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Abstract

Rapid population growth and increasing demand for food, feed, and bioenergy in these times of unprecedented climate change require
breeding for increased biomass production on the world’s croplands. To accelerate breeding programs, knowledge of the relationship
between biomass features and underlying gene networks is needed to guide future breeding efforts. To this end, large-scale multi-
omics datasets were created with genetically diverse maize lines, all grown in long-term organic and conventional cropping systems.
Analysis of the datasets, integrated using regression modeling and network analysis revealed key metabolites, elements, gene tran-
scripts, and gene networks, whose contents during vegetative growth substantially influence the build-up of plant biomass in the
reproductive phase. We found that S and P content in the source leaf and P content in the root during the vegetative stage contributed
the most to predicting plant performance at the reproductive stage. In agreement with the Gene Ontology enrichment analysis, the
cis-motifs and identified transcription factors associated with upregulated genes under phosphate deficiency showed great diversity
in the molecular response to phosphate deficiency in selected lines. Furthermore, our data demonstrate that genotype-dependent
uptake, assimilation, and allocation of essential nutrient elements (especially C and N) during vegetative growth under phosphate
starvation plays an important role in determining plant biomass by controlling root traits related to nutrient uptake. These inte-
grative multiomics results revealed key factors underlying maize productivity and open new opportunities for efficient, rapid, and
cost-effective plant breeding to increase biomass yield of the cereal crop maize under adverse environmental factors.
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Significance Statement:

The increasing demand for food from a growing population and the effects of human-induced climate change pose a major chal-
lenge for sustainable food production and ecosystem conservation. Plant productivity in the form of yield and biomass is the most
important and complex trait of crops. It reflects the interaction of the environment with all growth and development processes
that take place throughout the life cycle of the plant. System-level studies are able to reveal the overall strategy of the plant in
response to environmental conditions, which also includes a number of key nutrients, metabolic, and genetic factors underlying
plant productivity. These results open up new possibilities for biomass-oriented breeding of cereal crops.
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Introduction
Due to the complexity of biological and physiological processes
affecting agronomic traits in crops, various quantitative genetic
and systems biology approaches have been used for deeper under-
standing and prediction of such traits with measurements at early
developmental stages that can lead to efficient, rapid, and cost-
effective crop improvement. Complex agronomic traits in maize
and other crops are controlled by a large number of small-effect
genes, and thousands of associations between molecular markers
and traits have been reported for many complex traits in different
plant species. Quantitative trait loci-based marker-assisted selec-
tion has been used in trials to improve agronomic traits using ge-
netic variation (1, 2). Genome-wide association studies have rev-
olutionized the deciphering of genotype–phenotype associations
in many species. However, the identified single nucleotide poly-
morphisms often explain only a small part of the heritability of
complex traits. Therefore, our understanding of the genetic archi-
tecture of complex agronomic traits such as green biomass yield
is still limited (3–6). Systems biology-based approaches integrate
several types of large data sets derived from transcriptome, pro-
teome, and metabolome profiles, combined with network analy-
sis and machine learning approaches, to decipher the complexity
of plant systems and better predict complex traits. Considering
that important metabolic pathways directly affect plant biomass,
metabolites have been widely used to predict plant performance
(5–7). Throughout their life, plants assimilate elements such as
carbon (C), nitrogen (N), phosphorus (P), and sulfur (S), oxygen
and hydrogen to synthesize building blocks that determine the
metabolite profile, growth, and development of the plant. There-
fore, we hypothesized that the integrated analysis of elemental
profiles with other omics datasets, and, more broadly, the anal-
ysis of more comprehensive datasets of genetically diverse lines
growing in different environments, may ultimately lead to the dis-
covery of key factors involved in the control of complex agronomic
traits such as green biomass in crops.

Our integrated study of large-scale lipidome, metabolome,
ionome, and transcriptome profiling conducted using machine
learning approaches, provides evidence that S and P content in the
source leaf and P content in the root, in combination with steady-
state levels of a number of key metabolites in plant material col-
lected during vegetative growth, are predictors of green biomass
built up during the reproductive phase before harvesting. Our data
also suggest biological networks with a number of genes whose
expression during the vegetative stage could be used to predict
plant biomass at the reproductive stage. Furthermore, a compara-
tive analysis of different maize genotypes grown on cropland with
mineral soil fertility management shows a large genetic variation
in the response to phosphate deficiency in selected maize lines.
This suggests that the assimilation and allocation of C and N to
the root system during vegetative growth depends on the geno-
type and significantly influences the final plant biomass.

Results and Discussion
Variance structure of trial fields
Using a systems biology approach, we wanted to understand the
contribution of genetic factors in combination with environmen-
tal factors to maize growth in the field and under controlled con-
ditions, and therefore, studied four genetically distant maize lines
(Dent line B73, Flint lines DK105 and F2, and Iodent line PH207).
We also included the pht1;6 mutant, which has a defect in the
mycorrhiza-specific Pi transporter PHT1;6 gene in the B73 line and,

as a result, a drastic reduction in symbiotic uptake of inorganic
phosphate (Pi) in soils with low P input to see the impact of the
mycorrhizal Pi uptake pathway on factors affecting biomass yield
(8, 9).

