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Abstract: Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond
this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as
genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress
of research on VDR that influences intestinal barriers in health and disease. We searched PubMed
and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and
infection. We summarize the literature and progress reports on VDR regulation of tight junction
distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts
of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease,
and chronic inflammatory lung diseases. We also discuss the limits of current studies and future
directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal
barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of
tight junction proteins and vitamin D/VDR statuses for human diseases.

Keywords: vitamin D; VDR; tight junctions; cancer; COPD; inflammation; infection; microbiome

1. Introduction

The intestinal epithelium cells (IECs) are essential in barrier function, structural func-
tion, and host defense. The tight junctions (TJs) seal the space between adjacent epithelial
cells. TJs are made by a number of proteins, including claudins, occludin, junctional
adhesion molecules (JAM), and tricellulin and cytoplasmic plaque proteins, e.g., zonula
occludens (ZO) proteins. Interestingly, VDR is known to transcriptionally regulate several
genes for TJs, including claudin-2, -5, -12, and -15 in the intestinal epithelial cells [1–4].
VDR deletion in IEC cells leads to decreased protein levels of claudins, such as claudin-2
and -12, which contribute to vitamin D-dependent homeostasis. However, VDR regulation
of some TJ proteins may be vitamin D-independent.

In 2013, we reviewed the roles of vitamin D and VDR in tissue barriers [5]. Back then,
our understanding of VDR in influencing intestinal barriers was limited to its role as a
transcriptional factor and a receptor for vitamin D. We did not have sufficient evidence
on its tissue-, gender-, and time-specificity in regulating barrier function. We did not
sufficiently consider the physiological relevance in vivo and in disease models. We did not
know that the human gut microbiome is determined by the variation of vdr gene [6]. Indeed,
~3% of the mouse and human genomes are regulated directly or indirectly by vitamin D,
suggesting widespread effects of vitamin D/VDR in various disease mechanisms [7–9].
Thus, the traditional model of treating cultured cells with vitamin D3 is now giving way to
models with a more complex mechanism of action.

In the current review, we discuss the progress of research on VDR that influences
intestinal barriers in health and disease. We searched PubMed and Google Scholar using
key words “vitamin D, VDR, tight junctions, cancer, inflammation, and infection”. We
summarize studies related to VDR/TJ distribution, cellular functions, and mechanisms; we
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discuss the role of VDR and barriers in various diseases, e.g., IBD, colon cancer, chronic
obstructive pulmonary disease (COPD), infection, and other diseases, mainly focusing on
the intestinal diseases. We also discuss the limits of current studies and future directions.
New insights into VDR and TJs will allow us to better understand the pathophysiology of
diseases and develop novel strategies for prevention and treatment.

Intestinal TJs for Barrier Functions

The intestinal barriers are provided by several layers: mucus, epithelial cells and
TJs, and the local immune system. The intestinal mucus layer has a primary role in host
protection against mechanical, chemical, and biological injuries. The intestinal epithelium
is the second layer, which serve as a barrier, provide structure, and play a role in host
defense [10–16]. TJs seal the space between adjacent epithelial cells and regulate epithelial
polarity and vectorial movement of solutes and fluids in the intercellular space. The
microbiome contributes to maintaining the integrity of the intestinal epithelium. Bacteria
can induce proliferation of IECs, which is evidenced by lower proliferative IECs in germ-
free (GF) than those in conventional mice [17]. A recent study [18] showed evidence on
microbiota and their product butyrate in regulating expression of actin-binding protein
synaptopodin for intestinal homeostasis. Synaptopodin is localized to the TJs and within
F-actin stress fibers of intestinal epithelial cells. It is critical for barrier integrity and cell
motility. Butyrate regulation of synaptopodin reveals a direct mechanistic link between
microbiota-derived metabolite and intestinal barrier functions.

TJ structural components, which determine epithelial polarization and intestinal
barrier function, can be regulated by homeodomain proteins that control the differentiation
of the intestinal epithelium [19,20]. TJ proteins include claudins, occludin, JAM, and
ZO. Many TJ proteins, such as ZO and occludin, tighten cell structure and maintain a
barrier [21]. Some TJ proteins, such as claudin-2, are considered as “leaky” proteins because
they form paracellular water channels [22] and increased their expression in inflammation
and cancer [23–28]. Mikio Furuse was the first to purify and identify claudins in the
laboratory of the late Shoichiro Tsukita [29]. The name is taken from the Latin word
“claudere,” meaning to close, because it was anticipated that these proteins might constitute
the tight junctional barrier [30]. Occludin, tricellulin, and JAMs genes exist as a limited
number of different isoforms; they are unlikely to account for the diversity of paracellular
permeability characteristics in different epithelia [30]. There are 27 claudin family members
that contribute to tight junctions [31], and not all claudins are the same. Thus, many studies
are on claudins to determine paracellular selectivity. Some claudins have other roles in cell
signaling and differentiation. For example, a recent study reported that claudin-7 controls
intestinal crypt stem cell survival, self-renewal, and epithelial differentiation through
Wnt/β-catenin signaling in mice [32]. claudin-2 and claudin-12 form paracellular Ca2+

channels in human intestinal epithelial cell lines [1].
In a healthy adult intestine, the expression and apical tight junction localization

of zonula occludens 1 (ZO-1) and occludin are unchanging. In contrast, most claudins
are expressed in decreasing or increasing gradients or in more complex patterns along
the longitudinal axis of the intestine and the crypt to villus/surface differentiation axis,
based on the observations in mice [33]. During neonatal development, several claudins
altered in transcript expression as well as changes in localization along the crypt–villus
axis. claudin-19 was only detected at days 1 and 14 in mice [33]. In Figure 1, claudin-2
restricts to the crypt at the basal lateral side of the mouse intestine, whereas claudin-7
localizes in the epithelial cell membrane along the crypt–villus axis, based on our previous
reports [2,27]. From the website Protein Atlas, we can find some claudins related to their
distribution, expression levels in different human organs, disease-related information,
and validated antibodies for research (https://www.proteinatlas.org/ENSG00000184113
-CLDN5, accessed on 2 February 2022).

https://www.proteinatlas.org/ENSG00000184113-CLDN5
https://www.proteinatlas.org/ENSG00000184113-CLDN5
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Figure 1. Location of claudin-2 and claudin-7 in normal mouse colon. (a) Normal claudin-2 distribution in cell membranes 
at the crypt base in the mouse colon (C57BL6/J mice, 6–8 weeks) (left panel: indicated by yellow arrows). (b) Normal 
claudin-7 distribution in cell membrane along crypt–villus axis in the mouse colon (right panel: indicated by yellow ar-
rows) [28]. 

