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ABSTRACT Thirty-one different Salmonella enterica subsp. enterica serotype Heidel-
berg isolates collected from several chicken- and turkey-associated farm environ-
ments in the Midwestern United States were analyzed using whole-genome se-
quencing. Availability of these genome sequences may shed light on Salmonella
adaptation to different farm environments.

Nontyphoidal Salmonella is one of the leading causes of human foodborne gastro-
enteritis in North America, with public health costs of approximately $695 million

annually in the United States (1). According to the National Outbreak Reporting System
(NORS) database (Centers for Disease Control and Prevention), 38% of all salmonellosis
outbreaks recorded in the United States between 2012 and 2016 were associated with
poultry (https://wwwn.cdc.gov/norsdashboard/). Salmonella enterica subsp. enterica
serotype Heidelberg is the most common serotype isolated in all poultry breeder types
and throughout all levels of the production chain in the United States and Canada
(2–4). Rapid adaptation of Salmonella to the poultry host and the farm environment
where the birds are raised reduces the antimicrobial efficacy of control methods
implemented by the poultry industry (5). However, little is known about the impact of
the farm environment on the genome content of Salmonella spp., which may facilitate
adaptation to different environments. To this end, we sequenced the genomes of 31
Salmonella Heidelberg isolated from environmental samples obtained from chicken or
turkey farms (6). Nineteen and 12 isolates were collected from environmental booties
of 16 chicken and 8 turkey breeder farms, respectively, and 2 isolates were collected from
hatchery debris in 2 different turkey farms (Table 1). For environmental bootie samples,
fabric shoe covers premoistened with skim milk were used and walked on the floor inside
the farm over a distance of 305 m. Samples were collected under the supervision of the
Minnesota Board of Animal Health between April and July 2015 as part of the National
Poultry Improvement Plan (NPIP) Salmonella monitoring program. Salmonella Heidelberg
was isolated on a brilliant green agar with novobiocin, xylose lysine tergitol-4, and Millier-
Mallinson medium. The identities of the 31 isolates were further confirmed by a PCR assay
using one set of primers specific to the Salmonella genus (for OMPC, ATCGCTGACTTATG
CAATCG [forward] and CGGGTTGCGTTATAGGTCTG [reverse]; amplicon length, 204 bp) and
another set specific to the Salmonella. Heidelberg serotype (for GenBank accession number
ACF69659, TGTTTGGAGCATCATCAGAA [forward] and GCTCAACATAAGGGAAGCAA [re-
verse]; amplicon length, 216 bp) and compared to a known Salmonella Heidelberg
strain (7–9).

Genomic DNA was extracted using an E.Z.N.A. bacterial DNA kit (Omega Bio-tek,
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Norcross, GA). Sequencing libraries were prepared using 1 ng of genomic DNA with a
Nextera XT DNA sample prep kit (Illumina, Inc., San Diego, CA). PCR amplification was
done in a Veriti 96-well thermal cycler machine (Thermo Fisher Scientific, Waltham, MA)
using Nextera XT Index 1 primers (N7XX) from the Nextera XT index kit (FC131�1001).
Illumina paired-end sequencing was performed on a MiSeq platform using 2 � 250
paired-end sequencing chemistry. The raw data files were demultiplexed and con-
verted to FASTQ files using Casava v.1.8.2. (Illumina, Inc., San Diego, CA). Quality control
of the raw reads was performed using FastQC (Babraham Bioinformatics, Cambridge,
MA). The reads were trimmed and assembled with BBDuk (DOE Joint Genome Institute,
Walnut Creek, CA) and SPAdes (SPBU, St. Petersburg, Russia), respectively. The cover-
ages of the assembled genomes were evaluated with BBMap (DOE Joint Genome
Institute, Walnut Creek, CA).

The sizes of the genomes ranged between 4,766,150 and 5,104,082 bp, their
coverage values ranged between 46.52� and 135.54�, and the numbers of contigs per
assembly ranged between 62 and 174. Significant differences in the nucleotides and
gene contents were detected between the isolates obtained from turkey environments
and those obtained from chicken farm environments. Therefore, the availability of these
genome sequences may facilitate understanding of Salmonella adaptation to different
niches in poultry production (6).