We planted maize at two geographically different field sites:
the DOK site (dynamic, organic, and conventional managements,
since 1978) in Therwil in the south of Basel, and the DEMO site
(fertilizer demonstration trial, since 1987) in Reckenholz, Zürich
in Switzerland. The field design included eight different plots, one
plot for each soil management (NK and NPK) at the DEMO site, and
three replicate plots for conventional mineral fertilization (CON-
MIN) and biodynamic mixed farming (BIODYN) soil managements
at the DOK site. The soil type at the DEMO site is a Gleyic Cambisol
and at the DOK site a Haplic Luvisol according to the IUSS WRB
Working Group (10, 11). To show the overall variation between the
study sites or between the different plots, respectively, we ana-
lyzed 38 physico-chemical and mineralogical parameters of the
top soil in the range from a depth of 0 to 20 cm before sowing
(Table S1, Supplementary Material). This revealed some local soil
heterogeneity, which can be explained by factors outside of the
geographical location (Table S1 and Figures S1–S4, Supplementary
Material). There were profound differences in texture between the
study sites, with DEMO generally having higher sand contents
than DOK (Table S1 and Figure S2, Supplementary Material). DOK
exhibited plot-level variations within the CONMIN and BIODYN
management, and had higher clay contents in plots 90 and 96 than
the surrounding plots (Figure S2, Supplementary Material). A total
of 78.1% of the between-plots variances were explained by prin-
cipal components 1 (51.2%) and 2 (26.9%), to which the following
parameters contributed most: Corg > N > Ca > POXC > Feo > pH
(H2O) >C/N > Mg and K > P > CEC > Fed > BS > clay > silt, re-
spectively (Figure S1, Supplementary Material).

Genotype is the major factor determining plant
biomass, metabolite profile, lipids, and elements
We exploited the heterogeneity of plots and tested the presumed
interplant variation based on the dependencies between soil pa-
rameters and maize plant genotype affecting physiology and per-
formance. On 240 plants (six replicates per genotype for each
plot) at vegetative (V6) or reproductive (R2) stages of plant devel-
opment, we investigated variation in five agronomic traits such
as stem length, total leaf number, shoot fresh weight (SFW),
and shoot dry weight (SDW; Table S2, Supplementary Material).
Source leaves and root materials were then collected and used
for high-throughput profiling of 188 metabolites (Tables S3–S5,
Supplementary Material). Of these, 140 annotated lipids (includ-
ing neutral lipids, phospholipids, and galactolipids) were ana-
lyzed by ultraperformance liquid chromatography coupled with
Fourier transform mass spectrometry (UPLC-FT-MS; Table S3,
Supplementary Material). A total of 26 carboxylic acids and highly
phosphorylated intermediates from central metabolic pathways
were analyzed using an HPLC system and electrospray ionization
(ESI)/MS/MS (Table S4, Supplementary Material). The carbohy-
drates glucose, fructose, sucrose, and starch were measured with
enzymatic assays, and 18 free amino acids with a reversed-phase
HPLC system (Table S4, Supplementary Material). The accumula-
tion of a particular element in organs and tissues is a genetically
controlled complex process that is crucial for the uptake, bind-
ing, transportation, and sequestration of elements. To understand
how elemental composition is regulated, profiling and quantifica-
tion of 26 nutrients and trace elements were performed at the
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Fig. 1. Comparative analysis of SDW at vegetative and reproductive developmental stages. (A) The median dry weight of shoots of five maize genotypes
grown on different plots at vegetative stage (n = 6). (B) The median dry weight of shoots of five maize genotypes grown on different plots at
reproductive stage (n = 6). Significance groups were determined using ANOVA followed by Tukey’s HSD test (P < 0.05). BIODYN and CONMIN are
abbreviations for biodynamic mixed farming and conventional mineral fertilization, respectively. NK and NPK soil management stand for long-term
fertilized soils with NK and NPK fertilizers, respectively.

genomic level using inductively coupled plasma mass spectrom-
etry (ICP-MS; Table S5, Supplementary Material).

Permutational multivariate analysis of variance (PERMANOVA)
revealed that genotype was a major source of variation in
biomass/SDW of maize at vegetative (P < 0.0001, 64% of variance,
Fig. 1A; Figure S5 and Table S6, Supplementary Material) and re-
productive stages of development (P < 0.0001, 44% of variance,
Fig. 1B; Figure S5 and Table S6, Supplementary Material).

A combination of principal component analysis (PCA), hierar-
chical clustering, and PERMANOVA showed that mainly genotype
and, to a lesser extent, geographical location, followed by soil
management, were critical in determining the metabolite profiles
of maize (Figures S6–S8 and Table S7, Supplementary Material).

PCA analysis with lipids from the source leaves showed that the
samples obtained were separable from the DEMO and DOK sites.
Hierarchical clustering placed the pht1;6 mutant and the F2 line in
different clusters in the heat map, indicating that the annotated
lipid variation in the leaf samples was explained by genotype (PER-
MANOVA, P < 0.0001, 35% of variance), which in combination with
site (PERMANOVA, P < 0.0001, 12% of variance) and soil man-
agement (PERMANOVA, P < 0.0001, 3% of variance) mainly deter-
mined leaf lipid content and composition. Similarly, to hierarchi-
cal clustering, PCA of lipids from root samples separated DEMO
and DOK sites into two distinct groups, indicating a significant in-
fluence of geographical location (PERMANOVA, P < 0.0001, 23% of
variance) on lipid content and composition in the root.
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PCA analysis of carboxylic acids and highly phosphorylated
intermediates from central metabolic pathways grouped source
leaves from DEMO and DOK sites into two distinct clusters (Figure
S7A, Supplementary Material), which attributed an important
role to geographical location (PERMANOVA, P < 0.0001, 13% of
variance) and soil management (PERMANOVA, P < 0.01, 2% of
variance) in shaping the content and composition of compounds
from the central metabolic pathways in the leaf (Table S7, Supple-
mentary Material). Consistent with hierarchical clustering (Figure
S7B, Supplementary Material), statistical analysis (PERMANOVA,
P < 0.0001, 45% of variance) showed that genotype was the most
important factor in shaping the metabolic profile in leaf central
metabolism (Table S7, Supplementary Material). The content
of pyruvate (Pyr), malate (Mal), phosphoenolpyruvate (PEP), di-
hydroxyacetone phosphate (DHAP), 3-phosphoglycerate (3PG),
fructose-1,6-bisphosphate (F16BP), ribulose-1,5-bisphosphate
(R15BP), UDP-glucose (UDPglc), glucose-6-phosphate (G6P),
fructose-6-bisphosphate (F6P), mannose-1-phosphate (M1P),
glucose-1-phosphate (G1P), erythrose-4-phosphate (E4P),
trehalose-6-phosphate (T6P), and UDP-N-acethylglucosamine
(UDPNAG) were low in the pht1;6 mutant and in DK105 plants,
respectively, in all soil management types. This suggested that
the Calvin cycle, C4 carbon fixation, glycolysis, and the pentose
phosphate pathways are likely to function more efficiently in B73,
F2, and PH207 compared to pht1;6 and DK105. Alternatively, our
data suggested that B73, F2, and PH207 became more resilient
under conditions in which “metabolic sinks” that utilize sugar
phosphate intermediates in anabolic processes downstream of
the Calvin cycle and the pentose phosphate pathway become
limited. Similarly, slightly increased metabolite pools in pht1;6
grown on NPK-managed soils, thus providing more available Pi to
plants, indicated Pi limitation of anabolism in pht1;6 compared
to the other differentially managed plots. A sharp increase in the
citrate and shikimate levels, two stress markers for Pi deficiency
and light stress, respectively, in DK105 at both geographical
locations and under all soil management regimes indicated that
DK105 was either a sensitive genotype or soil management was
not optimal for this line (12, 13).