2. Vitamin D/VDR and TJs in Intestinal Homeostasis 
Classically, 1,25-dihydroxy vitamin D (1,25(OH)2D3), the active form of vitamin D, 

plays a key role in calcium homeostasis and in electrolyte and blood pressure regulation 
[34]. VDR mediates most known physiological functions of 1,25(OH)2D3. Once VDR binds 
with 1,25(OH)2D3, VDR heterodimerizes with the retinoid X receptor (RXR) in nuclei, then 
binds to the vitamin D-response element (VDRE) in the promoter of the target gene, thus 
activating gene transcription [35]. VDR target genes include genes for the antimicrobial 
peptide (AMP) cathelicidin precursor (LL-37) [36], β defensin [37], autophagy regulator 
autophagy related 16 Like 1 (ATG16L1) [38], and proliferation regulator Axin1 [39], in 
addition to the genes for claudin-2, -5, -12, and -15 [1–4]. 

VDR is critical in regulating intestinal homeostasis by preventing pathogenic bacte-
rial invasion, inhibiting inflammation, and maintaining barrier functions [36,40–44]. In the 
Protein Atlas (https://www.proteinatlas.org/ENSG00000111424-VDR, uploaded on June 
2018; accessed on February 23, 2022), we can find that the presence of VDR in various 
human and mouse tissues, along with its ability to exert differentiation [45,46], growth, 
and inhibitory [46] and anti-inflammatory actions [43,47–49], sets the stage for therapeutic 
exploitation of VDR ligands for the treatment of various inflammatory conditions. VDR 
deletion in human IEC cells lead to decreased claudin-2 and -12 [1]. However, little is 
known about how the intestinal VDR are involved in TJs and intestinal inflammation and 
infection, especially in in vivo systems. 

In Table 1, we summarize the studies on vitamin D/VDR directly or indirectly influ-
ence the expression and function of cell junction proteins in different tissues from human 
and mouse samples. Although the primary focus of this review is on the intestinal epithe-
lial TJ barrier, the studies in other cell types, including lung, skin, kidney, cornea, brain, 
oral, and urinary bladder, are also included in the current table. 

3. Novel Roles of Vitamin D, VDR, and TJs in Diseases 
Emerging evidence demonstrates that vitamin D/VDR deficiency is a critical factor in 

the pathology of many diseases, such as IBD and colon cancer, among others [45,50–57]. 
In the following section, we discuss the tissue-specific regulatory functions of VDR on TJ 
proteins in different diseases, based on clinical data and laboratory evidence. 

3.1. Vitamin D, VDR, and TJs in Intestinal Inflammation 
Multiple factors (e.g., risk genes, environmental triggers, immunity, and microbi-

ome) contribute to the pathogenesis of IBD [16,58–61]. Susceptibility to IBD is associated 
with polymorphisms in the vdr gene [62–66]. Low vitamin D status and reduced VDR is 

Figure 1. Location of claudin-2 and claudin-7 in normal mouse colon. (a) Normal claudin-2 dis-
tribution in cell membranes at the crypt base in the mouse colon (C57BL6/J mice, 6–8 weeks) (left
panel: indicated by yellow arrows). (b) Normal claudin-7 distribution in cell membrane along
crypt–villus axis in the mouse colon (right panel: indicated by yellow arrows) [28].

2. Vitamin D/VDR and TJs in Intestinal Homeostasis

Classically, 1,25-dihydroxy vitamin D (1,25(OH)2D3), the active form of vitamin D,
plays a key role in calcium homeostasis and in electrolyte and blood pressure regulation [34].
VDR mediates most known physiological functions of 1,25(OH)2D3. Once VDR binds with
1,25(OH)2D3, VDR heterodimerizes with the retinoid X receptor (RXR) in nuclei, then
binds to the vitamin D-response element (VDRE) in the promoter of the target gene, thus
activating gene transcription [35]. VDR target genes include genes for the antimicrobial
peptide (AMP) cathelicidin precursor (LL-37) [36], β defensin [37], autophagy regulator
autophagy related 16 Like 1 (ATG16L1) [38], and proliferation regulator Axin1 [39], in
addition to the genes for claudin-2, -5, -12, and -15 [1–4].

VDR is critical in regulating intestinal homeostasis by preventing pathogenic bacterial
invasion, inhibiting inflammation, and maintaining barrier functions [36,40–44]. In the
Protein Atlas (https://www.proteinatlas.org/ENSG00000111424-VDR, uploaded on June
2018; accessed on 23 February 2022), we can find that the presence of VDR in various
human and mouse tissues, along with its ability to exert differentiation [45,46], growth,
and inhibitory [46] and anti-inflammatory actions [43,47–49], sets the stage for therapeutic
exploitation of VDR ligands for the treatment of various inflammatory conditions. VDR
deletion in human IEC cells lead to decreased claudin-2 and -12 [1]. However, little is
known about how the intestinal VDR are involved in TJs and intestinal inflammation and
infection, especially in in vivo systems.

In Table 1, we summarize the studies on vitamin D/VDR directly or indirectly influ-
ence the expression and function of cell junction proteins in different tissues from human
and mouse samples. Although the primary focus of this review is on the intestinal epithelial
TJ barrier, the studies in other cell types, including lung, skin, kidney, cornea, brain, oral,
and urinary bladder, are also included in the current table.

https://www.proteinatlas.org/ENSG00000111424-VDR
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Table 1. Vitamin D and VDR influence the expression and function of cell junction proteins.

Tissues & Cell Types TJ
Proteins

Cell
Cultures
In Vitro

Experimental Models
In Vivo Conclusions References

Intestine

ZO-1
E-cadherin
β-catenin

T84 The expression of VDR was positively correlated with the expression of ZO-1,
occluding and claudin-5 in T84 cells. [50]

DLD-1

VDR acts as a regulator in the expression of intestinal mucosal barrier proteins under
hypoxia environment. The expressions of VDR, ZO-1, occludin, claudin-1, and
E-cadherin were obviously higher in vitamin D plus hypoxia group than in single
vitamin D treatment group.

[51]

SW480 1,25(OH)2D3 induced the expression of adhesion proteins and promoted the
translocation of nuclear beta-catenin and ZO-1 to the plasma membrane. [52]

Occludin

Cirrhotic rats

Vitamin D3 treatment significantly attenuated bacterial translocation and reduced
intestinal permeability in thioacetamide-induced cirrhotic rats. It upregulated the
expressions of occludin in the small intestine and claudin-1 in the colon of cirrhotic
rats directly independent of intrahepatic status. Vitamin D3 treatment also enriched
Muribaculaceae, Bacteroidales, Allobaculum, Anaerovorax, and Ruminococcaceae.

