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The breast milk of HIV infected women contains HIV virus particles, therefore children can
become infected through breastfeeding. We develop a mathematical epidemiological
model of HIV infection in infants, infected children and infected women that represents
infection of an infant/child as a series of exposures, by incorporating within-host virus
dynamics in the individuals exposed to the virus through breastfeeding. We show that
repeated exposures of the infant/child via breastfeeding can cause bi-stability dynamics
and, subsequently, infection persistence even when the epidemiological basic reproduc-
tion number R0 is less than unity. This feature of the model, due to a backward bifurcation,
gives new insight into the control mechanisms of HIV disease through breastfeeding.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recognition of the benefits of breastfeeding on the ultimate health of an infant/child, the World Health Organization
(WHO) recommends early initiation of breastfeeding, exclusive breastfeeding during the first 6 months of life, and continued
breastfeeding until 24 months of age (see Chasela et al. (2010); WHO (2017a)). However, women infected with HIV can
transmit the HIV virus to an infant through breastfeeding Kourtis, Lee, Abrams, Jamieson, and Bulterys (2006); Van de Perre
et al. (1991). It has been shown that this risk is greatly reduced when infected breastfeeding women adhere to antiretroviral
therapy regimens Mofenson (2010). However, when HIV status is unknown, or when antiretroviral therapy doses are missed,
the benefits of breastfeeding in infant/child health will not be optimal.

The effects of individual level exposure to HIV through breastfeeding on its spread on the population level are not well
understood. The scenario is also more complex when antivirals are introduced into the system, as these affect the population
level transmission of HIV, and also the dose size of HIV virus that infants are subjected to. Mathematical models that integrate
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the in-host and epidemiological levels of HIV pathogenesis and persistence can provide useful tools needed to study the
effects of HIV exposure to infants in a population. Our goal is to determine the effects that individual-level parameters have on
the population level persistence of the disease, and vice-versa. Here, we develop an immuno-epidemiological model that
integrates the in-host pathogenesis of HIV infection in infants that are exposed to the virus through breastfeeding, and embed
this model into a population level model of HIV persistence in a sub-population of breastfeeding women. This represents a
first step towards the development of general immuno-epidemiological model frameworks of HIV exposure through
breastfeeding and HIV persistence at the population level.

There is strong evidence that the longer the duration of breastfeeding, the greater the risk of HIV transmission, i.e. the
risk is cumulative (see Leroy et al. (1998); Miotti et al. (1999); Breastfeeding and HIV International Transmission Study
Group et al. (2004)) with the cumulative risk of transmission through breastfeeding being 10e14% for infants aged 4e6
weeks and 22% for infants aged 18e24 months (Leroy et al. (2002); Nduati et al. (2000); The Petra study team (2002)).
Several research teams have successfully designed experiments which confirm this hypothesis (see, for example, Hessell
et al. (2009); Kersh et al. (2009); Van Rompay et al. (2005)). Despite great success of mathematical models having been
used to investigate the impact of a single-exposure on infection diseases (see Anderson and May (1992); Brauer (1990);
Cooke and van den Driessche (1996)) and references therein), the body of literature on the consequences of multiple-
exposures for disease dynamics is rather scant, with only an abstract representation given in Qesmi, Heffernan, and Wu
(2015). In this paper, we present an immuno-epidemiological model with threshold delay that captures the dynamics of
HIV transmission to infants through repeated low-dose exposures through breastfeeding. The model presented here can be
viewed as an extension of that given in Qesmi et al. (2015) with particular focus on an identified route of HIV transmission
from mothers to infants.

The modelling study Qesmi et al. (2015) depicts an infection process as a series of exposures to a pathogen, whereby, upon
the first encounter with the pathogen, an individual is considered to be exposed but not yet infected. The pathogen load in-
host is affected by this first exposure to the pathogen and any subsequent additional exposures until a viral load threshold is
reached, upon which the individual is considered to be fully infected and infectious. Susceptible-Exposed-Infectious (SEI)
framework was used to capture infection dynamics at the population level. This approach gave rise to a threshold-delay
system that was subsequently reduced to a state-dependent delay system. The study showed the possibility of a backward
bifurcation, and therefore, of a regime of bi-stability when the basic reproductive number, R0, is less than 1. The study also
established the existence of a threshold value for R0, Rc such that if R0 <Rc, the disease could be eradicated from a population
of hosts.

Here, we have adapted this multiple-exposure approach to model HIV dynamics in a population of newborn infants and
HIV-positive females of child-bearing age. Inherently, such a population will have different population- and in-host-level
dynamics than the more general one considered in Qesmi et al. (2015). To wit, infants upon entering the fully-infected
stage lack the capacity to infect. Only a fraction of infected children will eventually become infectious adult females
(subject to both gender, as well as to the increased probability of not surviving to reach maturity.) Thus it is necessary to
distinguish between the two types of infected individuals. On the other hand, infection via breastfeeding is not a sole or the
main route of HIV infection in a population. Since this model focuses on the target population of breast-fed infants and
infected adult females of child-bearing age and that are breastfeeding (henceforth, named infectious adult females or in-
fectious women), we assume that viral growth and decay are functions of the total population size of infectious women
If ðtÞ, thus forgoing HIV dynamics in the entire population of healthy and infected children, women and men. This means
that we assume that the prevalence of HIV over the entire population is reflected in the population of If ðtÞ, and we assume
that this prevalence is relatively stable i.e., we are modelling a large population that is stable and sustains a large population
of infectious adult females. We note that the case considered in Qesmi et al. (2015), with the viral growth rate being a
constant, is a particular case of the more general setting used here. As a consequence, the resulting system is more complex
and general.