In the case of amino acids, neither maize genotypes nor soil
management explained the observed variance in the PCA (Fig-
ure S8, Supplementary Material). However, hierarchical clustering
presented in a heat map showed that a subset of amino acids, such
as the branched-chain nonpolar amino acids isoleucine and va-
line, nonpolar glycine, polar histidine, and hydrophobic aromatic
phenylalanine and tyrosine were high in pht1;6 across all soil types
in the source leaf. Moreover, the content of these amino acids
was high in the leaves of B73, PH207, and DK105 plants, respec-
tively, grown on NK-managed soils with a total P content of only
350 mg/kg compared to 670 mg/kg in NPK-managed soils (Figures
S4 and S8, Supplementary Material). Overall, these data showed a
genotype-specific relationship between the contents of a number
of free amino acids in the source leaf in response to Pi limitation.

Multielemental profiling by ICP-MS followed by PCA and multi-
variate analysis showed that genotype was the main determinant
of source leaf (PERMANOVA, P < 0.0001, 22% of variance) and root
(PERMANOVA, P < 0.0001, 34% of variance; Table S7, Supplemen-
tary Material) element contents. Moreover, the contents of differ-
ent elements in the source leaf were only partially influenced by
soil management (PERMANOVA, P < 0.0001, 8% of variance) on
NPK and BIODYN but not on NK or CONMIN plots, respectively
(Figure S9 and Table S7, Supplementary Material). Taken together,
these data suggest that plant biomass, metabolite profile, lipids,
and elemental composition (Figures S5 and S6, Supplementary

Material), in the source leaf and root are influenced by genetic
input rather than soil management/geographical location (Figure
S9, Supplementary Material).

Variance in nutrient levels in maize lines
To investigate the differences in element profiles between maize
genotypes, the median element content in the source leaf
and root samples of each line was calculated across all plots
and analyzed by hierarchical clustering in the heat maps (Fig-
ures S10A and B, Supplementary Material). Phosphorus content
showed a similar distribution pattern in the source leaf and
roots of the different maize lines. Lines B73 and pht1;6 con-
tained the highest and lowest P contents, respectively (P content
B73 > PH207 > F2 > DK105 > pht1;6). As already reported by Will-
mann et al. (9), a dramatic decrease in P content was observed in
pht1;6 plants in all soil management systems (Figures S10C and
D, Supplementary Material). This showed that Pi uptake in maize
lines grown in agroecosystems was largely dependent on the myc-
orrhizal Pi transporter PHT1;6 (Table S8, Supplementary Material).

In addition to the P content, sulfur (S) content, which is also a
vital macronutrient for plant growth and development, was high-
est in the source leaf and root of the B73 line compared to other
genotypes (Figures S10A and B, Supplementary Material). How-
ever, the pht1;6 mutant had the highest S content in the root and
showed a strongly reduced S content in the source leaf compared
to the corresponding wild type B73 (Figures S10A and B). This con-
firms a higher remobilization of S from shoot to root under Pi de-
ficiency in mycorrhizal maize plants, similar to mycorrhizal non-
host plants of Arabidopsis (14). However, it cannot be excluded
that a disrupted MPU pathway results in reduced translocation of
P and S to the shoot and concomitant accumulation of S in the
root of pht1;6 plants.

Potentially toxic elements hyperaccumulate in
the roots
In contrast to the levels in the PH207 and DK105 lines, the levels
of several potentially toxic metals such as aluminum (Al), cobalt
(Co), lead (Pb), lithium (Li), and nickel (Ni) were lowest in the root
of B73 and pht1;6, respectively, while they reached intermediate
levels in F2 (Figures S10B, S11, and Table S5, Supplementary Ma-
terial). Interestingly, selenium (Se) known for its protective role
in metal toxicity showed a similar profile. Thus, considering that
plant genotypes with increased tolerance to toxic elements accu-
mulate less of these elements in the root, genotype B73 might be
more tolerant to toxic elements (15). When clustering was based
on root element content, the pht1;6 mutant and B73 were grouped
together. However, the leaf element content of these two lines
was very different, and the potentially toxic elements mentioned
above were highly accumulated only in the leaf of the pht1;6 mu-
tant (Figures S10A, S11, and Table S5, Supplementary Material). In-
terestingly, the accumulation of potentially toxic elements in the
maize genotypes was several times higher in the root (Figure S12,
Supplementary Material) than in the source leaf, while source leaf
elements critical for plant growth, such as N, P, and K, had higher
levels in the source leaf than in the root (Figure S12, Supplemen-
tary Material). This suggested that maize plants generally prevent
the transport of potentially toxic elements to their above-ground
part.