[53]

SW480-ADH ROCK and MSK inhibition abrogates the induction of 1,25(OH)2D3 24-hydroxylase
(CYP24), E-cadherin, and vinculin, and the repression of cyclin D1 by 1,25(OH)2D3. [54]

Caco-2 VDR−/−

Mice

1,25(OH)2D3 enhanced TJs by increasing junction protein expression and TER and
preserved the structural integrity of TJs in the presence of DSS. VDR knockdown
reduced the junction proteins and TER. 1,25(OH)2D3 can stimulate epithelial cell
migration in vitro.

[43]

Claudins

Caco-2 SKCO15 VDR−/−

VDR∆IEC mice

1,25(OH)2D3 treatment upregulates claudin-2 expression in human epithelium cells.
VDR deletion in intestinal epithelial cells led to significant decreased claudin-2
expression. CLDN2 gene is a direct target of the transcription factor VDR. VDR
enhances claudin-2 promoter activity in a Cdx1 binding, site-dependent manner.

[2]

Enteroids
Caco-2 SKCO15

VDR−/−

Mice
Salmonella- or DSS
colitis model

In inflamed intestines of Salmonella- or DSS-induced colitis model, a lack of VDR
regulation led to a robust increase of claudin-2 at the mRNA and protein levels
post-infection. In inflamed intestines of ulcerative colitis patients, VDR expression
was low and claudin-2 was enhanced. In inflamed VDR−/− cells, 1,25(OH)2D3
enhanced claudin-2 promoter activity through the binding sites of NF-κB and STAT.

[27]

SKCO15 O-VDR VDR∆IEC-Mice

Reduced claudin-15 was significantly correlated with decreased VDR in human IBD.
O-VDR mice showed decreased susceptibility to chemically and bacterially induced
colitis and marked increased claudin-15 expression in the colon. Correspondingly,
colonic claudin-15 was reduced in VDR∆IEC mice, which were susceptible to colitis.
Overexpression of intestinal epithelial VDR and vitamin D treatment resulted in
significantly increased claudin-15. ChIP assays identified claudin-15 gene as a direct
target of VDR.

[3]
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Table 1. Cont.

Tissues & Cell Types TJ
Proteins

Cell
Cultures
In Vitro

Experimental Models
In Vivo Conclusions References

Human Colonoids
SKCO15

VDR−/−

VDR∆IEC-mice

Colonic VDR expression was low and significantly correlated with a reduction in
claudin-5 in human CRC patients. Lack of VDR and a reduction of claudin-5 are
associated with an increased number of tumors in the VDR−/− and VDR∆IEC mice.
CHIP assay identified CLDN-5 as a downstream target of the VDR signaling pathway.

[4]

Human tissue microarr-ays
Vitamin D receptor (VDR) enhanced claudin-2 expression in colon and bile salt
receptors VDR and Takeda G-protein coupled receptor 5 (TGR5) were highly
expressed in esophageal adenocarcinoma and pre-cancerous lesions.

[23]

1,25(OH)2D3 induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern
bone mineral remodeling; TRPV6, CaBP(9k), and claudin-2 to promote intestinal
calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and
phosphate reabsorption.

[55]

SW480-ADH

1,25(OH)2D3 activates the JMJD3 gene promoter and increases JMJD3 RNA in human
cancer cells. JMJD3 knockdown or expression of an inactive mutant JMJD3 fragment
decreased the induction by 1,25(OH)2D3 of several target genes and of an epithelial
adhesive phenotype. It downregulated E-cadherin, claudin-1, and claudin-7.

[56]

calbindin-D9k−/−

mutant mice

1,25(OH)2D3 downregulates cadherin-17 and upregulates claudin-2 and claudin-12 in
the intestine, suggesting that 1,25(OH)2D3 can route calcium through the paracellular
path by regulating the epithelial cell junction proteins.

[57]

Caco-2 VDR−/− mice
Claudin-2 and/or claudin-12-based TJs form paracellular Ca(2+) channels in intestinal
epithelia. This study highlights a vitamin D-dependent mechanism in calcium
homeostasis.

[1]

Barrier and
mucosal immunity

Rat
intestine

The most strongly affected gene in intestine was CYP24 with 97-fold increase at 6 h
post-1,25(OH)2D3 treatment. Intestinal calcium absorption genes: TRPV5, TRPV6,
calbindin D(9k), and Ca(2+) dependent ATPase all were upregulated in response to
1,25(OH)2D3, However, a 1,25-(OH)2D3 suppression of several intra- and intercellular
matrix modeling proteins, such as sodium/potassium ATPase, claudin-3, aquaporin
8, cadherin 17, and RhoA, suggesting a vitamin D regulation of TJ permeability and
paracellular calcium transport. Expression of several other genes related to the
immune system and angiogenesis was changed in response to 1,25(OH)2D3.

[58]

Caco-2 C57BL/6 mice

1,25(OH)2D3 pre-treatment ameliorated the ethanol-induced barrier dysfunction, TJ
disruption, phosphorylation level of MLC, and generation of ROS, compared with
ethanol-exposed monolayers. Mice fed with vitamin D-sufficient diet had a higher
plasma level of 25(OH)D3 and were more resistant to ethanol-induced acute intestinal
barrier injury compared with the vitamin D-deficient group.

[59]
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Table 1. Cont.

Tissues & Cell Types TJ
Proteins

Cell
Cultures
In Vitro

Experimental Models
In Vivo Conclusions References

VDR∆IEC

VDR∆CEC

Mice
TNBS- colitis model

Gut epithelial VDR deletion aggravates epithelial cell apoptosis, resulting in mucosal
barrier permeability increases. [60]

Caco-2 DSS-colitis model 1,25(OH)2D3 plays a protective role in mucosal barrier homeostasis by maintaining
the integrity of junction complexes and in healing capacity of the colon epithelium. [61]

Lung

E-cadherin
β-catenin

A459
Vitamin D pre-treatment reduced TGF-β and Wnt/β-catenin signaling by increasing
p-VDR, protected from E-cadherin degradation and led to the regression of EMT
(epithelial–mesenchymal transition)-mediated myofibroblast differentiation.

[62]

16HBE

Vitamin D is able to counteract the cigarette smoke extract-induced bronchial
epithelial barrier disruption by TER (transepithelial electrical resistance) reduction
inhibition, permeability increase, ERK phosphorylation increase, calpain-1 expression
increase, and distribution anomalies and the cleavage of E-cadherin and β-catenin.

