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Introduction
All cells maintain nonrandom distributions of cytoplasmic com-

ponents, including membranous organelles and macromolecular 

RNA or protein complexes. This cytoplasmic organization is 

 accomplished by a concerted effort of molecular motors, which 

are proteins that transport cargo along microtubules or actin fi la-

ments using the energy of ATP hydrolysis (Schliwa and  Woehlke, 

2003; Vale, 2003; Mallik and Gross, 2004). The docking of 

 motors to their specifi c cargoes is essential for proper cargo dis-

tribution. Several docking proteins that are essential for binding 

cytoplasmic dynein, kinesin, or myosin motors to cargo have 

been described recently (Fukuda et al., 2002; Kamal and 

 Goldstein, 2002; Karcher et al., 2002; Wu et al., 2002). The most 

versatile and ubiquitous adaptor is the dynactin complex (Gill et al., 

1991; Holleran et al., 1998; Karki and Holzbaur, 1999; Schroer, 

2004). The main function of dynactin is to facilitate the attach-

ment of cytoplasmic dynein to its cargo (Karki and Holzbaur, 

1995; Vaughan and Vallee, 1995). In addition, dynactin can func-

tion as an adaptor for at least two motors of the kinesin super-

family, heterotrimeric kinesin-2 (Deacon et al., 2003) and mitotic 

kinesin Eg-5 (Blangy et al., 1997). Dynactin can also act inde-

pendently of cytoplasmic dynein to anchor microtubules at the 

centrosome (Quintyne et al., 1999; Quintyne and Schroer, 2002) 

and organize radial microtubule arrays (Askham et al., 2002).

The dynactin complex consists of two morphologically 

distinct structural domains: a rod-shaped domain that binds to 

the cargo and an extended projection that mediates an inter-

action with cytoplasmic dynein and microtubules. The rod-shaped 

part consists of an Arp-1 fi lament and actin-capping proteins, 

whereas the projection is formed by a homodimer of a p150glued 

protein subunit. These two parts of the dynactin complex are 

bridged by the p50 subunit dynamitin. p150glued interacts with 

other subunits of the dynactin complex through its C terminus 

and with cytoplasmic dynein and other motors through its 

coiled-coil domains (Schroer, 2004).

Remarkably, in addition to providing a platform for motor 

binding, p150glued has the ability to interact with microtubules 

independently of cytoplasmic dynein. The microtubule-binding 

region of p150glued is localized at the extreme N terminus and 

consists of a CAP-Gly (cytoskeleton-associated protein glycine 

rich) domain and a basic region, both of which are positioned 

within the fi rst 200 amino acid residues (Waterman-Storer 

et al., 1995; Vaughan et al., 2002; Culver-Hanlon et al., 2006). 
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Analysis of p150glued isoforms in the mammalian brain showed 

that in addition to the full-length p150glued, neurons express an 

alternatively spliced 135-kD isoform lacking the microtubule-

binding domain (Tokito et al., 1996). This suggests that this 

 domain could be dispensable for at least some of the dynactin 

functions in nondividing cells.

In vitro motility analysis using beads coated with a mixture 

of cytoplasmic dynein and dynactin demonstrated that dynactin 

could function as a processivity factor for dynein (King and 

Schroer, 2000), presumably by providing an extra site for micro-

tubule binding and, thus, preventing cargo dissociation from 

 microtubules (Waterman-Storer et al., 1995; Culver-Hanlon et al., 

2006; Kobayashi et al., 2006). Another function of the microtubule-

binding domain of p150glued is to localize the dynactin complex 

to the plus ends of growing microtubules (Vaughan et al., 2002). 

p150glued is a member of a family of microtubule plus end–binding 

proteins (Akhmanova and Hoogenraad, 2005) and colocalizes 

with other proteins of this class such as CLIP-170 and EB1 to the 

plus ends of growing microtubules (Vaughan et al., 1999; Ligon 

et al., 2003; Lansbergen et al., 2004). Its binding  affi nity to micro-

tubules is regulated by phosphorylation (Vaughan et al., 2002). It 

has been postulated that the accumulation of p150glued at the plus 

ends of microtubules facilitates the loading of retrograde cargo on 

microtubules (Vaughan, 2005b) and linking microtubule plus 

ends to specifi c sites, such as mitotic kinetochores and the cell 

cortex (Mimori-Kiyosue and Tsukita, 2003).

Both the tip binding and enhancement of motor processivity 

by dynactin require the N terminus of p150glued. However, the ex-

istence of the shorter p135 isoform of p150glued, which lacks the 

microtubule-binding motif, suggests that the dynactin complex 

can perform at least some of its functions even without this 

microtubule-binding activity. In this study, we examine the role of the 

microtubule-binding domain of p150glued in the cargo transport 

and organization of microtubules. In cultured Drosophila melano-
gaster S2 cells, we replaced the full-length p150glued protein with 

a truncated form lacking the microtubule-binding domain. We 

then examined effects of the deletion of the microtubule-binding 

domain on cargo transport (membranous organelles and mRNA–

protein complexes) and the organization of microtubules. To 

eliminate the effect of the actin-based component on transport, we 

treated cells with cytochalasin D. Our results demonstrated that 

truncation of the fi rst 200 amino acid residues from p150glued 

eliminated its binding to microtubules but had no effect on the 

rate, processivity, or step size of cargo transport by either kinesin-1 

or cytoplasmic dynein. However, truncation of the microtubule-

binding domain resulted in defects in organization of the mitotic 

spindles, including the formation of multipolar spindles and free 

microtubule-organizing centers (MTOCs). Thus, we conclude 

that the microtubule-binding domain of p150glued is not required 

for microtubule-dependent transport but is essential for the proper 

organization of radial microtubule arrays.

Results
Generation of cell lines and RNAi procedure
To replace the wild-type p150glued with a truncated form, we 

generated S2 cell lines expressing a fusion protein of mono-

meric red fl uorescent protein (mRFP; Campbell et al., 2002) or 

EGFP with the N terminus of either full-length p150glued or 

p150glued with a deletion of residues 1–200 (∆N-p150glued). 

 Stable cell lines were selected by hygromycin. We then treated 

cells with double-stranded RNA corresponding to the 3′ 
 untranslated region (UTR) of p150glued mRNA to deplete the 

 endogenous protein.

Western blotting with an antibody that recognizes the 

C-terminal fragment of p150glued showed that in addition to the 

endogenous protein, stable cell lines expressed new proteins 

with the molecular weights expected for fusions of either full-

length p150glued or ∆N-p150glued tagged with mRFP (Fig. 1, lanes 

1 and 3) or EGFP (not depicted). The antibody generated against 

residues 1–200 of p150glued does not recognize ∆N-p150glued 

(Fig. 1, lane 7), demonstrating that our construct is indeed lacking 

its N terminus.

As mentioned above, to deplete endogenous p150glued, we 

treated cells with a double-stranded RNA corresponding to the 

3′ UTR of p150glued mRNA. As shown in Fig. 1 (lanes 2, 4, 6, 

and 8), such treatment dramatically reduced the level of endog-

enous p150glued but did not affect the expression of mRFP-tagged 

p150 fusion proteins, as mRNAs encoding these proteins do not 

have the 3′ UTR. Serial dilutions of samples demonstrated that 

the level of endogenous p150glued in RNAi-treated cells dropped 

below 10% of the control untreated cells (unpublished data). 

Thus, by using a combination of the stable expression of tagged 

p150glued constructs and RNAi-mediated knockdown of the 

 endogenous p150glued, we can replace the endogenous protein 

with mRFP or with EGFP-tagged p150glued or ∆N-p150glued.

