved the NK cell phenotype and cytotoxic activity, as well
as survival in treated animals (84). The number of CD57+ NK
cells has increased, a population with high cytotoxic capacity and
responsiveness via CD16 binding, and the presence of these cells
is correlated with better outcomes in patients with squamous cell
lung cancer in other reports (85, 86). The expansion of Tregs
may occur in the TME with PD-L1 expression, and Tregs have
been reported to suppress the survival and cytotoxic function of
Frontiers in Immunology | www.frontiersin.org 7
NK cells through several mechanisms, including TGF-b surface
presentation (87–89). Thus, anti-PD-L1 therapy may improve
NK cell antitumor efficacy by reducing in situ Treg generation
and preventing Treg induction.
5 NK CELLS ENHANCE ANTI-PD-1/PD-L1
ANTIBODY EFFICACY BY AFFECTING
OTHER IMMUNE CELLS IN THE TME

NK cells and other immune cells in the TME mutually regulate
each other; for example, PD-L1+ liver-resident NK (LrNK) cells
have an inhibitory interaction with PD-1+ T cells (90). NK cells
can indirectly affect the antitumor immune function by acting on
these immune cells, thereby enhancing the response of tumors to
anti-PD-1/PD-L1 antibodies. The large number of beneficial
effects of tumor-infiltrating NK cells can be mediated by
modulating the TME and promoting T cell recruitment and
activation. An earlier study that used mixed lymphocyte cultures
showed that NK cells are required for the differentiation and
activation of CD8+ T cells with cytotoxic functions (91). Another
study that used in vitro co-culture and in vivo xenograft adoptive
transfer experiments demonstrated that high-quality NK cells
(iNK) derived from induced pluripotent stem cells (iPSCs) can
recruit and activate T cells, allow them to respond to PD-1
blockade, and enhance inflammatory cytokine production and
tumor elimination (92). NK cells in tumor-infiltrating and
draining lymph nodes were reported to show upregulation of
the inhibitory molecule PD-L1, which transmits an inhibitory
signal by interacting with PD-1 expressed on DCs to limit the
activation of these cells; this in turn leads to a decrease in the
priming ability and memory response of tumor-specific CD8+ T
cells (61). When blocking the interaction between NK cells and
DCs, a significantly higher frequency of CD8+ T cells, level of
IFN-g production, and capacity for cytotoxicity were observed
(61). In this model, tumor cells induced the modulation of DC
activation via PD-L1hiNK cells, which reduced the priming
capacity of CD8+ T cells. Conversely, PD-1/PD-L1 inhibitors
may reverse the inhibitory effect of PD-1-PD-L1 interaction on
CD8+ T cells by disrupting the direct interaction pathway
between NK cells and DC cells; this presumably activates NK
cell activity and needs to be explored further in future studies. In
addition to interacting with DCs through the PD-1/PD-L1 axis, a
study has shown in human melanoma that NK cells stably form
conjugates with stimulatory dendritic cells (SDCs) in mouse
TME and positively regulate the abundance of SDCs in tumors
by producing FLT3LG, the cDC1 formative cytokine. SDCs are
important in stimulating cytotoxic T cells and driving anticancer
immune responses (60). Although anti-PD-1 immunotherapy
for cancer primarily targets T cells, NK cell frequencies correlate
with protective SDCs in human cancers, with patient
responsiveness to anti-PD-1 immunotherapy, and with
prolonged overall survival (60).

In summary, blocking PD-1/PD-L1 may activate the
systemic immune response by reversing the inhibitory effect of
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NK cells on other immune cells or activating the antitumor
capability of other immune cells by NK cells, which is an effective
antitumor immunotherapy strategy. Therefore, a combination
therapy based on NK cells and anti-PD-1/PD-L1 drugs can
be established.
6 COMBINATION THERAPY OF NK CELLS
AND IMMUNE CHECKPOINT INHIBITOR