[63]

ZO-1
Occludin

VDR−/−

WTMice

Vitamin D supplementation alleviated LPS-induced lung injury and preserved
alveolar barrier function through maintenance of the pulmonary barrier by inducing
expression of occludin and ZO-1 in whole lung homogenates.

[64]

Claudins
VDR−/−

WT
Mice

VDR−/− mice showed significantly decreased ZO-1, occludin, claudin-1, claudin-2,
claudin-4, claudin-10, β-catenin, and VE-cadherin expression in the lungs tissue
compared with WT mice.

[65]

Kidney

ZO-1 Rat Rat treated with 1,25(OH)2D3 is able to abrogate podocytes injury, detected as desmin
expression and loss of nephrin and ZO-1. [66]

Claudins HEK 293
OK ICR mice

In kidney, 1,25(OH)2 VitD transcriptionally inhibits claudin-16 expression by a
mechanism sensitive to CaSR and Mg2+. This renal effect of 1,25(OH)2 vitamin D may
serve as an adaptive response to the 1,25(OH)2 vitamin D-induced increase in
intestinal Mg2+ absorption.

[67]

Cornea ZO-1
Occludin

VDR−/−

WT
Mice

VDR−/− mice showed the decreased expression of ZO-1 and occludin, and changed
ZO-distribution on corneas compared with WT mice.

[68]

Corneal epithelium Mouse, Rabbit, Human
Vitamin D enhances corneal epithelial barrier function. Cells showed increased TER,
decreased IP, and increased occludin levels when cultured with 25(OH)D3
and 1,25(OH)2D3.

[69]
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Table 1. Cont.

Tissues & Cell Types TJ
Proteins

Cell
Cultures
In Vitro

Experimental Models
In Vivo Conclusions References

Skin ZO-1
Claudins

Human
Psoriatic and Normal Skin

Psoriatic skin reduced VDR, ZO-1, and claudin-1 expression compared to normal
skin, and showed a significant correlation of downregulated VDR expression to
claudin-1 and ZO-1.

[70]

Brain
ZO-1
Occludin
Claudins

End.3

Following hypoxic injury, 1,25(OH)2D3 treatment prevented decreased barrier
function, and expression of zonula occludin-1, claudin-5, and occludin. VDR
mediated the protective effect of 1,25(OH)2D3 against ischemic injury-induced
blood–brain barrier dysfunction in cerebral endothelial cells.

[71]

Oral
ZO-1
E-cadherin
β-catenin

HOK-16B

Vitamin D reinforces E-cadherin junctions by downregulating NF-κB signaling. In
addition, vitamin D averts TNF-α-induced downregulation of the development of
E-cadherin junctions in HGKs by decreasing the production of MMP-9, which was
upregulated by TNF-α.

[72]

Urinary bladder Occludin
Claudin-14

Mouse,
Human

During E. coli infection, vitamin D induced occludin and claudin-14 in mature
superficial umbrella cells of the urinary bladder. Vitamin D increased cell–cell
adhesion, thus consolidating the epithelial integrity during infection.

[73]
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3. Novel Roles of Vitamin D, VDR, and TJs in Diseases

Emerging evidence demonstrates that vitamin D/VDR deficiency is a critical factor in
the pathology of many diseases, such as IBD and colon cancer, among others [45,74–81].
In the following section, we discuss the tissue-specific regulatory functions of VDR on TJ
proteins in different diseases, based on clinical data and laboratory evidence.

3.1. Vitamin D, VDR, and TJs in Intestinal Inflammation

Multiple factors (e.g., risk genes, environmental triggers, immunity, and microbiome)
contribute to the pathogenesis of IBD [16,82–85]. Susceptibility to IBD is associated with
polymorphisms in the vdr gene [86–90]. Low vitamin D status and reduced VDR is ob-
served in patients with IBD [91–94]. Vitamin D influences the course and severity of
human IBD [92]. Vitamin D/VDR appears to be an important immunological regulator of
IBD [94,95]. In experimental models, VDR knockout (KO) mice spontaneously developed
colitis [96–101] and VDR/IL-10 double KO mice developed severe IBD [102]. Our studies
further demonstrated that mice with conditional deletion of intestinal epithelial VDR are
susceptible to colitis, due to dysbiosis, dysfunction of Paneth cells, dysregulated autophagy,
and disrupted TJs [27,38].

Luminal stimuli and epithelial cell dysfunction are known to contribute to IBD patho-
genesis and progression [103,104]. Defective epithelial barrier function has been implicated
in IBD and can predict relapse during clinical remission. Increased permeability is also
present in a subset of unaffected first-degree relatives of patients with Crohn’s disease [105],
a type of IBD [104]. Claudin-2 forms a paracellular water channel and thus mediates
paracellular water transport in leaky epithelia [22,33,106–108]. Changes in the expression
and distribution of claudin-2, -5, and -8 lead to discontinuous TJs and barrier dysfunction
in active CD [26,106]. Loss-of-function mutations in protein tyrosine phosphatase nonre-
ceptor type 2 [109] increase the risk of IBD and celiac disease. Interestingly, T-cell protein
tyrosine phosphatase (TCPTP) protects against intestinal barrier dysfunction induced by
the inflammatory cytokine IFN-gamma. The mechanisms are that it maintained localization
of ZO-1 and occludin at apical tight junctions and restricted both expression and insertion
of the cation pore-forming transmembrane protein, claudin-2, at TJs through upregulation
of matriptase, the inhibitory cysteine protease, in experimental mouse models [109].

Intestinal epithelial VDR deletion led to decreased claudin-2 at both mRNA and
protein levels in mice [2]. Previous studies used the whole VDR−/− mouse model, which
is known to have problems in various organs. To determine the role of intestinal epithelial
VDR and mechanisms by which VDR regulates claudin-2, intestinal epithelial-specific VDR
knockout VDR∆IEC mice were used. It was demonstrated that claudin-2 is transcriptionally
regulated by VDR in the healthy intestine; however, claudin-2 is hyper regulated through
inflammatory signaling in colitis with reduced intestinal epithelial VDR [2,27].

Claudin-15 is significantly lower in patients with IBD, compared to the health con-
trols [3,110]. VDR conditional knockout VDR∆IEC or overexpressing mouse models, cul-
tured human cell lines, and organoids were used to investigate the mechanisms of altered
claudin-15 in intestinal inflammation [3]. Overexpression of intestinal epithelial VDR
resulted in significantly increased claudin-15 and decreased susceptibility to chemically
and bacterially induced colitis. Colonic claudin-15 was reduced in VDR∆IEC mice, which
were susceptible to colitis. Direct binding of VDR to the claudin-15 promoter was identified.
Abnormal gut barrier function may serve as a biomarker for the risk of IBD onset [111].
This study provides an explanation of reduced claudin-15 and VDR observed in the human
IBD and deeper understanding of mechanisms by which tissue-specific VDR regulating
barrier functions in the intestine.