𝚫N-p150glued forms the dynein–dynactin 
complex
To examine whether truncation of the microtubule-binding 

 domain affected the ability of p150glued to form a dynactin complex 

and interact with cytoplasmic dynein, we analyzed the sedimen-

tation behavior of the dynein–dynactin complex in sucrose den-

sity gradients (Schroer and Sheetz, 1991). We performed these 

Figure 1. Western blots of extracts of S2 cells expressing mRFP-p150glued 
or mRFP–𝚫N-p150glued. mRFP-p150glued, lanes 1, 2, 5, and 6; mRFP–∆N-
p150glued, lanes 3, 4, 7, and 8. Endogenous p150glued was depleted by 
using RNAi against the 3′ UTR of p150glued mRNA (lanes 2, 4, 6, and 8). 
Lanes 1–4 were probed with an antibody against the C-terminal fragment 
of p150glued; lanes 5–8 were probed with an antibody against the N-terminal 
fragment of p150glued. Positions of mRFP-p150glued, mRFP–∆N-p150glued, 
and endogenous p150glued bands are marked by single, double, and triple 
arrowheads, respectively.
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experiments using wild-type S2 cells and cells expressing 

EGFP-tagged p150glued or ∆N-p150glued. Endogenous p150glued 

was depleted from cells expressing EGFP-tagged proteins by 

RNAi. To monitor the sedimentation behavior of p150glued, we 

used either an N-terminal p150glued antibody (for untransfected 

cells) or an antibody against EGFP (for transfected cells). The 

distribution of cytoplasmic dynein in gradient fractions was 

probed using an anti–dynein heavy chain (DHC) antibody. 

Western blot analysis of the fractions demonstrated that endog-

enous p150glued, EGFP- p150glued, and EGFP–∆N-p150glued have 

identical sedimentation profi les in sucrose gradients, with a 

peak in fractions 18–20 that coincides with the peak of cyto-

plasmic dynein (Fig. 2 A). Kinesin heavy chain (KHC) was 

probed as a control protein that does not sediment with DHC. 

These results indicate that neither truncation of the  microtubule-

binding domain nor fusion with EGFP affects the ability of 

p150glued to incorporate into the dynactin complex.

To further confi rm formation of the dynactin complex by 

truncated p150glued, we performed an immunoprecipitation as-

say using anti-EGFP antibody to pull down EGFP-p150glued or 

EGFP–∆N-p150glued and probed the precipitates for other dyn-

actin subunits. Fig. 2 B shows that both p50-dynamitin and 

Arp1 were detected in the precipitates from cells expressing 

EGFP-p150glued or EGFP–∆N-p150glued, but not from untrans-

fected S2 cells.

Analysis of these precipitates with the DHC antibody 

demonstrates the presence of cytoplasmic dynein in the samples 

precipitated with EGFP antibody from cells expressing EGFP-

p150glued or EGFP–∆N-p150glued. DHC was not detected in the 

anti-EGFP immunoprecipitates from untransfected S2 cells or 

in precipitates with a preimmune serum. We conclude that 

∆N-p150glued incorporates into the dynactin complex and that 

this complex interacts with cytoplasmic dynein.

Microtubule binding depends 
on the N-terminal domain of p150glued

To examine microtubule binding by EGFP-p150glued or EGFP–

∆N-p150glued, we performed a pelleting assay with microtubules 

in vitro and colocalization studies with microtubules in S2 cells. 

For microtubule pelleting assays, we expressed recombinant 

proteins that contain either amino acid residues 1–600 or 200–

600 of p150glued fused to EGFP and His6 tags. Both proteins 

were purifi ed by using a Talon affi nity column, incubated with 

taxol-stabilized microtubules, and pelleted by centrifugation 

through a glycerol cushion. As shown in Fig. 3 A, p150glued 

(amino acids 1–600) bound to microtubules, whereas the trun-

cation of 200 residues from the N terminus abolished micro-

tubule binding. These results confi rm previous studies 

demonstrating that the microtubule-binding domains of p150glued 

are localized within residues 1–160 of the protein (Waterman-

Storer et al., 1995; Culver-Hanlon et al., 2006).

For in vivo analysis of microtubule binding, we depleted 

endogenous p150glued by RNAi and transiently transfected cells 

with either EGFP-p150glued or EGFP–∆N-p150glued constructs. 

Cells were extracted with Triton X-100 to remove soluble pro-

teins, fi xed in methanol, and double stained for microtubules 

and EGFP. As shown in Fig. 3 B, EGFP-p150glued decorated 

 cytoplasmic microtubules. On the other hand, in agreement with 

in vitro results, EGFP–∆N-p150glued did not show any micro-

tubule binding. In addition, both EGFP-p150glued and EGFP–

∆N-p150glued were found in small clusters in the cytoplasm. We 

do not know the nature of these clusters, but they are probably 

identical to the cortical p150glued/APC clusters previously 

 observed by Reilein and Nelson (2005) in association with micro-

tubules in MDCK cells.

The interaction of p150glued and ∆N-p150glued with micro-

tubules was also examined in stable cell lines using a spinning 

disc confocal microscope. Similar to fi xed cells, EGFP- p150glued in 

live S2 cells was localized along microtubules and formed clusters 

that move bidirectionally along microtubules (Video 1, available 

Figure 2. The truncated form of p150glued and 𝚫N-p150glued forms the dy-
nactin complex and interacts with cytoplasmic dynein. (A) Sucrose gradient 
fractionation of extracts from S2 cells expressing wild-type p150glued, EGFP-
p150glued, or EGFP–∆N-p150glued. EGFP–∆N-p150glued sediments at the 
same rate as wild-type p150glued or EGFP-p150glued. KHC is used as a con-
trol, which sediments differently from dynein and dynactin. (B) Extracts 
from cells expressing EGFP-p150glued or EGFP–∆N-p150glued and untrans-
fected cells were immunoprecipitated with an anti-EGFP antibody or con-
trol preimmune IgG. Precipitates were probed using anti-DHC antibody 
and antibodies against dynactin subunits p150glued, p50, and Arp-1. Note 
that EGFP antibody but not the control IgG pulls down cytoplasmic dynein 
and dynactin subunits. Inputs are cell extracts from each sample.
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at http://www.jcb.org/cgi/content/full/jcb.200608128/DC1). 

In some cells, EGFP-p150glued also accumulated at microtubule 

tips, although this phenotype was not as prominent as in mam-

malian cells (Video 2; Vaughan et al., 2002). On the other hand, 

in the cell line expressing EGFP–∆N-p150glued, microtubule 

decoration and microtubule tip accumulation were not observed 

in any focal plane, and p150glued clusters seemed to move ran-

domly in the cytoplasm (Video 3). Thus, we confi rm that the 

fi rst 200 amino acid residues of p150glued contain microtubule-

binding activity, and truncation of this domain completely elim-

inates the ability of p150glued to interact with microtubules.

Dynactin is required for bidirectional 
cargo transport
To investigate the role of dynactin in the process of microtubule-

dependent transport, we used two types of cargo: membranous 

organelles (peroxisomes, endosomes, and lysosomes) and 

nonmembranous mRNA–protein (messenger RNP [mRNP]) 

complexes (Drosophila homologue of the fragile X mental re-

tardation protein [dFMRP]). Both EGFP-tagged peroxisomes 

and EGFP-tagged dFMRP particles have a well-defi ned mor-

phology and are transported along microtubules by cytoplasmic 

dynein and conventional kinesin (kinesin-1) as we demonstrated 

previously (Ling et al., 2004; Kural et al., 2005). To study the 

movement of cargo along microtubules without the interference 

of any myosin-dependent components, S2 cells were plated on 

a concanavalin-A–coated substrate, and actin fi laments were de-

polymerized with cytochalasin D. Under these conditions, cells 

formed long and thin processes that had a length of 5–20 μm 

with a diameter of 0.5–1 μm. In addition, as expected, cytocha-

lasin D treatment eliminated ruffl ing of the lamella and retro-

grade fl ow of actin in the lamelloplasm that could contribute 

to the movement of organelles and could, therefore, interfere 

with analysis of microtubule-dependent movement. Immuno-

fl uorescent staining with an anti–α-tubulin antibody showed 

that these processes contain microtubule bundles. Microtubules 

in these bundles have uniform polarity with their plus ends 

directed toward the tips of the processes (Kural et al., 2005). 