Analysis of the new model also shows the possibility of the coexistence of multiple stable equilibria when the epidemi-
ological basic reproduction number R0 is less than unity but greater than some positive constant Rc. Here, we are able to
derive an expression for the constant Rc in terms of the model parameters. Finally, we implement very intensive numerical
simulations to examine the impact of in-host parameters on the occurrence of bi-stability, and the domains of attraction of co-
existing stable equilibria. Our findings show that the in-host dynamics parameters are key determinants whether bi-stability
is present. This has important implications for the disease control strategies (such as antiretroviral therapy programs for
lactating women) that need to be placed.

The article is organized as follows. Section 2 presents the model, that originally takes the form of an age-structured system
involving the age-since exposure variable. This system is then reduced to a system of differential equations with threshold
delay. Using the Global Implicit Function Theorem, in Section 3, we transform the system with threshold delay to a state-
dependent delay system of differential equations. Properties of the resulting system, such as positivity and existence of
steady states, are established in Section 4. Then, in Section 5, using a Lyapunov-Razumikhin function we give a sufficient
condition for global asymptotic stability of the trivial steady state. In Section 6, we investigate system's dynamics using
bifurcation analysis and show that the system can go through a transcritical and a backward bifurcation. We follow up by the
sensitivity analysis with respect to parameters and initial data in the region of bi-stability of solutions, and we end with a
discussion of the model results.
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2. The model

2.1. In-host model

HIV attacks CD4 T-cells by integrating the viral DNA into the cell DNA. Subsequently virus particles bud from the infected T-
cells and infect new cells Zhang et al. (2015). As a result of the infection, infected cells have a shorter life span than their non-
infected counterparts, and their population starts to deplete (McCune (2001); Perelson and Nelson (1999)). The course of HIV
infection includes an acute phase in the beginning of infection (characterized by an increase to a peak viral load followed by a
decrease to a low level of pathogen), and a latent phase, when the T-cell count and viral load reach a quasi-steady state at a
low pathogen load, which can last for many years. The final stage of HIV infection, called AIDS, begins when the CD4 T-cell
count in the blood declines below a certain threshold (200 cells per ml3), and the immune system becomes compromised,
leaving the individual susceptible to opportunistic infections and diseases.

For the sake of modelling viral dynamics within an infant/child, we consider an in-host process at the start of infection, at
the beginning of the acute stage.

In the early stage of the breastfeeding, the virus population dynamics is simply governed by the growth rate, denoted by q.
However, If themother is infected, breastfeeding can cause transfer of virus particles through lactation. This was corroborated
by an experiment Van Rompay et al. (2005) where repeated low-dose exposures of infant macaques led to an increase of the
virus load until an infection threshold was reached. Alongwith the HIV-infected cells, neutralizing HIV-specific antibodies are
passed to the infant in the breast milk Overbaugh (2014). This means that infants have a clearance mechanism for virus that is
budded from cells. Therefore, the growth rate should be written as

q¼ q
�
If ðtÞ

�
:¼ q0

�
If ðtÞ

�
� h

�
If ðtÞ

�
;

where q0 is the intrinsic rate of the virus growth and h is the clearance rate of the virus due to neutralizing antibodies
transferred through the breast milk of infected females.

Each of the above intrinsic growth rate and clearance rate can depend on the level of infectious woman If ðtÞ, which reflects
on the level of infection in the entire populations. In particular, the larger the If , the greater the burden on the health re-
sources, and thus the smaller resources available to control the virus growth and increase the clearance rate. Therefore, the
growth rate qðIf Þ is an increasing function of If . While the passive antibodies conferred to infants through breastfeeding
contribute to protection by reducing virus levels in breast milk and thus, diminishing its infection force (see John-Stewart
et al. (2004); Shapiro et al. (2007)), it has been shown that these antibodies are not completely effective in blocking HIV
transmission (see Overbaugh (2014); WHO (2007)). Also, neutralizing antibodies do not contribute to the inhibition of virus
production from infected cells in the infant's body (see Klimpel (1996)). We thus assume that the intrinsic growth rate
q0ðIf ðtÞÞ dominates over the killing rate of the virus hðIf ðtÞÞ:

During the early stage of the breastfeeding, the viral load of the child is changed due to the internal viral dynamics and, at
the same time, due to the repeated exposure to the infection. Hence, it is important to track the viral load with respect to the
time a since the first exposure of an uninfected infant. This leads to the following structured virus dynamics model:

dV
dt

þdV
da

¼ q
�
If ðtÞ

�
Vðt; aÞ þ F

�
If ðtÞ

�
; (1)
where qðIf ðtÞÞ is the intrinsic growth rate of the virus in the infant and FðIf ðtÞÞ expresses the additive viral load in the infant as
a function of infectious adults females, If ðtÞ, due to repeated exposure through breastfeeding.We assume that the function F is
positive and non-decreasing. This, again, reflects that fact that, when the number of infectious females is low (high), the
health resources available are high (low), and the added amount of virus through breastfeeding would be low (high). Finally,
we assume that there is a maximum amount of virus that can be added through each exposure to the virus through
breastfeeding. A Holling type II functional response (see Holling (1965)) is a suitable choice as the formulation for the additive
viral load due to multiple exposures

F
�
If ðtÞ

�
¼ bcIf ðtÞ

kIf ðtÞ þ 1
:

Here, b is the number of effective contacts with infectious adult females, cIf ðtÞ is the viral load introduced at each exposure,
and k is an adjustable parameter which controls how fast the saturation occurs.

Similar to Qesmi et al. (2015) we assume that once a certain viral load threshold, A, is achieved, the exposed infant will
become infected. Therefore, Eq. (1) governs the viral load when Vðt; aÞ<A only. Finally, since A is the viral load needed for
infection, we assume that the viral load from a single exposure is less than A, i.e. c<A.

In the following, we will state some properties of the viral load function which will be used in the next sections.

Lemma 1. There exists a positive function t : ½0;∞Þ/½0;∞Þ, such that
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J
�
tðtÞ; If ;t

�
: ¼ c exp

� ZtðtÞ
0

q
�
If ðuÞ

�
du

�

þ
Z 0

�tðtÞ
exp

�Z0
v

q
�
If ðtþuÞ

�
du

�
F
�
If ðtþ vÞ

�
dv

�A¼0 ;

(2)
where If ;t is the history function of the infectious population defined for n2½ �maxs2½0;∞ÞtðsÞ;0� by

If ;tðnÞ ¼ If ðt þ nÞ :
i. Vðt; tðtÞÞ ¼ A for all t � 0;
ii. Vðt; aÞ � A is equivalent to 0� a � tðtÞ;
iii. tðtÞ is bounded;
iv. for all t � 0, the following is true:

The proof of Lemma 1 is similar to the one given in Qesmi et al. (2015), and hence is omitted here.

2.2. Between-host model

The general population dynamics, captured by Figure H.1, is modelled as follows. First, the population under consideration
is comprised of susceptible infants that can be exposed to infection through breastfeeding (S), exposed infants (E), infected
children/infants (Ic) and infectious adult females (If ).

We note that this joint subpopulation is a part of a general population that resides at an endemic equilibrium. Contribution
to the general population level infection spread by the individuals infected through breastfeeding is deemed negligible.

For simplicity, we assume that all infants enter into the model through the susceptible infant class (S) with rate p (in-
dividual year�1). We assume that the population is sufficiently large such that the birth rate can be approximated as a
constant. Individuals leave this compartment with rate d (year�1) subject to death and termination of breastfeeding. While in
the compartment, infants are exposed to the infectionwith rate bIf year

�1. Although an infant is likely to be breastfed by their
mother exclusively, wemodel the probability of infection as being directly correlated to the overall infection prevalence in the
population, and thus, the number of infected women who breastfeed reflects the overall level of infection in the population.
This assumption allows us to integrate the availability of health resources into the model. Since a small (large) size of If ðtÞ
reduces (increases) the probability a mother is on effective drug therapy, and thus reduces (increases) the probability that an
infant will be exposed to the HIV virus through breastfeeding from its mother. It is assumed that infants born to infected
women are exposed to the virus with rate bV (year�1) at birth, but that infants exposed to the virus through breastfeeding are
exposed with rate bbf (year

�1). Thus, b ¼ bVþbbf

N where N constant is the total population of healthy and infected women.
Once an infant has been exposed to the virus, they move to the exposed infants compartment (E). The length of sojourn in

this compartment is subject to an average in-host dynamics of viral growth and a death rate, dðaÞ, a positive, continuous, non-
decreasing function of age-since-exposure. We assume that the duration of stay in the exposed compartment is relatively
short (see Van Rompay et al. (2005)). The dynamics of this compartment is traced in terms of time, t and age since the first
exposure, a.

When the internal cumulative viral load exceeds the threshold value A, or equivalently, when the age since exposure
passes the period tðtÞ, an exposed infant becomes infected and moves to the Ic compartment. We track individuals in this
compartment in terms of time, t and age since reaching viral threshold, a. Observe, that since the sojourn in the exposed
compartment is relatively short (several weeks) the latter can also be used to track the population dynamics in this
compartment by age. Individuals leave it either due to dying or due to reachingmaturity, with rates hðaÞ and nðaÞ, respectively.
Both are subject to the age of infection and are positive, continuous non-decreasing functions of age.

A proportion p of infected children in class Ic proceed to the mature infectious female class If . However, individuals can be
drafted into this compartment of infectious female breastfeeding mothers in two ways: infectious females that were infected
with HIV by routes different than breastfeeding and infectious females that acquired the infection through breastfeeding,
matured and upon maturation proceeded to become breastfeeding mothers. The former term is given by l

R ∞
0 If ðt;uÞ du re-

flects the fact that the incoming rate of individuals into the breastfeeding compartment (If ðtÞ is indicative of the overall
prevalence in the population. We track the dynamics of the compartment in terms of time, t and age since initial entrance to
the compartment, a. Individuals leave the compartment due to death or termination of breastfeeding with rates a (year�1)
and kðaÞ, respectively.