It is known that severe Pi deficiency can lead to acidification of
the rhizosphere, resulting in the uptake and transport of a number
of potentially toxic elements (16). Previous studies in Arabidopsis
have shown that Pi deficiency leads to inhibition of primary root
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growth due to accumulation and redistribution of Fe in the root
(17). In our field study, Pi deficiency led to accumulation of Fe in
the source leaf of pht1;6 (Figures S10A, B, and S13, Supplementary
Material), and we did not observe Fe accumulation in the roots of
pht1;6. In agreement with these data, statistical analysis showed
that the main source of Fe variation in the source leaf was PHT1:6
activity (Table S9, Supplementary Material). The genotype effect
was high for Fe content in the root with and without pht1;6 plants
(ANOVA, < 0.0001, 57% and 50% of variance, respectively). How-
ever, removing of pht1;6 from the source leaf data set reduced the
genotype effect from 45% (ANOVA, P < 0.0001) to 4.1% (ANOVA,
P < 0.082). Overall, these results suggest that genotype is the pri-
mary factor determining the content of certain elements in the
leaf and root of maize lines and that in maize, unlike Arabidopsis,
phosphate deficiency does not lead to the accumulation of Fe in
the root.

Sulfur and phosphorus in combination with key
metabolites are predictive of plant biomass
To build a statistical model with predictive power for total
biomass accumulation, we then analyzed the relationships be-
tween SDW at the reproductive stage (SDW-Re) and the metabo-
lites, lipids, and elemental compositions of source leaves and roots
at the vegetative stage. Since a normal distribution cannot be as-
sumed for all variables, we used a nonparametric measure of rank
correlation.

Central metabolites
The pairwise Spearman’s correlation coefficients between the
SDW-Re and carbohydrates, major carboxylic acids, and highly
phosphorylated intermediates of the central metabolic pathways
from the source leaf samples at the vegetative stage showed that
most of the central metabolites were strongly positively corre-
lated with SDW-Re (Figure S14A and Table S10, Supplementary
Material). The highest correlation was observed for PEP (49%),
G6P (43%), and Mal (42%), which are critical for C4 carbon fixa-
tion, glycolysis, the pentose phosphate pathway, and starch and
lipid biosynthesis. Of the carbohydrates measured at the vege-
tative stage, glucose and fructose content in the root and glu-
cose content in the source leaf show a significant positive corre-
lation with SDW-Re (Figure S14A and Table S10, Supplementary
Material). The sucrose content in the source leaf of B73 is signif-
icantly lower and the glucose and fructose content in the source
leaf and root significantly higher than in the other genotypes (Fig-
ure S15, Supplementary Material). In agreement with these re-
sults, we found that the expression pattern of several genes en-
coding transporters involved in carbon partitioning, such as sugar
transporters, sucrose transporters, UDP–glucose transporters, nu-
cleotide/sugar transporter family proteins, SWEET family mem-
bers, and also sucrose synthases, showed a genotype-dependent
pattern in the source leaves (Figure S16, Supplementary Material).
Taken together, these results suggest that in the B73 line, sucrose
is transported in greater amounts from the leaf to the root, where
it is efficiently hydrolysed to glucose and fructose by the activ-
ity of invertases and synthases. Similar to the B73 line, the pht1;6
mutant also transports sucrose in large amounts to the root. How-
ever, the mutant is not able to efficiently convert sucrose into hex-
oses. This is likely due to the strong decreased level of ATP and
pyrophosphate (PPi) in the pht1;6 mutant that are critical for the
activity of invertases and sucrose synthases, respectively, and also
subsequent ATP/PPi-dependent phosphorylation of hexoses (18,
19). It appears that the pht1:6 mutant plants attempt to compen-

sate for the low activity of invertases and synthases by increased
expression of genes encoding invertases, sucrose synthases, and
sugar transporters (Figure S16, Supplementary Material).

Lipids
Correlation studies between lipids from the source leaf and SDW-
Re revealed that most of the MGDGs, DGDGs, SQDGs, DAGs, and
TAGs were either negatively correlated or not correlated at all
(Figures S14B, C, and Table S10, Supplementary Material). In con-
trast, almost all phospholipids (PCs, PEs, PSs, and PGs) exhibited ei-
ther positive or no correlations, and phospholipids PC-36–2 (39%),
PC-36–3–2 (38%), and PS-40–2–2 (37%) showed the highest cor-
relations with SDW-Re (Figure S14B and Table S10, Supplemen-
tary Material). In the root samples, PC-38–2 (29%), PG-34–3 (28%),
and PC-34–2 (27%) showed the highest positive correlations with
SDW-Re (Table S10, Supplementary Material). Phospholipids are
important components of cell membranes and are required for
signal transduction cascades (20). They also play an important
role in controlling plant growth and development under stress
conditions (21). Previous studies have shown that environmental
stress leads to extensive remodeling of lipid biosynthesis and con-
sequently to changes in cell membrane composition (21, 22). For
example, abiotic stresses lead to a gradual reduction in phospho-
lipid content (23), and under conditions of Pi deficiency, plants re-
place phospholipids with nonphosphorous glycerolipids, thereby
diverting Pi to other vital processes (24). We suggest that a high
phospholipid content implies that the plants in question proba-
bly received sufficient resources for adequate growth and devel-
opment and were able to avoid significant stress.

Amino acids
Of the free amino acids in the source leaf, methionine (25%), ala-
nine (17%), and proline (15%) and in the root alanine (30%), glu-
tamate (28%), and serine (27%) showed the highest positive corre-
lations with SDW-Re (Table S10, Supplementary Material). Amino
acids are usually multifunctional and do not only serve as build-
ing blocks of proteins. Some amino acids, including alanine, the
most abundant soluble N containing molecule, are involved in the
storage and long-distance transport of N (25). Glutamate is critical
for N assimilation into the carbon skeleton, which occurs largely
via the glutamine synthetase/glutamate synthase cycle. It is also
central to amino acid metabolism and contributes to the regula-
tion of the tricarboxylic acid (TCA) cycle. (26, 27). We have also
found negative correlations between several amino acids, includ-
ing glycine, phenylalanine, isoleucine, histidine, and tyrosine with
SDW-Re (Table S10, Supplementary Material).