Both EGFP-tagged peroxisomes (Fig. 4 and Video 4, available 

at http://www.jcb.org/cgi/content/full/jcb.200608128/DC1) and 

dFMRP particles (Ling et al., 2004) moved bidirectionally in 

these processes.

In agreement with our previous results (Ling et al., 2004; 

Kural et al., 2005), knockdown of either kinesin or cytoplasmic 

dynein by RNAi abolished the bidirectional motility of peroxi-

somes along microtubules (Fig. S1, available at http://www.jcb

.org/cgi/content/full/jcb.200608128/DC1). In addition, knock-

down of either kinesin-1 or dynein by RNAi completely inhib-

ited the motility of lysosomes and endosomes along microtubules 

(unpublished data). Inhibition of bidirectional movements after 

the RNAi-induced depletion of one motor is not caused by the 

depletion of the motor of the opposite polarity because the other 

motor is still present both in the soluble pool and in the organ-

elle fraction (Fig. S2). These results agreed with a previous 

study showing the coordination of plus and minus end–directed 

movements of lipid droplets in Drosophila embryos (Gross 

et al., 2002) as well as a study showing an interdependence of 

cytoplasmic dynein, the dynactin complex, and kinesin in fast 

axonal transport in Drosophila neurons (Martin et al., 1999).

To study the role of dynactin in cargo transport, we 

knocked down either p150glued or the p50-dynamitin subunit of 

the Drosophila dynactin complex. Such treatment effectively 

reduced the bidirectional transport of both types of cargo, dem-

onstrating that dynactin is required not only for the transport of 

membranous organelles but also for the transport of mRNP par-

ticles along microtubules (Fig. 5 A and Table S1, available at 

http://www.jcb.org/cgi/content/full/jcb.200608128/DC1). RNAi 

against a mitotic kinesin, Klp61F, was used as a control.

To further confi rm the role of dynactin in cargo transport, 

we overexpressed mRFP fusion proteins with either p50-

 dynamitin or the fi rst coiled-coil region (amino acid residues 

232–583) of p150glued. Both constructs act as dominant-negative 

inhibitors of dynactin-dependent cellular processes (Burkhardt 

Figure 3. Truncation of the fi rst 200 amino acid residues of p150glued 
eliminates microtubule binding. (A) Recombinant proteins purifi ed and 
incubated with taxol-stabilized microtubules are centrifuged to pellet with 
microtubules. Pellets were analyzed by SDS-gel electrophoresis. Inputs are 
proteins used for the assay, and asterisks mark positions of His6-p150glued 
(residues 1–600) or His6-p150glued (residues 200–600). (B) EGFP-tagged 
p150glued (B2) is aligned along microtubules (B1), and EGFP–∆N-p150glued 
(B4) shows no microtubule binding. Cells were treated with 3′ UTR RNAi 
to deplete endogenous p150glued, extracted with detergent, and stained 
with a monoclonal antibody against α-tubulin and EGFP polyclonal anti-
body. Bar, 10 μm.
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et al., 1997; Waterman-Storer et al., 1997; Quintyne et al., 

1999). As shown in Fig. 5 B, the overexpression of either pro-

tein dramatically inhibited the transport of peroxisomes and 

dFMRP particles. It is worth noting that as in the case of dynactin 

knockdown, both the plus and minus end movements were 

blocked by the overexpression of dynactin subunits. The bind-

ing of both kinesin and dynein to dynactin could be one poten-

tial explanation of the inhibition of bidirectional movement in 

cells after the knockdown of dynactin subunits or overexpres-

sion of dominant-negative constructs. We performed immuno-

precipitation assays to test this possibility. An antibody against 

p150glued pulled down DHC but not KHC from S2 extracts. 

 Similarly, a kinesin antibody did not pull down p150glued, 

 although, in agreement with a previous study (Ligon et al., 

2004), it did pull down DHC (Fig. S3, available at http://www

.jcb.org/cgi/content/full/jcb.200608128/DC1). Thus, we conclude 

that dynactin is absolutely required for the bidirectional trans-

port of both membranous (peroxisomes) and nonmembranous 

(mRNP) cargoes along microtubules, and this result cannot be 

explained by simultaneous binding of dynactin to the motor 

proteins of opposite polarity.

Dynactin interaction with microtubules 
is not required for processive movement 
of cargo by dynein or kinesin in vivo
To determine the role of the microtubule-binding domain of 

p150glued, we analyzed the movement of EGFP-tagged peroxi-

somes and dFMRP particles in S2 cells expressing either mRFP-

p150glued or mRFP–∆N-p150glued. As mentioned above (see 

Generation of cell lines and RNAi procedure), we treated cells 

with RNAi against the 3′ UTR of p150glued mRNA to deplete 

endogenous p150glued. The observation of cargo movement in 

these cells indicated that the replacement of wild-type p150glued 

with either mRFP-p150glued or mRFP–∆N-p150glued had no 

 effect on peroxisome or dFMRP particle transport. Similar to the 

wild-type cells, cells expressing ∆N-p150glued showed multiple 

EGFP-labeled cargo moving bidirectionally within cellular 

 processes (Videos 5 and 6, available at http://www.jcb.org/cgi/

content/full/jcb.200608128/DC1), whereas cells depleted of 

p150glued demonstrated no movement (not depicted).

Quantitative analysis demonstrated that removal of the 

microtubule-binding domain of p150glued did not affect the 

long-range movement of peroxisomes or dFMRP particles along 

microtubules. Unlike the total depletion of p150glued, replacement 

with mRFP–∆N-p150glued had no effect on the mean run length 

of either peroxisomes or dFMRP particles (Fig. 6 A). We also 

compared two other parameters of movement: the relative num-

ber of runs and the mean velocity of runs (Fig. 6 B, Fig. S4 A, 

and Table S1, available at http://www.jcb.org/cgi/content/full/

jcb.200608128/DC1). The relative number of runs was deter-

mined as the number of runs longer than a threshold value nor-

malized to the number of analyzed organelles (see Materials 

and methods). This parameter should be most dramatically af-

fected if the processivity of organelle movement was changed. 

In agreement with the mean run length data, the number of runs 

and velocity of peroxisome and dFMRP movements in both 

 directions were not affected by removal of the microtubule-

binding domain of p150glued.

Figure 4. Morphology and peroxisome distribution in S2 cells spread on 
the substrate in the presence of cytochalasin D. (A and B) Phase-contrast 
(A) and fl uorescent (B) images of an S2 cell expressing EGFP-tagged peroxi-
somes in the presence of cytochalasin D. (C) Frames from a time-lapse 
video (Video 4, available at http://www.jcb.org/cgi/content/full/jcb
.200608128/DC1) show bidirectional movements of peroxisomes. Frames 
correspond to the boxed area in B. Time in seconds is indicated on each 
frame. Arrows show a peroxisome moving in the process. Bar, 5 μm.