The model takes the following form:
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dS
dt

¼p� bSðtÞIf ðtÞ � dSðtÞ ; (3a)

vE vE

vt

þ
va

¼ �dðaÞEðt; aÞ ; t � 0 ;0 � a � tðtÞ ; (3b)

vIc vIc

vt

þ
va

¼ �ðhðaÞ þ nðaÞÞIcðt; aÞ ; t � 0 ; a � 0 ; (3c)

vIf vIf

vt

þ
va

¼ �ðkðaÞ þ aÞIf ðt; aÞ; t � 0 ; a � 0 ; (3d)
subject to the following boundary conditions

Eðt;0Þ ¼ bSðtÞIf ðtÞ ; (4a)

Icðt;0Þ ¼ Eðt; tðtÞÞ ; (4b)
Z ∞ Z ∞
If ðt;0Þ¼ l
0
If ðt;uÞ duþ

0
pnðuÞIcðt;uÞ du (4c)
3. Reduction to a state-dependent delay system

First, observe that using the method of characteristics (see Webb (1985)), the solution Eðt; aÞ of Eq. (3b) with boundary
condition given by Eq. (4a), is given, for t >0 and a>0, by

Eðt; aÞ ¼
8<
: be

�
Z a

0

dðsÞ ds
Sðt � aÞIf ðt � aÞ if t > a ;

e
�
Z a

0

dðsÞ ds
e
�
Z a�t

0

dðsÞ ds
Eð0; aÞ if t � a :

(5)
Let t∞ be the maximal delay, i.e. t∞ ¼ maxt�0tðtÞ. Then, following a sequential set of procedures similar to Qesmi et al.
(2015), for t > t∞, the threshold delay model (3) reduces to

dS
dt

¼p� bSðtÞIf ðtÞ � dSðtÞ ; (6a)

vIc vIc

vt

þ
va

¼ �ðhðaÞ þ nðaÞÞIcðt; aÞ ; t � 0 ; a � 0 ; (6b)

vIf vIf

vt

þ
va

¼ �ðkðaÞ þ aÞIf ðt; aÞ ; t � 0 ; a � 0 ; (6c)
subject to the following boundary conditions

Icðt;0Þ ¼ bSðt � tðtÞÞIf ðt � tðtÞÞe
�
Z tðtÞ

0

dðuÞ du
; (7a)

Z ∞ Z ∞
If ðt;0Þ¼ l
0
If ðt;uÞ duþ

0
pnðuÞIcðt;uÞ du : (7b)
Set m (year�1) given by 1 =g ¼ R ∞
0 anðaÞ da to be an average death rate of an infected child and g given by 1 =m ¼ R∞

0 ahðaÞ da
- an average rate of leaving the compartment due to the maturation. We reduce system (6) to the following form:



A. Teslya et al. / Infectious Disease Modelling 4 (2019) 188e214 193
8>>>>>><
>>>>>>:

S0ðtÞ¼p� bSðtÞIf ðtÞ� dSðtÞ ;

I0cðtÞ¼ be
�
Z tðtÞ

0

dðsÞ ds
Sðt� tðtÞÞIf ðt� tðtÞÞ� ðmþgÞIcðtÞ ;

I0f ðtÞ¼ pgIcðtÞ�aIf ðtÞ ;
J
�
tðtÞ; If ;t

�
¼0

(8)

for t � t∞. For the details see Appendix A.
Note that using the process we applied to solve Eq. (3b), we can reduce system (6) to a nested threshold-dependent delay

system. While the resulting model is more accurate than its non-nested analog, the two share many dynamical properties
(attributable to the threshold delay) with the latter being more analytically and numerically tractable.

Next, we will show that the threshold-delay system (8) can be reduced to a system of differential equations with a state-
dependent delay. Since the exposure period tðtÞ is relatively short, we can assume that the average virus growth rate is
relatively constant, i.e.,

1
tðtÞ

Z tðtÞ

0
q
�
If ðuÞ

�
du ¼ r ;

where r is a positive constant. Thus, Eq. (2) can be read as
J
�
tðtÞ; If ;t

�
¼ certðtÞ þ

Z 0

�tðtÞ
e

Z 0

v

qðIf ðuþtÞÞ du
F
�
If ðvþ tÞ

�
dv� A :
Let C denote the space of continuous functions defined on ½ � t∞;0�. A function G : C/R is said to be decreasing if, for all f;
j2C, fðqÞ � jðqÞ (for all q2½ � t∞;0�) implies that GðfÞ � GðjÞ.
Proposition 1. There exists a unique continuously differentiable function s : C/Rþ such that, for t � 0, JðsðIf ;tÞ; If ;tÞ ¼ 0.
Furthermore, function s is decreasing and

sð0Þ ¼ 1
r
ln
�
A
c

�
:

The proof of Proposition 1 can be found in Appendix B. Thus, for t � t∞, the threshold delay system (8) is equivalent to the
following state-dependent delay differential equation system:

8>>>><
>>>>:

S0ðtÞ¼p� bSðtÞIf ðtÞ� dSðtÞ ;

I0cðtÞ¼ be
�
Z sðIf ;tÞ

0

dðsÞ ds
S
�
t� s

�
If ;t

��
If
�
t�s

�
If ;t

��
�ðmþgÞIcðtÞ ;

I0f ðtÞ¼ pgIcðtÞ�aIf ðtÞ ;

(9)

where If ;t : R
þ/C, a history function of If .