Considering NK cell-mediated cytotoxicity does not require
MHC class I and the unique effects of anti-PD-1/PD-L1 mAb
therapy on NK cell function described above, adoptive transfer of
autologous or allogeneic NK cells together with anti-PD-1/PD-
L1 antibodies may potentially enhance the outcomes of patients
receiving cancer immunotherapy. A previous study explored the
effects of a combination of NK cells with PD-L1 blockers,
regardless of PD-1 expression on NK cells or the initial PD-L1
status of the tumor cells (84). The OS of animals treated with a
combination of anti-PD-L1 antibodies and PM21-NK cells was
twice as higher than that of those treated with anti-PD-L1
antibodies alone (48 days vs. 24 days, P = 0.0001) (84). The
first clinical study on the combination of anti-PD-1 antibodies
(pembrolizumab) and allogeneic NK cells in patients with
advanced NSCLC in China was recently published (93), and it
reported the doubling of the number of NK cells, significant
increases in the levels of cytokines such as IL-2, TNF-b, and
IFN-g, and significant decreases in the levels of multiple tumor
markers such as circulating tumor cells (CTCs) after treatment in
the combination therapy group. Patients in the combined
therapy group had a significantly better overall response rate
(36.5% vs. 18.5%) and a significantly better survival outcome
(OS: 15.5 months vs. 13.3 months; PFS: 6.5 months vs. 4.3
months; all P < 0.05) than did those in the anti-PD-1 antibody
alone group; moreover, the benefits were more significant in the
combination therapy group [tumor proportion score [TPS] ≥
50%] than in the latter group. In addition, patients who received
multiple courses of NK cell infusion showed a better OS
than those who received a single course of NK cell infusion
(18.5 months vs. 13.5 months) (93). The treatment was well
tolerated throughout the treatment. All adverse events were
below grade 4, with grade 2 events comprising the majority of
events. All symptoms were relieved after symptomatic treatment.
Therefore, a combination therapy of anti-PD-L1 antibodies and
NK cells can significantly enhance the antitumor effect, improve
the survival benefit, and serve as new treatment regimen for
previously treated patients with advanced PD-L1+ NSCLC. In
addition, the combination of anti-PD-1/PD-L1 antibody therapy
and drugs that enhance the antitumor effects of NK cells through
other mechanisms, including a combination of anti-NKG2A
mAb (monalizumab) (94), KIR blockade (95), cytokine therapy
(96), and therapies targeting other checkpoint receptors such
as CTLA-4, LAG-3, CD96, and TIGIT, may have a synergistic
effect (97–99); therefore, this strategy may be beneficial for
improving the efficacy of immunotherapy and overcoming
drug resistance.
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7 SUMMARY AND PROSPECTS

The use of anti-PD-1/PD-L1 antibodies could be a promising
option for the successful treatment of malignancies as they help
overcome T-cell depletion by blocking the PD-1/PD-L1 signaling
pathway in the TME. However, most patients and tumor types have
shown low/no response to these therapies, or some patients with
predicted no or low response to treatment have shown significant
benefit; therefore, in-depth exploration of the mechanism of action
and efficacy of ICIs is necessary to effectively screen for suitable
patients to expand the benefits to them. Accumulating evidence
suggests that immune cells other than T cells, such as NK cells, are
also involved and play an important role in the PD-1/PD-L1
blocking process; these non-T cells have become an effective
complement to T cell immune responses because of their unique
advantages, especially against MHC-deficient tumors that show low
antigenicity or are resistant to T cell recognition and cytolysis. At
present, findings of studies on the expression of PD-1 and PD-L1
on NK cells and their functions are not completely consistent, and
further evidence derived from human NK cell-based research is
necessary. According to our review, PD-1/PD-L1 antibodies can
rescue NK cell from multiple aspects of dysfunction caused by
TME, revitalize the cytotoxic activity of these cells against tumors,
and further initiate and enhance T cell-mediated adaptive
antitumor immunity; NK cells can also indirectly enhance the
efficacy of PD-1/PD-L1 blockade by affecting other immune cells
in TME. On the basis of these findings, multiple combination
strategies, such as the use of a combination of PD-1/PD-L1
inhibitors with drugs that promote NK cell infiltration,
persistence, and activation in tumors (e.g.,cytokines, stimulator of
IFN gene [STING] agonists) and resistance to inhibitory TMEs
(e.g., anti-TGF-b mAbs), are under investigation in basis research
studies or clinical trials; these strategies aim to further increase the
antitumor activity of NK cells and improve the tumor response to
immunotherapy. At present, our understanding of the role of NK
cells during PD-1/PD-L1 blockade is still insufficient and needs to
be further explored and validated using basic mechanistic studies. A
comprehensive and in-depth understanding of the response
mechanism of PD-1/PD-L1-based immunotherapy and the
interaction mechanism between each immune cell in TME with
another or with tumors can lay a foundation for optimizing the
efficacy of existing treatments, developing new immunotherapies
based on NK cells, and developing combination therapy strategies.
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