Figure 5. Dynactin and dynein are required for the bidirectional move-
ment of peroxisomes and dFMRP particles. (A) The relative number of runs 
(see Materials and methods) of both peroxisomes and dFMRP particles 
dramatically dropped after the knockdown of dynactin subunits (p50 or 
p150glued) or DHC. RNAi against the mitotic kinesin Klp61F was used as a 
control. (B) The relative number of runs of both peroxisomes and dFMRP 
particles substantially dropped after the overexpression of dominant-
 negative inhibitors of dynactin, mRFP-p50, or mRFP-tagged coiled-coil 
1 of p150glued (mRFP-CC1). Error bars represent SD.
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To exclude the possibility that the aforementioned results 

are specifi c to these two particular kinds of cargo, we mea-

sured the effects of removal of the microtubule-binding domain 

of p150glued on the movement of endosomes and lysosomes. 

Endosomes were labeled by the incubation of cells with Texas 

red–conjugated dextran, and lysosomes were labeled with 

 Lysotracker. We found that similar to peroxisomes and dFMR, 

the movement of lysosomes and endosomes in cytochalasin-

treated cells was not affected by truncation of the microtubule-

binding domain (Fig. S4 B and Table S1). We also examined the 

distribution of organelles in cells not treated with cytochalasin D. 

We could not see any effects of truncation of the microtubule-

binding domain on the steady state distribution of any organelles 

studied here (Fig. S4 C), suggesting that even in the presence 

of actin, organelle movement is not affected by truncation of 

the microtubule-binding domain. Collectively, these results 

demonstrate that the presence of the microtubule-binding domain 

of p150glued is not important for the movement of at least four 

different types of cargo along microtubules in S2 cells.

Previously, we showed that both kinesin and cytoplasmic 

dynein move peroxisomes along microtubules in discrete 8-nm 

steps in vivo that correspond to the step size of both motors in vitro 

(Kural et al., 2005). Similar discrete steps were clearly seen in 

traces of peroxisomes in cells expressing mRFP-p150glued or 

mRFP–∆N-p150glued and depleted of endogenous p150glued. As 

shown in Fig. 7, the mean step sizes for kinesin and cytoplasmic 

dynein in cells expressing mRFP–∆N-p150glued are 7.7 ± 1.8 nm 

and 8.9 ± 1.4 nm, respectively. These numbers are not sub-

stantially different from the mean step sizes of kinesin and dynein 

in cells expressing mRFP-p150glued (9.6 ± 3.1 nm and 8.8 ± 2.4 

nm, respectively) or in wild-type cells as previously shown (Kural 

et al., 2005). We conclude that deletion of the microtubule-binding 

 domain of p150glued does not affect the characteristics of the 

mechanochemical cycle of molecular  motors in vivo.

Dynactin binding to microtubules 
suppresses the generation of multipolar 
spindles and free MTOCs
Drosophila cytoplasmic dynein and dynactin play critical roles 

during cell division that include spindle assembly and elonga-

tion, anaphase chromosome movements, and removal of spindle 

checkpoint components from attached kinetochores (Robinson 

et al., 1999; Sharp et al., 2000a,b; Wojcik et al., 2001; Buffi n 

et al., 2005; Morales-Mulia and Scholey, 2005). To examine 

the mitotic contribution of the microtubule- binding domain of 

p150glued, S2 cells expressing EGFP-p150glued or EGFP–∆N-

p150glued were treated with either control or double-stranded 

RNA from the 3′ UTR of p150glued and immunostained for both 

microtubules and the mitosis-specifi c phosphorylated histone 

H3. Depletion of endogenous p150glued in cells expressing 

EGFP–∆N-p150glued elevated the mitotic index threefold and in-

creased the frequency of prometaphase stage fi gures as compared 

with control RNAi–treated cells. A similar prometaphase-like 

 arrest was also described for cultured mammalian cells over-

expressing the dynactin inhibitor p50/dynamitin (Echeverri 

et al., 1996). Unexpectedly, we also observed a substantial 

increase in multipolar spindles in cells expressing EGFP–

∆N-p150glued (Fig. 8, A and B2), a phenotype not previously 

 described for dynactin inhibition. We attribute multipolar spin-

dle formation to the failure to properly coalesce MTOCs during 

prometaphase, a mechanism that may depend on a p150glued–

 microtubule interaction.

A previous study found that 39% of untreated prophase 

S2 cells contain four or more γ-tubulin–staining MTOCs, and 

live imaging of S2 cells expressing GFP-tubulin  revealed a 

clustering and fusion mechanism to eliminate extra MTOCs 

after nuclear envelope breakdown (Goshima and Vale, 2003). 

Consequently, failure to cluster and fuse extra MTOCs resulted 

in multipolar spindle formation. Furthermore, Quintyne et al. 

(2005) identifi ed cytoplasmic dynein as a critical component 

of a centrosome-clustering mechanism present in human 

 tissue culture cells that, when mislocalized in certain tumor 

cells, results in multipolar spindle formation. Consistent 

with this hypothesis, we found that cells expressing EGFP–

∆N-p150glued exhibited a dramatic increase in the number 

of free MTOCs surrounding mitotic spindles (Fig. 8, A and B3). 

Thus, the microtubule-binding domain of p150glued is re-

quired to suppress multipolar spindle formation, probably 

by coalescing extra MTOCs that are frequent in many early 

mitotic S2 cells.

Figure 6. Deletion of the microtubule-binding domain of p150glued has no 
effect on the mean run length or relative number of runs of both peroxi-
somes and dFMRP particles. (A) Mean run length; (B) relative number of 
runs. Note that the relative number of runs in cells having no p150glued ex-
pression dropped more than fi vefold compared with the cells expressing 
mRFP-p150glued or mRFP–∆N-p150glued. The mean run length is calculated 
from the trajectory length of moving particles in the process without 
stopping or changing directions. The total number of particles analyzed 
for each treatment group in this experiment was 83, 147, 256, 268, and 
113 for peroxisomes and 172, 142, 170, 337, and 111 for dFMR 
 (numbers correspond to bars on the chart from left to right). Error bars 
 represent SD.
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Discussion
Adaptors between motors and cargo are a diverse group of cel-

lular proteins, but the most universal of them is the dynactin 

complex. An unusual property of this complex is its ability to 

bind microtubules independently of motor proteins. In this 

study, we directly addressed the functional signifi cance of the 

microtubule binding of dynactin by replacing endogenous 

p150glued with a p150glued mutant lacking residues 1–200, which 

was thus unable to bind microtubules (∆N-p150glued). We 

 selected stable cell lines expressing mRFP-tagged p150glued or 

∆N-p150glued and depleted endogenous p150glued by using RNAi. 

This approach allowed us to study the contribution of the micro-

tubule-binding domain of p150glued to cargo transport and the 

organization of mitotic microtubule arrays. We demonstrated 

that the movement of two types of cargo, membranous organ-

elles (peroxisomes, endosomes, and lysosomes) and mRNP 

complexes (dFMRP particles), is absolutely dependent on the 

dynactin complex, but, to our surprise, ∆N-p150glued, which 

lacks the ability to bind microtubules, was fully functional in 

supporting microtubule-dependent transport in vivo. All of the 

measurements were performed in the cells treated with cytocha-

lasin D to eliminate actin-based motility.