Data availability. Draft genomic sequences have been deposited in the NCBI
Sequence Read Archive (SRA accession number SRP126070) and NCBI GenBank (Bio-
Project number PRJNA417775) and are listed in Table 1.
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TABLE 1 Metadata of the 31 Salmonella enterica subsp. enterica serotype Heidelberg isolates from chicken and turkey farm environments

Isolate Sample origin Sample type
NCBI genome
accession no.

NCBI SRX
accession no.

No. of
contigs Contig N50

a

GC content
(%)

Total no. of
sequencing reads

C_NS001 Chicken Environmental bootie PGWO00000000 SRX3441541 53 412,084 51.5 948,617
C_NS002 Chicken Environmental bootie PGWN00000000 SRX3441539 51 412,084 51.5 1,025,661
C_NS003 Chicken Environmental bootie PGWM00000000 SRX3441540 52 412,084 51.8 838,953
C_NS004 Chicken Environmental bootie PGWL00000000 SRX3441522 71 412,084 51.8 622,170
C_NS005 Chicken Environmental bootie PGWK00000000 SRX3441521 93 412,084 51.7 491,774
C_NS006 Chicken Environmental bootie PGWJ00000000 SRX3441528 52 291,725 52.3 715,859
C_NS007 Chicken Environmental bootie PGWI00000000 SRX3441527 76 144,340 52.5 906,054
C_NS008 Chicken Environmental bootie PGWH00000000 SRX3441530 49 411,223 52.2 1,038,062
C_NS009 Chicken Environmental bootie PGWG00000000 SRX3441529 65 291,730 52 1,006,172
C_NS010 Chicken Environmental bootie PGWF00000000 SRX3441524 74 184,236 52.2 826,444
C_NS011 Chicken Environmental bootie PGWE00000000 SRX3441523 63 276,222 51.4 796,049
C_NS020 Chicken Environmental bootie PGWD00000000 SRX3441526 71 412,018 52.9 667,956
C_NS024 Chicken Environmental bootie PGWC00000000 SRX3441525 88 203,724 51.5 1,151,538
C_NS025 Chicken Environmental bootie PGWB00000000 SRX3441542 58 411,826 51.3 887,634
C_NS026 Chicken Environmental bootie PGWA00000000 SRX3441543 53 411,820 52.2 769,371
C_NS027 Chicken Environmental bootie PGVZ00000000 SRX3441531 51 411,985 52.2 761,794
C_NS028 Chicken Environmental bootie PGVY00000000 SRX3441532 71 235,527 52.1 937,797
C_NS029 Chicken Environmental bootie PGVX00000000 SRX3441533 95 170,930 52.1 787,619
C_NS030 Chicken Environmental bootie PGVW00000000 SRX3441534 68 291,725 52.2 646,325
T_NS-012 Turkey Environmental bootie PGVV00000000 SRX3441535 70 248,810 52.2 884,633
T_NS-013 Turkey Environmental bootie PGVU00000000 SRX3441536 56 424,424 52.5 1,043,609
T_NS-014 Turkey Environmental bootie PGVT00000000 SRX3441537 78 231,397 52.4 883,270
T_NS-015 Turkey Environmental bootie PGVS00000000 SRX3441538 88 231,397 52.4 972,069
T_NS-016 Turkey Hatchery debris PGVR00000000 SRX3441519 71 291,727 52.6 1,099,328
T_NS-017 Turkey Environmental bootie PGVQ00000000 SRX3441520 72 233,820 51.7 1,128,127
T_NS-018 Turkey Environmental bootie PGVP00000000 SRX3441515 60 423,224 52.1 920,022
T_NS-019 Turkey Hatchery debris PGVO00000000 SRX3441516 102 298,617 51.9 611,230
T_NS-031 Turkey Environmental bootie PGVL00000000 SRX3441511 78 240,110 53 775,776
T_NS-032 Turkey Environmental bootie PGVK00000000 SRX3441512 100 175,042 53 1,139,971
T_NS-033 Turkey Environmental bootie PGVJ00000000 SRX3441513 94 154,373 52.9 1,511,607
T_NS-034 Turkey Environmental bootie PGVI00000000 SRX3441514 153 82,339 52.6 1,356,089
a Sequence length of the shortest contig at 50% of the total genome length.
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