Set xðtÞ ¼ Sðtþ sð0ÞÞ, yðtÞ ¼ Icðt þ sð0ÞÞ and zðtÞ ¼ If ðtþ sð0ÞÞ. Then, for t � 0, system (9) can be written as a state-
dependent delay differential system

x0ðtÞ¼p� bxðtÞzðtÞ � dxðtÞ ; (10a)

Z sðztÞ
y0ðtÞ¼ be
�

0

dðsÞ ds
xðt � sðztÞÞzðt � sðztÞÞ � ðmþ gÞyðtÞ ; (10b)

z0ðtÞ¼ pgyðtÞ � azðtÞ : (10c)
where zt : Rþ/C, a history function of zðtÞ. System (10) writes
X0ðtÞ¼ gðXtÞ ; for t � 0 ; (11)

where Xt is defined by XtðqÞ ¼ Xðt þ qÞ for q2½ � sð0Þ;0�, and function g : C�C � C/R3 is given, for f;j;x2 C, the space of

continuous functions on ½ � sð0Þ;0�, by
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gðf;j; xÞ¼

0
BB@

p� bfð0Þxð0Þ� dfð0Þ;

be
�
Z sðxÞ

0

dðsÞ ds
fð�sðxÞÞxð�sðxÞÞ� ðmþgÞjð0Þ

pgjð0Þ�axð0Þ

1
CCA2R3

þ :
Since function s is continuously differentiable on C, g is also continuously differentiable on C � C� C. Therefore, existence
and uniqueness in forward time of a solution of system (10) with initial data in C1 (space of continuously differentiable
functions on ½ � sð0Þ;0�) follow from Walther (2003) and Hartung, Krisztin, Walther, and Wu (2006).

4. Properties of the model and existence of steady states

Here we focus on basic properties of solutions of system (10), such as positivity and boundedness. The expression for the
disease-free equilibrium is stated and conditions for the existence of the endemic equilibrium are derived, as well as, the
threshold condition for the eradication of the disease in a population.

We consider solutions of system (10) with initial data in C1. Therefore unique solutions of system (10) exist for t2½ � sð0Þ;
þ∞Þ. The following result is straightforward and can be obtained, for instance, using a method similar to the one presented
in Adimy, Crauste, Hbid, and Qesmi (2010).

Proposition 2. Solutions of system (10) with non-negative initial data are non-negative and bounded for t � 0.

System (10) has a disease-free equilibrium (DFE) given byEf ¼ ðx; 0;0Þ ¼
�
p
d; 0;0

�
. Next, we consider the existence of

endemic steady states of system (10). Let R0 and Rc be positive real numbers given by

R0 ¼ pgbxe
�
Z sð0Þ

0

dðsÞ ds

ðmþ gÞa (12)

and

Rc ¼ b~zþ d
d

e
�
Z sð0Þ

sðbzÞdðuÞ du ; (13)

such that ~z is the global maximum of cðzÞ ¼ bppge
�
R sðzÞ

0
dðuÞ du

bzþd . Note that, here, R0 is the basic reproductive ratio (or basic
reproduction number) of system (10).

Proposition 3. Assume that, for all z positive,

e
�
Z sðzÞ

0

dðsÞ ds
<
bzþ d

d
e
�
Z sð0Þ

0

dðsÞ ds
; (14)

holds. Then, system (10) has:

i. at least one endemic equilibrium if R0 >1;
ii. no endemic equilibrium if R0 � 1.
If inequality (14) does not hold, then system (10) has:
ii. at least one endemic equilibrium if R0 � 1;
iv. at least two endemic equilibria if Rc <R0 <1;
v. no endemic equilibrium if R0 <Rc.

Moreover, every endemic equilibrium, E� ¼ ðx�; y�; z�Þ satisfies

bppge
�
Z sðz�Þ

0

dðsÞ ds
¼ðmþ gÞaðbz� þ dÞ; x� ¼ p

bz� þ d
and y� ¼ a

pg
z�: (15)
The proof of Proposition 3 is omitted since it is somewhat similar to the one given in Qesmi et al. (2015).
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Remark 1. In the case when R0 >1 and d is sufficiently close to 0, the system has a unique endemic equilibrium. Also, in the case of
qðIf Þ being a constant function and Rc <R0 <1, the system has either no or exactly two equilibria.
5. Asymptotic stability of the trivial steady state

In the following theorem, we give a sufficient condition for global asymptotic stability of the trivial steady state of system
(10), provided some conditions are satisfied. Let r be the positive real value given by r ¼ e

R sð0Þ
s� dðsÞds such that s� ¼

inff2CsðfÞ � 0:

Theorem 1. If

rR0 <1 (16)

holds, then the disease-free equilibrium Ef of system (10) is globally asymptotically stable with respect to solutions with non-
negative initial data.