3.2. Disrupted Intestinal Barrier in Colorectal Cancer (CRC)

The disruption of TJs is a common manifestation of CRC. Multiple factors, including
host genetic background, immunity, environment, and microbiome contribute to the de-
velopment of colon cancer [81,112,113]. At baseline, obesity, history of a sessile-serrated
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adenoma, and a family history of CRC were associated with claudin-1, occludin, and mucin-
12 (MUC12) [114]. Mandle et al. investigated the effects of supplemental calcium (1200 mg,
daily) and/or vitamin D3 (1000 IU daily) on intestinal barrier function-related biomarkers in
105 participants from a large colorectal adenoma recurrence chemoprevention clinical trial.
They tested expression of claudin-1, occludin, and MUC12 in the normal-appearing colorec-
tal mucosa. Following 1 year of treatment, in the calcium relative to the no-calcium group,
the CLDN1, OCLD, and MUC12 expression increased. The estimated calcium treatment ef-
fects were greater among participants with baseline serum 25-OH-vitamin D concentrations
below the median value of 22.69 ng/mL (claudin-1: 29%, p = 0.04; OCLD: 36%, p = 0.06;
MUC12: 35%, p = 0.05), suggesting the link between vitamin D deficiency and TJ proteins
in the human CRC. VDR is known to protect against tumorigenesis in the colon [4,115].
However, this study did not test the level of VDR in these patients. There are no data of
microbiome from these patients.

We retrieved the expression of 20 claudins in normal and colon cancer patients by
using Sequence Read Archive (SRA) microarray data (Gene Expression Omnibus (GEO)
database GSE8671). Among these claudins, the expression of claudin-1, -2, -12, and -19 were
increased in colon cancer patients; mRNA expression of claudin-5, -8, -15, -17, -20, and -23
were significantly decreased in patients with colon cancer; and the expression of claudin-3,
-4, -6, -7, -9, -10, -11, -14, -16, and -18 did not show distinct changes in patients with colon
cancer and normal. These data indicate the significance to study claudins in well-controlled
experimental models and understand their different roles in the development of cancer.

Claudin-5 forms paracellular barriers and pores that determine permeability in the
epithelia and endothelia. It is downregulated in colon cancer [116,117]. We found that
reduction of colonic VDR expression is positively correlated with the low level of claudin-5
in patients with CRC [4]. We determined that VDR acts as a transcriptional regulator for the
maintenance of physiological levels of the target gene claudin-5 in the colon. Furthermore,
in a conditional intestinal epithelial VDR-overexpressed mouse model, we found the
protective role of VDR in the maintenance of TJs in the context of inflammation and
colitis-associated colon cancer. High VDR level contributed to high claudin-5, reduced
intestinal inflammation, and fewer tumors in the mouse colon, similar as the observation in
the human CRC [4]. Interestingly, claudin-7 was not altered in the VDR-deficient colon,
compared with the VDR+/+ colon in mice [4]. Our findings offer an insight into the VDR
regulation on certain claudins, depending on the disease types.

VDR plays multiple functional roles of in the development of colon cancer [115,118];
thus, it is important to dissect the mechanisms by which VDR contributes to barrier function
in protecting the host from tumorigenesis. The positively correlated status of VDR and
claudins, such as claudin-5 and -15, could be potentially applied to risk assessment, early
detection, and prevention of colitis and colitis-associated colon cancer. Hence, new insights
into the mechanisms responsible for VDR and barrier dysfunction are needed. These
studies will provide a new avenue to restore barrier functions and develop a novel protocol
for risk assessment and prevention of CRC and other human cancers.

3.3. TJs and VDR in Lungs

Vitamin D/VDR signaling plays an important role in regulating the components of
junctions and maintaining the integrity of epithelial barriers in multiple organs. In lungs,
the permeability of the alveolar epithelial barrier is mainly regulated by the intercellular
junctions [119,120]. In chronic inflammatory lung diseases, epithelial barrier function is
impaired, disruption of the epithelial barrier resulted in alveolar permeability, i.e., paracel-
lular movements of fluid from the interstitium to the pulmonary airspace, and infiltration
of inflammatory cells [64]. Figure 2 shows well-organized ZO-1 in epithelial cells of the
healthy lungs and lipopolysaccharide (LPS) treatment that disrupted the ZO-1 distribution
in a mouse mode in vivo [65].
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Figure 2. Disruption of tight junctions in mouse lung with LPS treatment. (a) Normal ZO-1 distribu-
tion in healthy mouse lungs (left panel: yellow arrow). (b) Reduced expression and disorganized
structure of ZO-1 (right panel: yellow arrow) in the lungs of mice (C57BL6/J, 6–8 weeks) treated
with LPS (10 mg/kg, intranasally). Mice were sacrificed after 24 h-infection [65].

Vitamin D can promote epithelial barrier integrity or protect against epithelial bar-
rier destruction in lungs. In the bronchial epithelial cell line 16HBE, vitamin D is able to
counteract the effects of cigarette smoke extract–induced bronchial epithelial barrier dis-
ruption, such as transepithelial electrical resistance (TER) reduction, permeability increase,
distribution anomalies, and increased cleavage of E-cadherin and β-catenin [63]. Vitamin
D-treated BALB/c mice increased the expression of ZO-1 and E-cadherin, and reduced
signs of asthma induced by toluene di-isocyanate [121]. Vitamin D treatment alleviated
LPS-induced lung injury and preserved alveolar barrier function by inducing the expres-
sion of occludin and ZO-1 to maintain the pulmonary barrier in lungs [64,122], whereas in
healthy mice fed with a vitamin D-poor diet indicated that vitamin D supplementation had
little effect on epithelial integrity [123]. Vitamin D also promotes epithelial barrier function
through its ability to increase expression of cystic fibrosis transmembrane conductance
regulator in airway epithelial cells [124]. These studies indicate that vitamin D promotes
the integrity and function of the epithelial barrier and protects against epithelial damage
by dampening inflammatory response.