It should be stressed that this study showed for the fi rst 

time that dynactin is directly involved in RNA transport in so-

matic cells. Although a previous study suggested that dynactin 

is required for the proper localization of morphogen RNA in 

Drosophila oocytes (Januschke et al., 2002), direct evidence has 

been lacking. On the other hand, we observed a profound effect 

of truncation of the microtubule-binding domain on mitotic 

spindle structure, including the generation of multipolar spin-

dles and free MTOCs. Although dynactin plays an important 

role in organizing the interphase radial microtubule arrays at the 

centrosome in mammalian cultured cells (Quintyne et al., 1999; 

Askham et al., 2002; Quintyne and Schroer, 2002), we observed 

no change in the pattern of interphase microtubules in S2 cells 

expressing ∆N-p150glued. This was expected given that S2 cells 

lack functional centrosomes capable of nucleating and organizing 

microtubules during interphase. Instead, microtubules  nucleate 

Figure 7. Step sizes of cytoplasmic dynein– or kinesin-
 transporting peroxisomes are not altered by truncation of the 
 microtubule-binding domain of p150glued. Histograms of the 
distribution of the individual steps of kinesin and dynein show 
that the mean step sizes are 	8 nm in both wild-type (mRFP-
p150glued) and mutant (mRFP–∆N-p150glued) cells.

Figure 8. Replacement of p150glued with EGFP–∆N-p150glued results in the 
accumulation of multipolar spindles and nonspindle-associated MTOCs 
during cell division. (A) Percentage of multipolar spindles and free MTOCs 
present in a mean of 200 mitotic cells per RNAi treatment. Error bars rep-
resent SD. (B) Mitotic cells stained for microtubules. (B1) Normal metaphase 
in the control cell. (B2 and B3) Multipolar spindles (B2) and free MTOCs 
(B3) in cells expressing EGFP–∆N-p150glued. Free MTOCs are labeled with 
arrowheads, and spindle poles are marked with arrows. Bar, 5 μm.
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at random in the cytoplasm and do not form a focused radial 

 array (unpublished data).

It is worth noting that one of the p150glued isoforms in 

the mammalian brain is an alternatively spliced version 

called p135, which naturally lacks the microtubule-binding 

motif (Tokito et al., 1996). As neurons are terminally diff-

erentiated cells that do not divide or contain radial arrays of 

interphase micro tubules, they do not need dynactin activity 

to facilitate microtubule  organization. On the other hand, 

the results presented here  suggest that this alternatively 

spliced isoform is as effective as full-length p150glued in 

 supporting transport.

Examination of the database shows that there is a 

second p150 gene in Drosophila (gi|23093121|gb|AAF49148.2|; 

Goldstein and Gunawardena, 2000). We performed additional 

experiments addressing whether the existence of this second 

gene rescues and compensates for the loss of the normal p150glued 

protein. RNAi against this gene did not change organelle move-

ment either in the wild-type or mutant background. On the other 

hand, RNAi against conventional p150glued alone completely 

blocked movement. We assume that this second gene is not 

 important for organelle transport or is not even expressed in 

S2 cells.

It has been reported recently that a G59S substitution in 

the microtubule-binding domain of p150glued results in decreased 

microtubule binding and enhanced dynein and dynactin aggre-

gation (Levy et al., 2006). It is known that this substitution re-

sults in a slowly progressing motor neuron disease in humans 

(Puls et al., 2003), suggesting the impairment of dynactin  functions. 

Although this mutation could directly affect organelle transport 

by altering the microtubule-binding affi nity of the dynactin 

complex, it is also possible that it could inactivate dynactin by 

forming aggregates that recruit both wild-type and mutant 

 dynactin, resulting in a decrease in the level of functional 

 dynein–dynactin complex available for cargo transport.

Three possible functions have been proposed for the 

 microtubule-binding domain of p150glued. First, King et al. (2000) 

demonstrated in vitro that the dynactin complex increases the 

processive movement of beads coated with cytoplasmic dynein. 

This idea is further supported by two recent studies (Culver-

Hanlon et al., 2006; Kobayashi et al., 2006) showing that 

p150glued is capable of one-dimensional diffusion along micro-

tubules and, thus, maintains contact with microtubules. There-

fore, enhanced processivity in vitro can be achieved by the 

p150glued–microtubule interaction. In contrast, the results shown 

here indicate that the effect of dynactin on motor processivity is 

suffi ciently minor, and it is not detected by tracking cargoes 

in vivo even with the 1-nm, 1-ms accuracy of the FIONA tech-

nique (Yildiz and Selvin, 2005). There are several potential ex-

planations of an apparent discrepancy between our results and 

the previous in vitro studies (King and Schroer, 2000; King 

et al., 2003). First, it is not known whether the four types of 

cargo studied here are transported by single or multiple motors. 

If cargo were transported by more than one motor, dynactin 

would not contribute to the processivity. Furthermore, several 

redundant mechanisms may be involved in the regulation of 

dynein processivity in cells, and, thus, the effects of truncation 

of the microtubule-binding domain might not be immediately 

obvious if other putative mechanisms are in action. Second, 

previous studies (King and Schroer, 2000; Culver-Hanlon 

et al., 2006) were performed in vitro not with the native dynein–

dynactin complex but with two proteins bound separately to the 

surface of carboxylated beads. It is unclear whether all of the 

properties of the dynein–dynactin complex on the surface of or-

ganelles can be faithfully recapitulated by the binding of puri-

fi ed proteins with highly charged beads. Finally, in vitro assays 

were performed under no load condition, and it is possible that 

the load applied to organelles in the cytoplasm affects the pro-

cessivity of transport.

The second potential role of the microtubule-binding 

 domain of p150glued was proposed by Vaughan et al. (2002; 

Vaughan, 2005a). These authors suggested that p150glued teth-

ering to the plus ends of growing microtubules facilitates the 

loading of retrograde cargo on the plus ends of microtubules. 

This function would require the interaction of dynactin with 

microtubules. Obviously, the truncated form of p150glued, ∆N-

p150glued, could not load cargo onto microtubules. However, at 

least in the case of the two types of cargo we examined here, 

such a search and capture mechanism is not a major contributor 

to the retrograde transport by dynein because the truncation 

of microtubule binding from dynactin had no effect on cargo 

transport. In agreement with these results, Watson and  Stephens 

(2006) showed that depletion of either EB1 or CLIP-170 

 resulted in a loss of p150glued from microtubule plus ends but 

had no effect on the traffi cking of membrane organelles. It 

is likely that a combination of microtubule dynamics and a 

Brownian motion of cargo is suffi cient for making initial con-

tact and loading of cargo onto microtubules. Thus, microtubule 

plus end targeting of p150glued is not required for cargo loading. 

Still, it would be interesting to examine the effect of ∆N-

p150glued on cargo transport in the cellular regions containing 

single microtubules instead of cytochalasin D–induced micro-

tubule bundles to detect the kinetic advantages of search and 

capture if they existed.

Finally, the microtubule-binding domain of p150glued 

 interacts directly with the C terminus of CLIP-170 (Lansbergen 

et al., 2004) or EB1 (Askham et al., 2002; Hayashi et al., 2005). 

Dynactin has potential roles in regulating microtubule dynamics 

at the plus end complex and is required for microtubule anchoring 

and focusing in a cell cycle–dependent manner. It is likely 

that p150glued links proteins at the cell cortex with cytoplasmic 

dynein or tip-binding proteins to pull and focus microtubules, 

thus preventing the formation of multipolar spindles or free 

MTOCs during cell division. We observed a dramatic effect 

of truncation of the microtubule-binding domain on mitotic 

spindle structure, stressing the essential role of the N-terminal 

microtubule-binding domain of dynactin in microtubule 

 organization. This supports the role of centrosomal dynactin for 

the microtubule anchoring function proposed by Quintyne et al. 