The proof of the theorem can be found in Appendix C.
Next, we consider the local asymptotic stability of the disease-free equilibrium of system (10), Ef ¼ ðx;0;0Þ.
Let J : C1/R be the map defined by

JðhÞ¼ hð�sðhÞÞ; h2C1 :
The derivative of J is given by

d
dh

JðhÞj¼ � s0ðhÞh0ð�sðhÞÞjþ jð�sðhÞÞ; h;j2C1 :

e e e 3
The linearization of system (10) at an equilibrium E¼ ðx ; y ; z Þ2Rþ is given by

8>>>>>><
>>>>>>:

x0ðtÞ¼ �bxðtÞze � bzðtÞxe � dxðtÞ ;

y0ðtÞ¼ be
�
Z sðzeÞ

0

dðsÞ ds
zeðxðt�sðzeÞÞ� dðsðzeÞÞs0ðzeÞzðtÞxeÞ

þbe
�
Z sðzeÞ

0

dðsÞ;ds
xezðt� sðzeÞÞ� ðmþgÞyðtÞ ;

z0ðtÞ¼ pgyðtÞ�azðtÞ :

lt
Substitute the Anstaz E0e , where E0 ¼ ðx0; y0; z0Þ to obtain

8>>>>>><
>>>>>>:

leltx0 ¼ � beltx0z
e � beltz0x

e � deltx0 ;

lelty0 ¼be
�
Z sðzeÞ

0

dðsÞ ds
ze
�
elðt�sðzeÞÞx0 � dðsðzeÞÞs0ðzeÞeltz0xe

�

þbxee
�
Z sðzeÞ

0

dðsÞ ds
elðt�sðzeÞÞz0 �ðmþgÞelty0 ;

leltz0 ¼pgelty0 �aeltz0 :

lt bxe lþa
Set z0 ¼ 1 and divide by e , to obtain x0 ¼ �
lþdþbze and y0 ¼ pg where l is a root of the characteristic equation

DðlÞ¼ ðlþ aÞðlþ mþ gÞ � bpge
�
Z sðzeÞ

0

dðsÞds
ze (17)

�
�lsðzeÞ bxe e 0 e e

�

� � e

lþ dþ bze
� dðsðz ÞÞs ðz Þx

Z sðzeÞ
�bpgxee
�

0

dðsÞds
e�lsðzeÞ : (18)
From the analysis of Eq. (18) we obtain the following result (more details can be found in Appendix D.)
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Theorem 2. If R0 >1, then the disease-free equilibrium (DFE) Ef ¼ ðx;0;0Þ of system (10) is unstable. If R0 <1, then Ef is locally
asymptotically stable.
6. Bifurcation analysis

6.1. Transcritical bifurcation

This section is devoted to the analysis of local asymptotic stability of an endemic equilibrium of system (10) when con-
dition (14) holds. To show existence of a transcritical bifurcation, we investigate the sign of real parts of roots of Eq. (18).

Throughout this section, we assume that function s is given by sðfÞ ¼ n~sðfÞ, where n is a positive constant and ~s : Cþ/
Rþ is a positive, decreasing, bounded and differentiable function. Here, Cþ is a space of positive continuous functions. Then,
system (10) becomes

8>>><
>>>:

x0ðtÞ¼p�bxðtÞzðtÞ� dxðtÞ ;

y0ðtÞ¼ be
�
Z n~sðztÞ

0

dðsÞ ds
xðt� n~sðztÞÞzðt� n~sðztÞÞ� ðmþgÞyðtÞ ;

z0ðtÞ¼ pgyðtÞ�azðtÞ :

(19)
We assume that condition (14) holds. Define

hðxÞ¼
Z x

0
dðsÞ ds ; for x � 0 :
Note that h is an increasing continuous function on Rþ and thus, is invertible. Therefore, the condition R0 � 1 is equivalent
to

n� 1
~sð0Þh

�1
�
ln
�

bppg
adðmþ gÞ

��
¼ n : (20)
Intuitive explanation of the above equation is that a long period of exposure renders an endemic equilibrium impossible.
Therefore, existence of a positive steady state E�≡ðx�; y�; z�Þ depends on parameter n. On the other hand, according to
Proposition 3, z� satisfies

bppge
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
¼ðmþgÞaðbz�ðnÞþd

�
; n2 ½0; nÞ (21)
Thus, using the Implicit Function Theorem, z� is a decreasing continuously differentiable function of n. Furthermore, using
Eq. (20) and Eq. (21), we obtain

z�ðn¼0Þ¼ p

gþ m
� da
bpg

; lim
n/n

z�ðnÞ ¼ 0 and lim
n/n

x�ðnÞ ¼ p

d
: (22)
Define for z � 0,

cðzÞ :¼ bppge
�
Z sðzÞ

0

dðsÞ ds

bzþ d
: (23)
Let E�ðnÞ denote the equilibrium for which z� is the first solution of equation cðzðnÞÞ ¼ ðmþ gÞa such that c0ðz�Þ<0.
Treating n as a control parameter, we set out to prove the existence of the transcritical bifurcation of system (19), as n moves
through n (respectively, R0 moving through 1).