Lung VDR plays an important role in maintaining the pulmonary barrier integrity.
We reported that VDR deletion increased lung permeability by altering the expression
of TJ molecules, particularly claudin-2, -4, -10, -12, and -18 [65]. VDR KO mice showed
significantly decreased expression of junctional proteins, including ZO-1, occludin, claudin-
1, -2, -4, -12, -18, β-catenin, and VE-cadherin in lungs, compared with WT mice. claudin-2, -4,
-12, and -18 mRNA and protein levels were significantly decreased in the lungs of VDR−/−

mice. However, VDR deletion did not change the mRNA levels of ZO-1, occludin, claudin-
1, -3, -7, a-catenin, β-catenin, and VE-cadherin, suggesting the different mechanisms by
which VDR regulates junctional proteins. These changes of TJs are closely correlated with
airway epithelial barrier destruction in chronic pneumonia because of vitamin D/VDR
deficiency [65]. Interestingly, claudin-15 mRNA level was significantly decreased in lungs of
VDR−/− mice, but total claudin-15 protein was unchanged. Immunoblotting of claudin-15
protein in total lung tissue may not reflect its changes in certain types of lung cells [65].
Vitamin D supplementation alleviated LPS-induced lung injury and preserved alveolar
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barrier function through maintenance of the pulmonary barrier by inducing expression of
occludin and ZO-1 in whole lung homogenates [64].

Several studies revealed the link of vitamin D deficiency to chronic inflammatory
lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma [125–128].
COPD is a complex and progressive lung disease that is characterized by persistent airflow
limitation resulting from chronic inflammation and structural changes [129]. The lower
vitamin D levels and the more severe airflow obstruction were observed in patients with
COPD [130] and accelerated decline in lung function [131]. VDR-deficient or knockout mice
develop a COPD phenotype, whereas VDR overexpression can ameliorate inflammation in
the lungs [132,133]. Vitamin D treatment reduces exacerbation rates in vitamin D-deficient
patients with COPD or asthma, thus decreasing the incidence of acute respiratory tract
infections [134–136].

3.4. Infection

The major obstacle pathogens must overcome is the intestinal epithelial barrier [137].
TJs are critical to providing host defense against pathogens. One of the beneficial roles
vitamin D/VDR is to act as an important mediator of intestinal epithelial defenses against
infectious agents. Vitamin D deficiency predisposes to more severe intestinal injury in an
infectious model of colitis [138]. Vitamin D-deficient mice challenged with C. rodentium
demonstrated increased colonic hyperplasia and epithelial barrier dysfunction. Vitamin
D deficiency resulted in an altered composition of the fecal microbiome with or without
C. rodentium infection [138], and 1,25(OH)2D3 altered E. coli O157:H7-induced reductions
in TER, decreased permeability, and preserved barrier integrity in mice [139].

Salmonella are the causative agents of a variety of diseases ranging from diarrhea-
generating gastroenteritis to systemic typhoid fever. Salmonella induces the disruption
of TJs during infection. This is exemplified through decreases in TER, increases in tracer
permeability, and TJ protein alterations in the infected intestinal cell lines and mouse
tissues [137,140,141]. We and others have demonstrated that Salmonella targets TJ pro-
teins [137,140,141], e.g., ZO-1 (Figure 3) [142–144], occludin [142–144], and claudins [28,105],
and facilitates pathogenic enteric bacterial invasion [28]. The expression of claudin-7 is
very stable in the colon in mouse colitis or bacterial infection [2,145].

Cells 2022, 11, x FOR PEER REVIEW 7 of 22 
 

 

Several studies revealed the link of vitamin D deficiency to chronic inflammatory 
lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma [104–107]. 
COPD is a complex and progressive lung disease that is characterized by persistent air-
flow limitation resulting from chronic inflammation and structural changes [108]. The 
lower vitamin D levels and the more severe airflow obstruction were observed in patients 
with COPD [109] and accelerated decline in lung function [110]. VDR-deficient or knock-
out mice develop a COPD phenotype, whereas VDR overexpression can ameliorate in-
flammation in the lungs [111,112]. Vitamin D treatment reduces exacerbation rates in vit-
amin D-deficient patients with COPD or asthma, thus decreasing the incidence of acute 
respiratory tract infections [113–115]. 

3.4. Infection 
The major obstacle pathogens must overcome is the intestinal epithelial barrier [116]. 

TJs are critical to providing host defense against pathogens. One of the beneficial roles 
vitamin D/VDR is to act as an important mediator of intestinal epithelial defenses against 
infectious agents. Vitamin D deficiency predisposes to more severe intestinal injury in an 
infectious model of colitis [117]. Vitamin D-deficient mice challenged with C. rodentium 
demonstrated increased colonic hyperplasia and epithelial barrier dysfunction. Vitamin 
D deficiency resulted in an altered composition of the fecal microbiome with or without 
C. rodentium infection [117], and 1,25(OH)2D3 altered E. coli O157:H7-induced reductions 
in TER, decreased permeability, and preserved barrier integrity in mice [118]. 

Salmonella are the causative agents of a variety of diseases ranging from diarrhea-
generating gastroenteritis to systemic typhoid fever. Salmonella induces the disruption of 
TJs during infection. This is exemplified through decreases in TER, increases in tracer per-
meability, and TJ protein alterations in the infected intestinal cell lines and mouse tissues 
[116,119,120]. We and others have demonstrated that Salmonella targets TJ proteins 
[116,119,120], e.g., ZO-1 (Figure 3) [121–123], occludin [121–123], and claudins [28,81], and 
facilitates pathogenic enteric bacterial invasion [28]. The expression of claudin-7 is very 
stable in the colon in mouse colitis or bacterial infection [2,124]. 

 
        (a) (b) 

Figure 3. ZO-1 distribution before and after Salmonella infection in mouse colon. (a) ZO-1 distribu-
tion in the colon of VDRloxp colon and VDRΔIEC mice. The yellow arrows indicate the “zipper” struc-
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Figure 3. ZO-1 distribution before and after Salmonella infection in mouse colon. (a) ZO-1 distribution
in the colon of VDRloxp colon and VDR∆IEC mice. The yellow arrows indicate the “zipper” structure
of ZO-1 in the apical side of the colon, and red arrows show the disrupted ZO-1 due to the intestinal
epithelial VDR deletion in VDR∆IEC mice. (b) Disrupted ZO-1 distribution after Salmonella infection in
the colon of VDRloxp and VDR∆IEC mice. VDRloxp and VDR∆IEC mice aged 6–8 weeks were infected
with Salmonella and sacrificed 8 h post-infection, as described in our previous study [27,28].
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Pathological bacterial translocation from the disrupted intestinal barrier leads to sub-
stantial complications and mortality in other organs, such as liver cirrhosis. Lee et al. [53]
investigated the effects of calcitriol on bacterial translocation in cirrhotic rats. Cirrhotic rats
were administrated with a 2-week course of active vitamin D3 (calcitriol, 0.1 µg/kg per
day) or vehicle by oral gavage after thioacetamide (TAA) injection for 16 weeks. Vitamin
D3 treatment significantly attenuated bacterial translocation and reduced intestinal per-
meability in TAA-induced cirrhotic rats. It upregulates the expressions of occludin in the
small intestine and claudin-1 in the colon of cirrhotic rats directly independent of intrahep-
atic status. Vitamin D3 treatment also enriched Muribaculaceae, Bacteroidales, Allobaculum,
Anaerovorax, and Ruminococcaceae in mice. This study showed that vitamin D3 attenuates
intestinal leakage, reduces bacterial translocation, and enriches potentially beneficial gut
microbiota, suggesting a potential therapeutic agent to prevent cirrhotic complications [53].