(1999). Collectively, our data demonstrate that the microtubule-

binding domain of p150glued has a substantial role in spindle 

 microtubule orientation and focusing but is not required for 

long-range movement of cargoes along microtubules by motor 

proteins in vivo.
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Materials and methods
Molecular cloning
The cDNA for Drosophila p150glued (clone AY118377; Open Biosystems) 
and the ∆N-p150glued construct encoding amino acid residues 201–1,280 
were amplifi ed and subcloned into the pAc5.1/V5-HisA vector (Invitrogen). 
The EGFP or mRFP sequence was introduced at the N terminus of p150glued. 
To make His6-tagged p150glued, the sequence of p150glued encoding resi-
dues 1–600 or 200–600 was subcloned into pET28 (a+; Novagen/EMD 
Biosciences). The fi rst coiled-coil domain (CC1; amino acids 232–583) 
of p150glued or full-length p50/dynamitin was fused to mRFP to create 
the dominant-negative constructs mRFP-CC1 and mRFP-p50 in the pMT5.1/
V5-HisA vector.

Cell culture
To select stable cell lines expressing EGFP-SKL (peroxisome targeting 
 signal) and mRFP-p150glued or mRFP–∆N-p150glued, S2 cells were cotrans-
fected with three plasmids: pGG101 encoding EGFP-SKL (a gift from 
G. Goshima, University of California, San Francisco, San Francisco, CA), 
pCoHygro (Invitrogen) as a selection plasmid, and mRFP-p150glued or 
mRFP–∆N-p150glued at a 20:1:20 molar ratio. Transfection was performed 
using Cellfectin reagent (Invitrogen). 40 h after transfection, 300 μg/ml 
hygromycin was added for selection. Selection was performed for 4–5 wk, 
and protein expression was confi rmed by fl uorescence microscopy and 
 immunoblotting. Lysosomes in S2 cells were labeled by staining with 100 nM 
Lysotracker red DND-99 (Invitrogen) for 10 min. For endosome labeling, 
S2 cells in suspension were incubated with 1 mg/ml Texas red dextran 
 (Invitrogen) for 6 h.

Double-stranded RNAi
RNAi treatment was performed as described previously (Ling et al., 2004). 
Templates for in vitro transcription were generated by using the primers 
5′-T A A T A C G A C T C A C T A T A G G G G T A T C G T G G C A A T G G A A T C G -3′ and 
5′-T A A T A C G A C T C A C T A T A G G G G A G T T A T A C A A C A T C A G C A A -3′ to amplify 
the 500 bp from the 3′ UTR of p150glued, and the primers 5′-T A A T A C G A C-
T C -ACTATAGGGA C C A C C T G C A A A G C G A T A T C G -3′ and 5′-T A A T A C G A C-
T C A C T A -TAGGGT T G C A G A T A C T C C G T C A G G A T -3′ were used to amplify 
the 550-bp segment from the C terminus of the p150glued gene.

Antibodies
The recombinant His6-tagged p150glued fusion proteins containing residues 
1–190 or 1,073–1,280 were expressed in Escherichia coli and purifi ed 
by Talon affi nity chromatography. Rabbit immunization was performed by 
Proteintech Group, Inc. For Western analysis, a 1:5,000 dilution of anti-
serum was used. An antibody against DHC was provided by J. Scholey 
(University of California, Davis, Davis, CA), and HD antibody against KHC 
was provided by A. Minin (Institute of Protein Research, Russian Academy 
of Sciences, Moscow, Russia). An antibody against p50 was a gift from 
R. Warrior (University of California, Irvine, Irvine, CA; Duncan and Warrior, 
2002), and Arp1 antibody was provided by L. Goldstein (University of 
California, San Diego, La Jolla, CA). SUK4 and 9E10.2 (anti-KHC and 
anti-myc antibody, respectively) were obtained from the Developmental 
Studies Hybridoma Bank.

Immunofl uorescent staining
Cells were incubated in extraction buffer containing 1% Triton X-100 
in PBS for 2 min and fi xed with 1% glutaraldehyde or cold methanol for 
10 min. For microtubule or EGFP staining, we used monoclonal antibody 
DM1-α against α-tubulin (1:2,000) and polyclonal affi nity-purifi ed EGFP 
antibody (1:200), respectively. For analysis of the mitotic phenotype, cells 
were immunostained for both microtubules and mitosis-specifi c phosphory-
lated histone H3.

Immunoprecipitation
Approximately 108 cells were used for the immunoprecipitation assay. Cell 
pellets were resuspended at a ratio of 1:2 (wt/vol) in a homogenization 
buffer (50 mM Tris, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 2 mM MgCl2, 1% 
NP-40, 5% glycerol, 1 mM DTT, 1 mM PMSF, and 10 μg/ml each of chy-
mostatin, leupeptin, and pepstatin) and homogenized by using a 25-gauge 
syringe needle. Cell extracts were centrifuged at 15,000 g for 10 min 
and then at 200,000 g for 15 min. The resulting supernatants were 
 incubated with antibodies (EGFP or preimmune rabbit IgG) prebound to 
protein A–Sepharose beads (GE Healthcare) for 2 h at 4°C. The beads 
were washed, and proteins were eluted in SDS sample buffer and ana-
lyzed by Western blotting.

Microscopy and image analysis
Images of live cells were acquired as described previously (Ling et al., 
2004) using a microscope system (U2000 Perfect Focus; Nikon). A 100-W 
halogen bulb was used for fl uorescence excitation to minimize photo-
bleaching and phototoxicity. Images were captured every 1 s for 2 min for 
EGFP-tagged peroxisomes, endosomes, and lysosomes and every 2 s for 
2 min for EGFP-tagged dFMRP. The movement of particles was analyzed by 
using the automatic tracking software Diatrack (version 3.01; Semasopht). 
The threshold speed was 0.2 μm/s for peroxisomes, endosomes, and lyso-
somes or 0.15 μm/s for dFMRP particles, and movements slower than this 
threshold were excluded from the calculations. We measured all runs lon-
ger than 2 μm for peroxisomes, longer than 1.6 μm for endosomes and 
 lysosomes, and longer than 1 μm for dFMRP particles. The number of runs 
above the threshold was divided by the mean number of particles in the 
analyzed areas of the image. This value was defi ned as the relative num-
ber of runs. At least three independent experiments were analyzed for 
each condition, and fi ve to six cells in each experiment were randomly 
chosen for recording and analysis.

Sucrose density gradient centrifugation
Approximately 3 × 107 cells were pelleted, and cell extract was prepared 
as described in the Immunoprecipitation section. 	500 μl of the clarifi ed 
supernatant was layered on top of 12 ml of 5–20% linear sucrose density 
gradient prepared in the homogenization buffer without NP-40. After cen-
trifugation at 150,000 g for 18 h in a SW40 rotor (Beckman Coulter), 
0.5-ml fractions were collected and analyzed by Western blotting using 
antibodies to EGFP, p150glued, DHC, or KHC.

Microtubule pelleting assay
Microtubules were prepared by polymerization of bovine brain tubulin in 
the presence of 1 mM GTP and 20 μM taxol at 37°C for 1 h. The polymer-
ized microtubules were mixed with recombinant proteins and layered on 
top of a 30% glycerol cushion in BRB80 buffer (80 mM Pipes, pH 6.9, 
1 mM EGTA, and 1 mM MgCl2) with 10 μM taxol. Microtubules were 
pelleted by centrifugation at 150,000 g for 40 min in a SW55 rotor 
(Beckman Coulter). The pellets were washed and resuspended in 30 μl SDS 
sample buffer.