From Eq. (18), the characteristic equation associated with E�ðnÞ is
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Dðl; nÞ¼ ðlþaÞðlþmþgÞþ naðnÞ~s0ðz�ðnÞÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds

þbðn; lÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
e�ln~sðz�ðnÞÞ ;

(24)
where

aðnÞ ¼ bpgz�ðnÞx�ðnÞdðn~sðz�ðnÞÞÞ and

�
�

bz�ðnÞ �

bðn; lÞ ¼ bpgx ðnÞ

lþ dþ bz�ðnÞ � 1 :
The next result states the existence of a transcritical bifurcation of the positive steady state at n ¼ n.

Theorem 3. If condition (14) holds at n ¼ n, one of the positive steady states of system (19) undergoes a transcritical bifurcation.
That is for n< n, n close to n, the positive steady state is locally asymptotically stable and the disease-free steady state Ef is unstable,
and for n> n the DFE is locally asymptotically stable.

A proof of the above theorem can be found in Appendix E.

6.2. Backward bifurcation

If condition (14) does not hold and if Rc <R0 <1 holds, then according to Proposition 3, there exist at least two endemic
equilibria, Em ¼ ðxm; ym; zmÞ and EM ¼ ðxM ;yM ;zMÞ. Therefore, a backward bifurcation may occur for values of R0 close to 1.

Denote the two equilibria by Em and EM , such that zm and zM are the first two solutions of equation cðzÞ ¼ ðmþ gÞa given by
Eq. (23) with c0ðzmÞ>0 and c0ðzMÞ<0, i.e.

bþ ndðn~sðzmðnÞÞÞ~s0ðzmðnÞÞðdþ bzmðnÞÞ<0 ; (25a)

bþ ndðn~sðzMðnÞÞÞ~s0ðzMðnÞÞðdþ bzMðmÞÞ>0 ; (25b)

respectively. We state the following theorem.

Theorem 4. If condition (14) does not hold at n ¼ n, then system (19) undergoes a backward bifurcation. That is, for n< n, n close to
n, there is a positive steady state that is locally asymptotically stable and the disease-free equilibrium Ef is unstable; and for n � n, n
close to n, both the disease-free equilibrium and one of the endemic equilibria are locally asymptotically stable, whereas a second
endemic equilibrium exists and is unstable.

A proof of the above theorem can be found in Appendix F.

Remark 2. Note that, similar to the model in Qesmi et al. (2015), in the case of single exposure, i.e, if b ¼ 0, system (10) is a
system of constant-delay differential equations, which does not go through a backward bifurcation, since in such a case
condition (14) holds true for all viable parameter values.

The remark can be generalized as follows.

Proposition 4. There exists a threshold value of b, b�1, above which the backward bifurcation appears, and a threshold value of b,
b�2, below which the backward bifurcation disappears.

A proof of the above proposition can be found in Appendix G.

7. Numerical simulations and sensitivity analysis

7.1. The system

In this section we provide illustrations for Theorems 3 and 4. Observe that it is challenging to explicitly solve for s and
therefore, it is difficult to locate the value of n. However, since the condition of n ¼ n in Theorems 3 and 4 is equivalent to R0 ¼
1, we will use p to demonstrate bifurcation dynamics.

In order to generate time trajectories of solutions we consider system (8). By substituting z¼ t þ u and u¼ tþ vwe obtain
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certðtÞ þ
Z t

t�tðtÞ
exp

hZ t

u
q
�
If ðzÞ

�
dz

i
F
�
If ðuÞ

�
du� A ¼ 0 : (26)
Differentiating Eq. (26) with respect to t and solving for t0ðtÞ yields

t0ðtÞ ¼
exp

hZ t

t�t
q
�
If ðzÞ

�
dz

i
F
�
If ðt � tðtÞÞ

�
� q

�
If ðtÞ

�
ðA� certÞ � F

�
If ðtÞ

�

exp
hZ t

t�t
q
�
If ðzÞ

�
dz

i
F
�
If ðt � tÞ

�
þ crert

: (27)
Set

a1ðtÞ ¼
Z t

t�tðtÞ
q
�
If ðzÞ

�
dz : (28a)
Then

t0ðtÞ ¼
ea1ðtÞF

�
If ðt � tðtÞÞ

�
� F

�
If ðtÞ

�
� ðA� certÞq

�
If ðtÞ

�
rcert þ ea1ðtÞF

�
If ðt � tðtÞÞ

� ; (29)

a0 ðtÞ¼ q
�
I ðtÞ

�
� q

�
I ðt � tðtÞÞ

�
ð1� t0ðtÞÞ : (30)
1 f f

0
We replace t ðtÞ with its definition and therefore obtain a system in S, Ic, If , t and a1 with a state-dependent delay. A
number of available numerical solutions software can be applied to generate the simulation results presented here. We have
used the MATLAB (2015) function, ddesd.