Potentially toxic elements
The contents of several potentially toxic elements in the source
leaf at the vegetative stage, such as chromium (Cr), Se, beryllium
(Be), Co, Li, Al, V, Fe, Ni, and cesium (Cs), showed a significant nega-
tive correlation with SDW-Re and P content (Figure S14D and Table
S10, Supplementary Material), while in the root a considerable ac-
cumulation of these elements had no adverse effect. In the source
leaf, P (57%), S (53%), Mg (45%), and N (31%) and in the root P (51%),
C/N ratio (28%), Mo (15%), and Cu (12%) showed the highest pos-
itive correlations with SDW-Re (Table S10, Supplementary Mate-
rial). The macronutrient potassium (K), an essential element for
plant growth, showed a weak but significant negative correlation
with SDW-Re (Figure S14D and Table S10, Supplementary Mate-
rial). K does play an important role in plant growth. However, ex-
cess K can also cause stress and growth inhibition (28, 29). The
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Fig. 2. Pairwise Spearman’s rank correlations between dry weight of shoots at reproductive stage and metabolite/lipid/element/amino acid content at
vegetative stage from source leaf samples. Network diagram showing some of the most significant correlations identified between dry weight of shoots
at the reproductive stage with metabolites, lipids, elements, and amino acids. Positive correlations are represented by red lines and negative
correlations by blue lines. The thickness of the lines indicates the strength of the correlations. The turquoise, orange, pink, and green hexagons
represent the components of the central metabolites, amino acids, elements and lipids, respectively.

slight negative effect of K on SDW-Re could be due to a moderate
excess of available potassium in our experimental fields for the
genotypes studied.

Predictors of biomass
Next, we investigated the predictive power of the measured ex-
planatory variables, which consisted of central metabolites, lipids,
free amino acids, and elements for SDW-Re, by using a multi-
variate statistical method, partial least squares regression (PLSR),
to identify the most important variables for predicting SDW-Re
(30). PLSR is a suitable approach for building predictive models
when the explanatory variables are highly correlated with each
other (30), as was the case with our datasets (Fig. 2). We consid-
ered only those explanatory variables that had significant corre-
lations according to Spearman’s rank correlation coefficient and
used a leave-one-out cross-validation method to determine the
optimal number of latent variables based on the minimum root
mean square error of prediction (RMSEP) (31). The PLSR coeffi-
cients estimated in the training set were used to predict the SDW-
Re in the test set. The model using source leaf data showed a
strong relationship between metabolite and element composi-
tions (R2 = 0.7382; Fig. 3A) with SDW-Re. To evaluate the contri-
bution of each predictor of SDW-Re, we examined their regression
coefficients. Among the explanatory variables, S (25%), P (10.7%),
3PG (5%), Ala (3%), Mal (2.9%), and PEP (1.5%) had the largest con-
tribution to the PLSR model (Fig. 3C). We also built the PLSR model
using the root data sets. The root model also showed strong pre-

dictive power of elements and metabolic composition for SDW-Re
(R2 = 0.6861; Fig. 3B). The P content in the root exerted the great-
est influence (51%) in the PLSR model (Fig. 3D). Since the P con-
tent in the pht1;6 mutant was low compared to other genotypes,
we thought that the presence of the pht1;6 data in our data set
might cause a bias towards the P contribution in the root for SDW-
Re. Therefore, the pht1;6 data set was removed and a new model
was created based on the dataset of the four lines studied, B73,
PH207, F2, and DK105. In this model, P content still contributed
by far the most to the prediction of SDW-Re (35%, Fig. 3E). In a
further analysis, we removed the data sets from plants grown on
NK soil management. In the constructed model, P content was
still the most important factor for prediction (42%, Fig. 3F). These
results are consistent with the importance of essential macronu-
trients as key components of a variety of essential biomolecules,
including metabolites, and their particular contribution to plant
biomass. Taken together, our data suggested that S and P content
in the source leaf and P content in the root, which are mainly de-
termined by genotype (Table S9, Supplementary Material), in com-
bination with a number of important metabolites such as 3PG, Ala,
Mal, and PEP are key to predicting plant biomass at the reproduc-
tive stage.

Genes and gene networks enable the prediction
of plant biomass
To identify genes or gene networks critical for plant biomass,
we performed Spearman’s rank correlation coefficient statistics
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Fig. 3. Key elements S and P are the largest contributors to the PLSR model. (A) PLSR prediction of SDW-Re using metabolite and element compositions
from the vegetative stage compared to measured values resulting from source leaf samples of five maize genotypes (B73, PH207, DK105, F2, and the
pht1;6). (B) PLSR prediction of SDW-Re using metabolite and element compositions from the vegetative stage compared to measured values resulting
from the root samples of 5 maize genotypes. (C) Regression coefficients of the top 10 elements and metabolites from the source leaf samples of five
maize genotypes that contributed the most contribution to the PLSR model. (D) Regression coefficients of the top 10 elements and metabolites from
the root samples of five maize genotypes that contributed the most to the PLSR model. (E) Regression coefficients of the top 10 elements and
metabolites from the root samples of four maize genotypes (B73, PH207, DK105, and F2) that contributed the most to the PLSR model. (F) Regression
coefficients of the top 10 elements and metabolites from the root samples that contributed the most to the PLSR model, excluding samples grown on
NK soil management.

between transcript profiles (gene expression) at vegetative stage
and SDW-Re. RNA-seq analysis was performed using 120 tran-
scriptomes (three replicates per genotype for each plot) generated
by Illumina paired-end sequencing. Genes that showed significant
positive expression correlations with shoot biomass (padj < 0.05)
were used as input to the STRING database (32). Networks gener-
ated by STRING with default settings were visualized in Cytoscape
and partitioned into network modules. We identified seven main
modules by analyzing the generated network based on transcript
profiles of the source leaves (Fig. 4). Auxin and ABA are plant hor-
mones that play essential roles in plant growth, development, and
defense response (33, 34). Components of auxin (TIR1, CULLIN-
1, SKP1, RBX1, AUX/IAAs, and ARFs) and ABA signaling pathways