Vitamin D upregulates TJ proteins occludin and claudin-14 during E. coli urinary tract
infection [73], likely improving the epithelial integrity, which in turn may ameliorate the
protection against infection. This finding is relevant especially among patients with recur-
rent urinary tract infection (UTI) and where low vitamin D levels are anticipated. Bladder
biopsies were obtained from post-menopausal women before and after a 3-month period of
supplementation with 25-hydroxyvitamin D3 and ex vivo infected with E. coli. In biopsies,
obtained before E. coli infection, vitamin D had no effect on TJ proteins. However, during
E. coli infection, vitamin D induced occludin and claudin-14 in mature superficial umbrella
cells of the urinary bladder. Vitamin D increased cell–cell adhesion, thus consolidating the
epithelial integrity during infection [73].

We have started to collect more evidence of the tissue-specific role of VDR in intestinal
health and inflammation. The studies in UTI [73] support the gender-difference and time-
dependent (e.g., post-menopausal women) roles of VDR on TJs. We also noted gender
differences in microbial metabolites [146] and virome in the mouse models [147]. We still
do not have sufficient evidence for the gender- and time- specificity in the VDR-regulating
barrier function in human samples.

The prevention of gut-barrier dysfunction is a viable approach for anti-infection,
including COVID-19 [148]. Vitamin D deficiency is associated with adverse outcomes in
infections [149]. There are compelling epidemiological associations between incidence
and severity of COVID-19 and vitamin D deficiency [150]; one of the mechanisms is that
the vitamin D pathway accelerates shutdown of TH1 cells in severe COVID-19. However,
the mechanisms through VDR and tight junctions remain unknown. Even with the clear
evidence that TJ function is influenced by pathogens, much more work is needed to
understand the microbial regulation of intestinal TJs and to develop novel therapeutic
targets for alleviating infection and infection-associated inflammation.

4. Elucidate Cellular and Molecular Mechanisms of Intestinal VDR in Regulating
TJ Proteins
4.1. VDR Transcriptional Regulation of the Genes of TJ Proteins

Based on the genetic studies, VDR is a transcriptional factor regulating the genes of
some TJ proteins, including claudin-2, -5, -12, and -15 in the intestinal epithelial cells [1–4].
For example, the sequence of functional vitamin D response element (AGATAACAAAG-
GTCA) is identified in the promoter of claudin-5 gene. VDR deletion reduced the mRNA and
protein levels of claudin-5 and upregulation of VDR increased the expression of claudin-5.
These data demonstrate the genetic regulation of VDR on certain genes for TJs.

Another important question concerning VDR regulation is whether it is vitamin D
dependent or independent. Although in normal cells with sufficient VDR expression, we
observe the vitamin D-induced TJ expression through the VDR, the inflamed cells may
use a totally different mechanism to alter TJs because the TJ proteins are also regulated by
cytokines and other signaling pathways. In inflamed intestine of ulcerative colitis patients,
VDR expression was low and claudin-2 was enhanced. Mechanistically, the enhanced
claudin-2 promoter activity through the binding sites of nuclear factor kappa B (NF-κB) and
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signal transducer and activator of transcription (STAT) in inflamed cells without VDR [27].
Cytokines play an important role in the modulation of the intestinal epithelial TJ barrier.
The pro-inflammatory cytokine, such as interleukin-6 (IL-6), interferon gamma (IFN-γ)
and tumor necrosis factor alpha (TNF-α), induced increase in intestinal TJ permeability,
which is an important pathogenic mechanism contributing to the development of intestinal
inflammation [151]. IL-6 upregulates claudin-2 expression in intestinal epithelium [152].
On one hand, VDR is known to physically interact with NF-κBp65 and transcriptionally
regulates IκBa to execute the anti-inflammatory role and suppress the inflammatory cy-
tokines [153,154]. On the other hand, there is limited study on whether and how high
inflammatory cytokines might directly suppress the expression of VDR.

4.2. Cellular Changes of TJs by 1,25(OH)2D3/VDR Status

TJ proteins, such as ZO-1, are upregulated in enterocytes by 1,25(OH)2D3 in vitro [1,43].
Severely disrupted TJs and increased permeability were seen in DSS-treated VDR−/−

colonic epithelial cells [43]. However, in the VDR−/− mice, VDR deletion did not change
the mRNA levels of ZO1, occludin, claudin-1, -3, -7, α-catenin, β-catenin, and VE-cadherin,
suggesting the different mechanisms by which VDR regulates junctional proteins. We
found that claudin-15 mRNA levels were significantly decreased in lungs of VDR−/− mice,
but total claudin-15 protein levels were not changed in the total lung tissue by Western blot.
However, in the intestinal tissue, VDR deletion led to reduction of claudin-15 [3]. These
results suggested that claudins have a different biological function in the different cells or
tissues. Hence, further insights into the mechanisms responsible for intestinal VDR and
barrier dysfunction are needed, especially in in vivo systems and human samples focusing
on the tissue specificity and gender difference of VDR.

4.3. Other Regulators, e.g., Probiotics and Microtome, on TJs and VDR

Other factors, such as environmental factor and microbiome, also contribute to the
changes of VDR and TJs. Most commensal organisms are kept segregated from the epithe-
lium by the mucosa. Goblet cells are responsible for mucus production. Mucus consists of
secretory immunoglobulin type A (sIgA) and AMPs (e.g., α-defensins), which are secreted
by Paneth cells located in the small intestinal crypts and released to the colon. IgA regulates
the composition and metabolic function of gut microbiota by promoting symbiosis between
bacteria [155]. Macrophages in the underlying intestinal tissue produce milk fat globule-
EGF factor 8, which directly targets IECs and regulates the integrity of intestinal barrier
function [156]. The presence of these components helps to maintain the balance in the
composition of the gut microbiota. Dysfunction in the production/secretion of individual
proteins can lead to not only disturbances in the proportions of individual bacteria, but
also the functions of barriers.