Online supplemental material
Fig. S1 shows that the depletion of cytoplasmic dynein or kinesin stops 
peroxisome movement. Fig. S2 shows that the depletion of one motor 
 (kinesin or dynein) does not deplete the other motor of opposite polarity. 
Fig. S3 shows that kinesin can interact with dynein but not with  dynactin. 
Fig. S4 A shows that truncation of the microtubule-binding domain of 
p150glued has no effect on the mean velocity of peroxisome or dFMR 
particles. Fig. S4 B shows that truncation of the microtubule-binding 
domain of p150glued has no effect on mean run length, relative  number 
of runs, and mean velocity of endosomes or lysosomes. Fig. S4 C 
demonstrates that the steady-state distribution of organelles in S2 cells 
not treated with cytochalasin D is not affected by the expression
of mRFP-p150glued or mRFP–∆N-p150 glued. Table S1 shows absolute 
and relative numbers of long runs in cells treated with RNAi against 
motors or dynactin components, cells overexpressing dynactin sub-
units, and cells expressing EGFP-p150glued or EGFP–∆N-p150glued. 
Videos 1 and 2 demonstrate that EGFP-p150glued decorates tips and the 
length of microtubules. Video 3 demonstrates that EGFP–∆N-p150glued 
is distributed randomly in the cytoplasm. Videos 4–6 show bidirectional 
movements of peroxisomes in the processes of S2 cells expressing 
 endogenous p150glued, mRFP-p150glued, and mRFP–∆N-p150glued, 
 respectively. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200608128/DC1.

We would like to thank Sarah Rice, Greg Smith, Shin-ichiro Kojima, and 
Shabeen Ally for critical reading of the manuscript and discussion of this work 
and thank Ron Vale for the suggestion to treat S2 cells with cytochalasin D. 
Drs. Roger Tsien, Jon Scholey, Alexander Minin, Gohta Goshima, Rahul Warrior, 
and Lawrence Goldstein generously shared published and unpublished re-
agents for this work.

Financial support was provided by National Institutes of Health grant 
GM-52111 (to V.I. Gelfand). S.-C. Ling was partially supported by a fellow-
ship from the Fragile X Research Foundation.

Submitted: 21 August 2006
Accepted: 24 January 2007



JCB • VOLUME 176 • NUMBER 5 • 2007 650

References
Akhmanova, A., and C.C. Hoogenraad. 2005. Microtubule plus-end-tracking 

proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17:47–54.

Askham, J.M., K.T. Vaughan, H.V. Goodson, and E.E. Morrison. 2002. Evidence 
that an interaction between EB1 and p150(Glued) is required for the for-
mation and maintenance of a radial microtubule array anchored at the 
centrosome. Mol. Biol. Cell. 13:3627–3645.

Blangy, A., L. Arnaud, and E.A. Nigg. 1997. Phosphorylation by p34cdc2 
protein kinase regulates binding of the kinesin-related motor HsEg5 to 
the dynactin subunit p150. J. Biol. Chem. 272:19418–19424.

Buffi n, E., C. Lefebvre, J. Huang, M.E. Gagou, and R.E. Karess. 2005. 
Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. 
Curr. Biol. 15:856–861.

Burkhardt, J.K., C.J. Echeverri, T. Nilsson, and R.B. Vallee. 1997. Overexpression 
of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-
dependent maintenance of membrane organelle distribution. J. Cell Biol. 
139:469–484.

Campbell, R.E., O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias, 
and R.Y. Tsien. 2002. A monomeric red fl uorescent protein. Proc. Natl. 
Acad. Sci. USA. 99:7877–7882.

Culver-Hanlon, T.L., S.A. Lex, A.D. Stephens, N.J. Quintyne, and S.J. King. 
2006. A microtubule-binding domain in dynactin increases dynein pro-
cessivity by skating along microtubules. Nat. Cell Biol. 8:264–270.

Deacon, S.W., A.S. Serpinskaya, P.S. Vaughan, M. Lopez Fanarraga, I. Vernos, 
K.T. Vaughan, and V.I. Gelfand. 2003. Dynactin is required for bidirec-
tional organelle transport. J. Cell Biol. 160:297–301.

Duncan, J.E., and R. Warrior. 2002. The cytoplasmic dynein and kinesin motors 
have interdependent roles in patterning the Drosophila oocyte. Curr. Biol. 
12:1982–1991.

Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. Molecular 
characterization of the 50-kD subunit of dynactin reveals function for 
the complex in chromosome alignment and spindle organization during 
 mitosis. J. Cell Biol. 132:617–633.

Fukuda, M., T.S. Kuroda, and K. Mikoshiba. 2002. Slac2-a/melanophilin, 
the missing link between Rab27 and myosin Va: implications of a 
 tripartite protein complex for melanosome transport. J. Biol. Chem. 
277:12432–12436.

Gill, S.R., T.A. Schroer, I. Szilak, E.R. Steuer, M.P. Sheetz, and D.W. Cleveland. 
1991. Dynactin, a conserved, ubiquitously expressed component of an 
activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 
115:1639–1650.

Goldstein, L.S., and S. Gunawardena. 2000. Flying through the Drosophila cyto-
skeletal genome. J. Cell Biol. 150:F63–F68.

Goshima, G., and R.D. Vale. 2003. The roles of microtubule-based motor pro-
teins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell 
line. J. Cell Biol. 162:1003–1016.

Gross, S.P., M.A. Welte, S.M. Block, and E.F. Wieschaus. 2002. Coordination of 
opposite-polarity microtubule motors. J. Cell Biol. 156:715–724.

Hayashi, I., A. Wilde, T.K. Mal, and M. Ikura. 2005. Structural basis for the 
activation of microtubule assembly by the EB1 and p150Glued complex. 
Mol. Cell. 19:449–460.

Holleran, E.A., S. Karki, and E.L. Holzbaur. 1998. The role of the dynactin com-
plex in intracellular motility. Int. Rev. Cytol. 182:69–109.

Januschke, J., L. Gervais, S. Dass, J.A. Kaltschmidt, H. Lopez-Schier, D. St 
Johnston, A.H. Brand, S. Roth, and A. Guichet. 2002. Polar transport in 
the Drosophila oocyte requires dynein and kinesin I cooperation. Curr. 
Biol. 12:1971–1981.

Kamal, A., and L.S. Goldstein. 2002. Principles of cargo attachment to cyto-
plasmic motor proteins. Curr. Opin. Cell Biol. 14:63–68.

Karcher, R.L., S.W. Deacon, and V.I. Gelfand. 2002. Motor-cargo interactions: 
the key to transport specifi city. Trends Cell Biol. 12:21–27.

Karki, S., and E.L. Holzbaur. 1995. Affi nity chromatography demonstrates 
a  direct binding between cytoplasmic dynein and the dynactin complex. 
J. Biol. Chem. 270:28806–28811.

Karki, S., and E.L. Holzbaur. 1999. Cytoplasmic dynein and dynactin in cell 
division and intracellular transport. Curr. Opin. Cell Biol. 11:45–53.

King, S.J., and T.A. Schroer. 2000. Dynactin increases the processivity of the 
cytoplasmic dynein motor. Nat. Cell Biol. 2:20–24.

King, S.J., C.L. Brown, K.C. Maier, N.J. Quintyne, and T.A. Schroer. 2003. 
Analysis of the dynein-dynactin interaction in vitro and in vivo. 
Mol. Biol. Cell. 14:5089–5097.

Kobayashi, T., K. Shiroguchi, M. Edamatsu, and Y.Y. Toyoshima. 2006. 
Microtubule-binding properties of dynactin p150 expedient for dynein 
motility. Biochem. Biophys. Res. Commun. 340:23–28.

Kural, C., H. Kim, S. Syed, G. Goshima, V.I. Gelfand, and P.R. Selvin. 2005. 
Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordi-
nated movement? Science. 308:1469–1472.