(PYLs, PP2Cs, and SNRK2s) were identified as hub genes in module-
I and module-II, respectively. Genes encoding ribosomal proteins,
RUBISCO, and nitrate reductases are central in module-III. Ni-
trate reductases and RUBISCO catalyze the first step of nitrogen
assimilation and carbon fixation, respectively (35, 36). Ribosomal
proteins play a vital role in the cellular process of translation
(37). Light receptors such as PHYAs, CRY2, PHOT1, and PHOT2,
which are crucial to synchronize plant growth and development
through the sensing of light in the environment (38), are at the
center of module-IV. Autophagy-related genes, which are criti-
cal for recycling of malfunctioning cellular components and nu-
trient allocation (39, 40), are at the heart of module-V (ATG1a,
ATG1t, ATG4b, ATG6, ATG8b, ATG8d, ATG11, ATG13a, ATG13b, and
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Fig. 4. Modules identified by unweighted network analysis. Genes whose expressions in the source leaf at the vegetative stage showed significant
positive correlations (Spearman’s rank correlation, padj < 0.05) with shoot biomass at the reproductive stage were used as input to the STRING
database. The network generated by STRING with default settings was visualized in Cytoscape and seven main network modules was identified.
Physical or functional connections are represented by lines. The size of the nodes is proportional to the connectivity of the individual genes within
each module. The color intensity of the nodes is proportional to the correlation of gene expression levels with shoot biomass. The edge thickness
represents the strength of pairwise coexpression of genes.

ATG18b). Genes involved in DNA replication, RNA transcription,
and cell division are central to module-VI. For example, mem-
bers of the MINICHROMOSOME MAINTENANCE (MCM) complex
(MCM3, MCM4, MCM5, MCM6, and MCM7), that are involved in
the initiation of DNA replication, are at the center of this module
(Fig. 4) (41). UV-B receptors (UVR8s) and cyclin-dependent kinase
CDKA;1, which is the master regulator of the cell cycle and con-
trols both G1 to S and G2 to M checkpoints, are present in this
module (42, 43). Module-VII contains genes that are critical for
phospholipid biosynthesis and the recycling and degradation of
plasma membrane proteins (Fig. 4). For example, ethanolamine

kinase (EKI) catalyzes the first step of PE biosynthesis, and serine
decarboxylase (SDC) catalyzes the biosynthesis of ethanolamine
from serine, which is crucial for the synthesis of choline, PEs,
and PCs (44, 45). Vacuolar protein sorting-associated protein 28
(VPS28-1) is a component of the ESCRT-I complex (endosomal
sorting complex required for transport I), a key regulator of the
vesicular trafficking process (46). From the genes presented in the
seven modules, based on the connectivity of the genes and the cor-
relation coefficient, we generated a shortlist of candidate marker
genes whose expression is likely to be critical for achieving high
plant biomass (Table S11, Supplementary Material). In contrast to
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the source leaf, we found no modules or pathways when using
the root transcriptome data for unweighted correlation network
analysis. In addition to unweighted coexpression network analy-
sis, we conducted weighted gene coexpression network analysis
(WGCNA) to identify modules (clusters of highly interconnected
genes that are represented by colors) during vegetative growth
that may be critical for plant biomass formation (47). However,
the modules resulting from the source leaf or root samples did
not show a strong correlation with SDW-Re (Figure S17, Supple-
mentary Material). The gray module from the source leaf sam-
ples containing genes that were not coexpressed with the genes
present in other modules showed the highest correlation (47%,
P < 0.0001) with SDW-Re. This suggested that weighted coexpres-
sion network analysis may not be an appropriate approach for
identifying gene sets that predict plant biomass. However, some
of the modules showed strong correlation coefficients with geno-
types. For example, the brown module showed only a strong cor-
relation coefficient (96%) with F2 genotype suggesting that certain
signaling pathways or gene networks are strongly associated with
the F2 genotype (Figures S18, S19, and Table S12, Supplementary
Material).

To identify genes or gene networks that are critical for plant
biomass, we conducted an unweighted network analysis, consid-
ering physically and/or functionally related genes. With this ap-
proach, we risked to losing poorly characterized genes whose ex-
pression was crucial for plant biomass. Therefore, we applied PLSR
to identify genes whose transcripts predicted SDW-Re with high
significance during vegetative growth. For the source leaf sam-
ples the genes whose expression had a correlation coefficient of at
least 50% with SDW-Re according to the Spearman’s rank correla-
tion coefficient were considered. The PLSR model showed strong
predictive power of the transcripts for the SDW-Re (R2 = 0.6993;
Figure S20, Supplementary Material). Of the top 15 genes with
the highest contribution to the prediction of SDW-Re (Table S13,
Supplementary Material), only two of them [PHOTOTROPIN 1,
Zm00001d044599 and ALANINE AMINOTRANSFERASE (AlaAT) 12,
Zm00001d030557] were included in the list of genes generated by
the unweighted correlation network analysis (Table S11, Supple-
mentary Material). PHOTOTROPIN 1 is a blue light receptor that
promotes growth and development by optimizing photosynthetic
light capture under low light conditions (48), and alanine amino-
transferases is a N metabolism gene that is essential for the pho-
tosynthetic C4 assimilation cycle. Expression of AlaAT under the
control of a stress-inducible promoter leads to increased biomass
in various crops. This increase is probably due to the improve-
ment in nitrogen use efficiency (49, 50). The top gene in the list
is a nucleocytoplasmic EULS3-like lectin, which may be involved
in ABA-dependent stomatal closure (51) and regulates water tran-
spiration and carbon fixation. Among the root transcripts, a small
proportion of genes showed a significant correlation coefficient
of more than 50% with the SDW-Re. Therefore, the genes whose
expression showed a correlation coefficient of 30% or more with
the SDW-Re were considered. The model built with the root tran-
scripts also showed high predictive power (R2 = 0.6787; Figure S20,
Supplementary Material). The top 15 genes that contributed the
most to the PLSR model are listed in Table S13 (Supplementary
Material). The major gene whose transcription performed best
in predicting plant biomass is a BURP domain-containing protein
(RD22-like gene, Zm00001d031909), which is likely localized in the
cell wall matrix and contributes to cell wall loosening by interact-
ing with expansins. Overexpression of an RD22-like gene led to a
significant increase in seed mass and plant biomass in cotton and
Arabidopsis (52, 53).