Whereas vitamin D has been intensively studied, the role of bacteria in modulating
the effects of vitamin D and VDR signaling is not well known. We integrate our findings
with other studies and, more importantly, understand how probiotics coordinate the effects
of vitamin D/VDR and maintain the barrier function [157–162]. The novel information on
the combined role of vitamin D and probiotics in anti-inflammation will contribute new
concepts to the therapeutic methods for IBD and other inflammatory diseases. Although
the potential importance of VDR as a therapeutic target has been recognized [163], no
approach to date has safely and effectively altered its activity. Overuse of vitamin D to
activate VDR signaling has potent hypercalcemic effect. In contrast, probiotic usage has
little downside. Although probiotics can be dangerous if administered to very sick patients,
the worst aspect is that probiotics will not produce any obvious benefit. By taking probiotics
and/or vitamin D, it may indicate an inexpensive method to prevent chronic diseases.

5. Limits and Future Directions

We have made significant progress in the past decade to understand the role that
vitamin D/VDR has in regulating tissue barriers. A series of molecular and biochemi-
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cal experiments in vivo and in vitro, using VDR−/− mice, conditional knockout models,
organoids, and human database, allow us to investigate the in-depth mechanisms by which
barriers are modulated in health and disease. However, the traditional model is to treat cul-
tured cells or animals with vitamin D3. Our understanding of VDR in influencing intestinal
barriers was limited to its role as a transcriptional factor and a receptor for vitamin D.

We now know the diverse roles and tissue specificity of VDR and its ligands [164,165].
We have begun to appreciate their clinical application in various human diseases [165].
For example, VDR ligands (e.g., calcipotriol) suppress pancreatitis and VDR acts as a
master transcriptional regulator in pancreatic stellate cells [166]. VDR expressed in stroma
from human pancreatic tumors and calcipotriol could reduce markers of inflammation
and fibrosis in pancreatitis and human tumor stroma, suggesting vitamin D priming as an
adjunct in the treatment of pancreatic ductal adenocarcinoma. In the kidney, 1,25(OH)2 VitD
influences claudin-16-mediated Mg2+ transport [150]. However, in lungs, claudin-16 is very
low and may not be necessary for respiratory function, or, other claudins may complement
the function of claudin-16 in the lungs [167]. Thus, we need more studies on VDR’s tissue-,
gender-, and time-specificity in regulating barrier function in health and disease. We need
to consider sufficiently the physiological relevance in vivo and in disease models. We need
to consider the other factors, e.g., microbiome and inflammatory triggers, which could take
over in the vitamin D deficient context to alter TJ proteins, thus manipulating the barrier
functions. We need to recognize that PCR data on mRNA alteration could not reflect the
cellular distribution and functions of TJs. Functional studies and the syngenetic roles of TJ
proteins are needed.

A series of molecular and biochemical experiments were performed in vivo and
in vitro by using VDR transgenic mice and cultured human intestinal epithelial cells.
However, the traditional model is to treat cultured cells or animals with vitamin D3.
Our understanding of VDR in influencing intestinal barriers is limited to its role as a
transcriptional factor and a receptor for vitamin D. In many clinical studies, the status
of VDR was not considered in the study design or data interpretation. To move forward,
special attention is needed on the roles of VDR in a gender-different and time-dependent
manner, e.g., post-menopausal women, aging, and different stages of diseases.

Many researchers already notice the limits of cell lines. The recent development of
organoids will help us to study tight junctions, physiological relevance, host–microbial
interactions, and drug discovery [145,161,168–172]. As shown in Figure 4, claudin-7 is well
maintained and distributes in the cell membranes in the mouse organoids. We found that
TER of mouse colonoid-derived monolayers remained unchanged between the O-VDR
overexerting colonoids and VDRloxP colonoids [3]. We still need more studies on its tissue,
gender, and time specificity in regulating barrier function. We need to consider sufficiently
the physiological relevance of in vivo and in disease models, and the advancement of
technologies and methods for the overall investigation of the intestinal barrier [173].
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Figure 4. Distribution of claudin-7 in organoids. (a) Claudin-7 distribution in the cell membranes in
the mouse organoids in fluorescent setting (left panel, yellow arrows). (b) Mouse organoids in the
bright field. Experimental conditions are described in our previous report [145].

6. Conclusions

The recent progress reveals a novel activity of VDR in regulation of many tight junction
proteins in primate cell structure and intestinal homeostasis and diseases (as shown in
the Graphic Abstract). We aim to show the current state of knowledge on this topic and
its potential therapeutic applications. This knowledge can be used to develop intestinal
VDR-associated TJ proteins, e.g., claudin-5 and -15, as clinical biomarkers for identifying
patients who may benefit from currently available interventions and could be used for the
eventual development of novel strategies for the prevention and treatment of diseases. VDR
signaling is also highly significant in regulating other proliferation and anti-inflammatory
pathways [74,157,162,174]. We hope to integrate our findings with other studies and,
more importantly, understand how the microbiome, probiotics, and metabolites coordinate
the effects of vitamin D/VDR [146]. Our long-term goal is to develop individualized
therapeutic strategies based on tight junction proteins [175] and vitamin D/VDR statuses
for efficient and effective prevention and treatment of chronic diseases.
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Abbreviations

1,25(OH)2D3 1,25-dihydroxy vitamin D
AMP Antimicrobial Peptide
ATG16L1 Autophagy Related 16 Like 1
CD Crohn’s Disease
COPD Chronic Obstructive Pulmonary Disease
CRC Colorectal Cancer
DSS Dextran Sulfate Sodium
GEO Gene Expression Omnibus
GI Gastrointestinal
GF Germ-Free
H&E Hematoxylin and Eosin
IBD Inflammatory Bowel Disease
IEC Intestinal Epithelial Cells
IF Immunofluorescence
IHC Immunohistochemistry
IL-6 Interleukin-6
IFN-γ Interferon Gamma
JAM Junctional Adhesion Molecules
KO Knockout
LPS Lipopolysaccharide
LoxP Locus of X-over, P1
MMP7 Matrix Metalloproteinase 7
MUC2 Mucin 2
NF-κB Nuclear Factor Kappa B
PC Paneth Cell
qRT-PCR Quantitative Real Time Polymerase Chain Reaction
RXR Retinoid X Receptor
TAA Thioacetamide
TER Transepithelial Electrical Resistance
SRA Sequence Read Archive
STAT Signal Transducer and Activator of Transcription
sIgA Secretory Immunoglobulin Type A
TJ Tight Junction
TNF-α Tumor Necrosis Factor
VDR Vitamin D Receptor
UC Ulcerative Colitis
UTI Urinary Tract Infection
ZO Zonula Occludens
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