Lansbergen, G., Y. Komarova, M. Modesti, C. Wyman, C.C. Hoogenraad, 
H.V. Goodson, R.P. Lemaitre, D.N. Drechsel, E. van Munster, T.W. 
Gadella Jr., et al. 2004. Conformational changes in CLIP-170 regu-
late its binding to microtubules and dynactin localization. J. Cell Biol. 
166:1003–1014.

Levy, J.R., C.J. Sumner, J.P. Caviston, M.K. Tokito, S. Ranganathan, L.A. Ligon, 
K.E. Wallace, B.H. Lamonte, G.G. Harmison, I. Puls, et al. 2006. A motor 
neuron disease-associated mutation in p150Glued perturbs dynactin 
function and induces protein aggregation. J. Cell Biol. 172:733–745.

Ligon, L.A., S.S. Shelly, M. Tokito, and E.L. Holzbaur. 2003. The microtubule 
plus-end proteins EB1 and dynactin have differential effects on micro-
tubule polymerization. Mol. Biol. Cell. 14:1405–1417.

Ligon, L.A., M. Tokito, J.M. Finklestein, F.E. Grossman, and E.L. Holzbaur. 
2004. A direct interaction between cytoplasmic dynein and kinesin I may 
coordinate motor activity. J. Biol. Chem. 279:19201–19208.

Ling, S.C., P.S. Fahrner, W.T. Greenough, and V.I. Gelfand. 2004. Transport of 
Drosophila fragile X mental retardation protein-containing ribonucleo-
protein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl. Acad. 
Sci. USA. 101:17428–17433.

Mallik, R., and S.P. Gross. 2004. Molecular motors: strategies to get along. 
Curr. Biol. 14:R971–R982.

Martin, M., S.J. Iyadurai, A. Gassman, J.G. Gindhart Jr., T.S. Hays, and W.M. 
Saxton. 1999. Cytoplasmic dynein, the dynactin complex, and kinesin 
are interdependent and essential for fast axonal transport. Mol. Biol. Cell. 
10:3717–3728.

Mimori-Kiyosue, Y., and S. Tsukita. 2003. “Search-and-capture” of micro-
tubules through plus-end-binding proteins (+TIPs). J. Biochem. (Tokyo). 
134:321–326.

Morales-Mulia, S., and J.M. Scholey. 2005. Spindle pole organization in 
Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and 
KLP10A. Mol. Biol. Cell. 16:3176–3186.

Puls, I., C. Jonnakuty, B.H. LaMonte, E.L. Holzbaur, M. Tokito, E. Mann, M.K. 
Floeter, K. Bidus, D. Drayna, S.J. Oh, et al. 2003. Mutant dynactin in 
motor neuron disease. Nat. Genet. 33:455–456.

Quintyne, N.J., and T.A. Schroer. 2002. Distinct cell cycle-dependent roles for 
dynactin and dynein at centrosomes. J. Cell Biol. 159:245–254.

Quintyne, N.J., S.R. Gill, D.M. Eckley, C.L. Crego, D.A. Compton, and T.A. 
Schroer. 1999. Dynactin is required for microtubule anchoring at 
 centrosomes. J. Cell Biol. 147:321–334.

Quintyne, N.J., J.E. Reing, D.R. Hoffelder, S.M. Gollin, and W.S. Saunders. 
2005. Spindle multipolarity is prevented by centrosomal clustering. 
Science. 307:127–129.

Reilein, A., and W.J. Nelson. 2005. APC is a component of an organizing tem-
plate for cortical microtubule networks. Nat. Cell Biol. 7:463–473.

Robinson, J.T., E.J. Wojcik, M.A. Sanders, M. McGrail, and T.S. Hays. 
1999. Cytoplasmic dynein is required for the nuclear attachment and 
migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 
146:597–608.

Schliwa, M., and G. Woehlke. 2003. Molecular motors. Nature. 422:759–765.

Schroer, T.A. 2004. Dynactin. Annu. Rev. Cell Dev. Biol. 20:759–779.

Schroer, T.A., and M.P. Sheetz. 1991. Two activators of microtubule-based 
 vesicle transport. J. Cell Biol. 115:1309–1318.

Sharp, D.J., H.M. Brown, M. Kwon, G.C. Rogers, G. Holland, and J.M. Scholey. 
2000a. Functional coordination of three mitotic motors in Drosophila 
 embryos. Mol. Biol. Cell. 11:241–253.

Sharp, D.J., G.C. Rogers, and J.M. Scholey. 2000b. Cytoplasmic dynein is re-
quired for poleward chromosome movement during mitosis in Drosophila 
embryos. Nat. Cell Biol. 2:922–930.

Tokito, M.K., D.S. Howland, V.M. Lee, and E.L. Holzbaur. 1996. Functionally 
distinct isoforms of dynactin are expressed in human neurons. Mol. Biol. 
Cell. 7:1167–1180.

Vale, R.D. 2003. The molecular motor toolbox for intracellular transport. Cell. 
112:467–480.

Vaughan, K.T. 2005a. Microtubule plus ends, motors, and traffi c of Golgi 
 membranes. Biochim. Biophys. Acta. 1744:316–324.

Vaughan, K.T. 2005b. TIP maker and TIP marker; EB1 as a master controller of 
microtubule plus ends. J. Cell Biol. 171:197–200.

Vaughan, K.T., and R.B. Vallee. 1995. Cytoplasmic dynein binds  dynactin through 
a direct interaction between the intermediate chains and p150Glued. 
J. Cell Biol. 131:1507–1516.

Vaughan, K.T., S.H. Tynan, N.E. Faulkner, C.J. Echeverri, and R.B. Vallee. 1999. 
Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at 
 microtubule distal ends. J. Cell Sci. 112:1437–1447.



DYNACTIN AND ORGANELLE TRANSPORT • KIM ET AL. 651

Vaughan, P.S., P. Miura, M. Henderson, B. Byrne, and K.T. Vaughan. 2002. 
A role for regulated binding of p150(Glued) to microtubule plus ends in 
organelle transport. J. Cell Biol. 158:305–319.

Waterman-Storer, C.M., S. Karki, and E.L. Holzbaur. 1995. The p150Glued 
component of the dynactin complex binds to both microtubules and 
the actin-related protein centractin (Arp-1). Proc. Natl. Acad. Sci. USA. 
92:1634–1638.

Waterman-Storer, C.M., S.B. Karki, S.A. Kuznetsov, J.S. Tabb, D.G. Weiss, 
G.M. Langford, and E.L. Holzbaur. 1997. The interaction between 
 cytoplasmic dynein and dynactin is required for fast axonal transport. 
Proc. Natl. Acad. Sci. USA. 94:12180–12185.

Watson, P., and D.J. Stephens. 2006. Microtubule plus-end loading of 
p150(Glued) is mediated by EB1 and CLIP-170 but is not required 
for intracellular membrane traffi c in mammalian cells. J. Cell Sci. 
119:2758–2767.

Wojcik, E., R. Basto, M. Serr, F. Scaerou, R. Karess, and T. Hays. 2001. 
Kinetochore dynein: its dynamics and role in the transport of the Rough 
deal checkpoint protein. Nat. Cell Biol. 3:1001–1007.

Wu, X.S., K. Rao, H. Zhang, F. Wang, J.R. Sellers, L.E. Matesic, N.G. Copeland, 
N.A. Jenkins, and J.A. Hammer III. 2002. Identifi cation of an organelle 
receptor for myosin-Va. Nat. Cell Biol. 4:271–278.

Yildiz, A., and P.R. Selvin. 2005. Fluorescence imaging with one nanometer 
 accuracy: application to molecular motors. Acc. Chem. Res. 38:574–582.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