Analysis of growth phenotype and transcriptome
reveals beneficial root traits and gene networks
in response to phosphate deficiency in B73
Transcriptional response to Pi deficiency
The machine learning approach has shown that P content in the
source leaf and root during the vegetative stage is a crucial fac-
tor for predicting plant biomass at the reproductive stage. Thus,
to explore the physiological/biological basis of the high predictive
power of P content, we conducted a comparative transcriptome
analysis of maize plants grown in plots with NK and NPK soil man-
agement at the DEMO site. Apart from some biological processes,
such as the cellular response to Pi starvation, which were upreg-
ulated in all genotypes, we observed a very different response to
Pi starvation between genotypes at the source leaf and root levels
on NK soil (Figures S21–S23 and Table S14, Supplementary Mate-
rial). Surprisingly, we found a unique response in the root of the
genotype B73 to Pi starvation compared to PH207, F2, and DK105.
Signaling pathways involved in processes such as root growth and
development, root system development, root hair development
and elongation, root morphogenesis, cell growth, cell wall organi-
zation or biogenesis, regulation of auxin-mediated signaling, and
response to auxin and auxin transport were upregulated only in
the root of B73 (Figure S23 and Table S14, Supplementary Mate-
rial). Although Pi deficiency in B73 resulted in a significant reduc-
tion in growth at the vegetative stage, B73 was the only genotype
that did not show a significant reduction in SDW at the reproduc-
tive stage under Pi deficiency condition and had the highest SDW-
Re across all soil management treatments at both geographical
locations (DEMO and DOK; Fig. 1A and B; Figure S5, Supplemen-
tary Material). Consistent with these results, the SDW of the pht1;6
mutant grown in the NPK soil management plot was lower than
that of the corresponding wild type B73 and other genotypes at
the vegetative stage, while its SDW-Re was similar to that of lines
PH207 and DK105 and significantly higher than that of the F2 line.
This indicated that pht1;6 was able to catch up in growth during
the late developmental phase. The heat map of the genes involved
in the Pi starvation response showed that this response was signif-
icantly more pronounced in pht1;6 than in the other maize geno-
types studied (Figure S24A, Supplementary Material). Compara-
tive transcript profiling showed that several Pi transporters, SPX
domain-containing proteins, INDUCED BY PHOSPHATE STARVA-
TION 1 (IPS1), phosphatases, RNases, β-glucosidase, and PEPCases
were strongly upregulated in the pht1;6 mutant compared to wild
type B73 (when grown on NPK-managed soils) to increase Pi up-
take and Pi utilization efficiency.

Chromatin-based regulation of root development
Within the upregulated genes in the root of pht1;6, GO-terms re-
lated to histone H3 lysine 9 (H3K9) methylation, DNA methyla-
tion, chromatin silencing, cell division, DNA replication, root de-
velopment, root hair development, and root hair elongation were
significantly enriched (Fig. 5A; Tables S15 and S16, Supplemen-
tary Material). Network analysis of the differentially expressed
genes showed that epigenetic silencing, DNA replication, cell divi-
sion, and root/root hair development and growth pathways were
strongly linked (Fig. 5A). During cell division, in addition to DNA
sequence, the restoration of epigenetic information in daughter
cells is critical for maintaining genome stability and controlling
the transcriptional status, which in turn is important for main-
taining the identity of a particular cell type or its regulated dif-
ferentiation (54). However, after DNA replication, the establish-
ment of silencing histone methylation marks is a gradual and
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Fig. 5. Pi deficiency promotes root growth and development by promoting DNA replication and cell division. (A) Epigenetic silencing pathways are
closely linked with DNA replication, cell division, and root development pathways. Differentially expressed genes (P < 0.05 and at least two-fold up- or
downregulation) identified by comparative transcript profiling of the pht1;6 mutant and wild-type B73 grown on NPK soils were subjected to the
STRING database. The generated network was visualized using Cytoscape. The upregulated and downregulated differentially expressed genes are
represented by yellow and blue colors, respectively. (B) Quantitative analysis of H3K9met2 in two biological replicates at two developmental stages.
Equal loading of protein samples is indicated by immunoblotting with antiactin antibody. (C) The median N content of maize lines from root samples
grown in all soil management types (n = 48). (D) The median N content of maize genotypes from the root samples grown on NK and NPK soil (n = 30).
(E) The average N content of the maize lines from the source leaf samples grown on NK and NPK soils. The error bars indicate ± 1 SD (n = 6). A
two-tailed Student’s t test was used to calculate significance. (F) The mean N content of maize lines from root samples grown on NK and NPK soils.
Error bars indicate ± 1 SD (n = 6). A two-tailed Student’s t test was used to calculate significance. (G) The median C content of maize lines from root
samples grown in all soil treatments (n = 48). (H) The median C content of the maize genotypes from the root samples grown in NK and NPK soils
(n = 30). The significance of the groups was determined using ANOVA followed by Tukey’s HSD test (P < 0.05).

slow process, and the deposition of new naïve histones with the
old recycled histones leads to a twofold dilution of the parental
post-translational modification (55–57). Therefore, we hypothe-
sized that if Pi deficiency in the pht1;6 mutant grown on NPK-
managed soil leads to increased DNA replication, cell division, and
root growth, the level of histone H3K9 dimethylation (H3K9me2)-
dependent silencing should show a significant reduction in pht1;6
compared with B73. We, therefore, performed immunoblotting
analysis to examine H3K9me2 levels in the roots of pht1;6 and
B73 lines grown with NPK. H3K9me2 levels were significantly re-
duced in pht1;6 (Fig. 5B). In agreement with the above results, we
found that at the physiological level N allocation to the root dur-
ing vegetative growth was dependent on genotype and Pi defi-
ciency (Figs 5C–F; Figure S24B, Supplementary Material). Similar to
pht1;6, genotype, B73 assimilated and/or allocated more N to the
root under Pi deficiency (Fig. 5F). In contrast to N, the allocation
of C to the root during vegetative growth was only dependent on
the genotype and was not affected by Pi deficiency. Genotype B73
and pht1;6 allocated more C to the root than lines F2, PH207, and
DK105, respectively (Figs 5G and H; Figure S24C, Supplementary
Material). In a complementary independent experiment, we grew
the maize genotypes in a hydroponic system with sufficient Pi (SP).
After 1 week, the endosperms, which are an important source of

P during seed germination (58), were removed from the seedlings.
Plants, 12-day-old, were transferred to low-Pi (LP) or SP nutrient
media for 8 days. In agreement with the above results, B73 was
the only genotype that showed a significant increase in root fresh
weight under LP conditions compared to SP conditions (Figures
S25 and S26, Supplementary Material) highlighting its high growth
potential already at young developmental age.

Transcriptional network underlying biomass
To gain insight into the transcriptional network underlying green
biomass formation in the field, we aimed to identify enriched tran-
scription factor (TF) motifs associated with upregulated genes un-
der Pi deficiency. To this end, we examined 2 kb promoter regions
of upregulated genes using a combination of unsupervised Mul-
tiple Em for Motif Elicitation (MEME), supervised Motif Compari-
son Tool (TOMTOM), and Analysis of Motif Enrichment (AME) (59,
60). In the source leaf, four significantly enriched TF motifs were
unique to the B73 genotype grown on NK (Fig. 6A; Table S17, Sup-
plementary Material). These included the nitrate-responsive cis-
element (NRE) bound by the family of Nin-like proteins (NLP),
which are important regulators of nitrogen signaling, transport,
and assimilation (61), an AT-rich Interaction Domain (ARID), a
MYB and an AT-hook-type motif. In addition to the enrichment
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Fig. 6. TF motifs significantly enriched in upregulated genes under phosphate deficiency. (A) Regulatory networks for upregulated genes in the source
leaf and root. Hexagons (nodes) represent TFs. Colored lines (edges) represent the interaction of TF motifs present on promoters with TFs. Light blue
rectangles (nodes) represent genes. Outer circles show genes grouped with shared motifs. (B) Regulatory network of upregulated genes in the B73 root
containing MYB, ARID, and/or AT-hook TF motifs significantly enriched only in the B73 line.

of the NRE, the NLP6-TF was upregulated in the source leaf of
B73 under Pi starvation. The enriched TF motifs were probably
key to the unique response of the B73 line to Pi deficiency. In
the root of B73 plants grown on NK, the NRE was not signifi-
cantly enriched in upregulated genes, in contrast to the source
leaf samples. However, analysis of the upregulated genes with

unique enriched TF motifs (Fig. 6B; Table S17, Supplementary Ma-
terial) showed that several important components of N-signaling
such as NRT1 transporter, glutamine synthase, NIGT1.4/HRS1
and NIGT1.2/HHO2 (26, 62), as well as many genes that are re-
quired for root growth and development, including carbohydrate
transporters, contain AT-hook, ARID, and/or MYB motifs in their
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promoter sequence (Fig. 6B). The enriched MYB binding sites are
targets for the TFs LHY, CCA1, and RVE in the source leaf and for
Blind-like protein RAX in the root. While the first three TFs are
components of the central oscillator in the circadian system, RAX
regulator was shown to initiate lateral bud formation and thus
shoot branching (63). Plants with an environmentally adapted
clock period have been shown to contain more chlorophyll, fix
more carbon and grow faster than plants with an environmen-
tally deviated circadian period (64, 65). The role and contribution
of the correct setting of the circadian clock and the regulation of
root branching to biomass growth in B73 require further research.
Taken together, our data suggest that, in addition to the allocation
of C to the root, higher uptake and assimilation of N in the B73 line
leads to greater growth of roots and root hairs under Pi deficiency,
which increases the Pi absorption area at the root–soil interface
and plant growth. Furthermore, the expression of NLP and NIGT1
proteins in B73 suggests that there is a regulatory framework for
the balanced uptake and utilization of N and P in soils managed
with NK, which may differ in leaf and roots (62). Thus, in addition
to the P content in the root, the C and N allocation to this un-
derground organ during vegetative growth are decisive factors for
the nutrient-dependent growth potential and the final biomass of
maize.

Concluding Remarks
The way we currently produce food destroys habitats worldwide
and contributes to climate change, species extinction, and the oc-
currence of pandemics (66–68). Therefore, it is desirable to ad-
vance crop improvement with efficient breeding methods based
on robust biological markers, also in the face of climate change
and the accompanying negatively altered environmental condi-
tions. Our data strongly suggest that plant analysis at the sys-
tem level makes it possible to identify genes, metabolites, and el-
ements as markers that explain biomass variations in the field
and allow prediction of the performance of a plant genotype on
a given cropping area. We have shown that while key metabo-
lites are important factors in predicting biomass, genetically pro-
grammed uptake, and organ-specific distribution of essential (C,
N, P, and S) and potentially toxic elements play an equally im-
portant role in determining plant biomass. In addition, we have
pinpointed a number of genes that shape molecular processes
through mathematical modeling and/or from identified gene net-
works. The expression levels of these genes, therefore, provide
information on how efficiently a maize genotype performs un-
der field conditions at the cellular and physiological level. They
can be used as markers for predicting biomass in breeding pro-
grams that go hand in hand with context-appropriate soil fertility
management.

Materials and Methods
All the materials and methods are detailed in the Supplementary
Material Appendix: experimental setup; analysis of soil proper-
ties; analysis of elemental composition by ICP-MS; metabolite pro-
filing using mass spectrometry; RNA-seq and differential expres-
sion analysis; PCA and heatmap hierarchical clustering; mono-
tonic modeling of the relation between shoot dry matter and
metabolites, sugars, lipids, and amino acids; biological network
analyses; multivariate analysis; identification of enriched regula-
tory motifs; and statistical methods.
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