Remark 3. To demonstrate a setting where both bifurcations are possible, we consider a linear function approximation for q:

q
�
If
�
¼mIf and dðsÞ ¼ d :
7.2. Parameter value calculations

We commence from the discussion of susceptible, exposed and infected infants mortality rates. Observe that the equations
capturing dynamics of the infected infants and infectious adults females are given by

dIcðtÞ
dt

¼ Eðt; tðtÞÞ � ðmþ gÞIcðtÞ ; (31a)

dIf ðtÞ

dt

¼ ¼ pgIcðtÞ � aIf ðtÞ : (31b)
In the age-structured model for infected infants and infected females, the dynamics are described as follows

vIc
vt

þ vIc
va

¼ �hðaÞIcðt; aÞ ; t � 0 ;0 � a � T ; (32a)

dIf

dt

¼pIcðt; TÞ � aIf ðtÞ ; (32b)

subject to the following boundary conditions
Icðt;0Þ¼ Eðt; tðtÞÞ ;0 � a � T : (33a)

R T
Here, hðaÞ in system (32) is the death rate, a non-decreasing positive function of infection age such that m ¼ 0hðaÞ da.
Observe that in age-structured formulation of Ic compartment, using the characteristics method, the number of in-

dividuals at time t with the age of infection a is given by:
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Icðt; aÞ ¼ bSðt � a� tðt � aÞÞIf ðt � a� tðt � aÞÞe
�
Z tðt�aÞ

0

dðuÞ du
e
�
Z a

0

hðvÞ dv
: (34)

R T
Therefore the probability of surviving until the age of T (after becoming fully infected) is given by e� 0
hðuÞ du. On the other

hand, from system (31) it follows that the probability of surviving tomaturity age is given by g
mþg. Therefore, g in system (31) is

given by

g¼ m

e

Z T

0

hðaÞ da
� 1

¼ m

em � 1
:

We estimate m using the data from Congo. The disease is endemic there, and, according toWHO data, the prevalence of HIV
in adults aged 15 to 49 was at roughly 3% from 2005 to 2016. Thus it is accurate to say that the country is witnessing the
endemic equilibrium (seeWHO (2017b)). We obtain the infected infants death rate of m ¼ 0:0099 year�1 and transfer rate out
of infected infants compartment g ¼ 0:995 year�1.

The leaving rate of a healthy susceptible infant, d, is a sum of a death rate and growing out of breastfeeding (presumed to
be 2 years) rate. The death rate for healthy infants was taken from a country whose HIV-prevalence rate was low (Tunisia, <
0:1 in 2016, WHO (2017b)) by considering the death rates in populations of infants less than one years old and 1e4 years.
Therefore, we obtain d ¼ 0:512 year �1.

Similarly, we assume that women leave the infected compartment either at the end of the child-bearing process (50 years
of age) or due to the death (we have considered weighted average of death rates for females aged 20e49 years in Congo,
0.004784 year�1). Thus, a ¼ 0:0381. We assume that half of the infants are female, this p ¼ 0:5. The incoming rate, p is taken
in a range where backward or transcritical bifurcation take place and infection rate was adjusted so that the necessary

condition for endemic equilibrium viability, ppbg
adðmþgÞ>1, holds. Parameter values are summarized in Table 1.

Numerical investigation of Eq. (26) yields that the switch between backward bifurcation and transcritical bifurcation
happens due to the variations of the in-host parameters. In particular, if the virus growth rate constant r is sufficiently small,
the exposure delay causes appearance of a regime of bi-stability for a range of values of p, such that when R0 <1, solutions can
get attracted to either an endemic equilibrium or the disease-free equilibrium. We also observed that the smaller is r, the
larger is the R0 interval where bi-stability takes place. The results are shown in Figure H.2, plotting If vs p.

Next we investigate the dependence of components of an attracting endemic equilibrium on parameters using sensitivity
analysis. It is also used to evaluate the basin of bistability (in the case of a backward bifurcation) for different values of p in the
region of bistability. The method is adapted fromMarino (2008) and is based on the method outlined in Marino, Hogue, Ray,
and Kirschner (2008), which works as follows. First, we identify inputs: parameters and their ranges, and generate a large
number of unique parameter sets (bins) using Latin Hypercube Sampling (LHS) Mckay, Beckman, and Conover (2000). Then
themagnitude and strength of the relationship between the output metric and each of the input parameters is assessed using
Partial Rank Correlation Coefficients (PRCC). The coefficient assumes values in the interval ½ �1;1� and the magnitude of the
coefficient equal to 0.5 and higher signifies a strong correlation between an input parameter and the output variable.

We start by considering the sensitivity of the system's attractor to the perturbations of parameters. We selected the
parameter values corresponding to the attractor landscape where a backward bifurcation takes place, as p increases from
zero. The initial data was taken to be a function mapping ½ �sð0Þ;0� to Rþ

3 , set to DFE for t <0:1 and to a perturbed stable
Table 1
Parameter values used to simulate the dynamics of system (8).

Parameter Description Units Value

d leaving rate of susceptible infants year�1 0.512
m death rate of infected infants year�1 0.0099
g transition rate from infected infant to infected adult year�1 0.995
p fraction of infected infants that grow up to become infected adult females 0.5
a exit rate of infected females year�1 0.0381
b transmission rate ðindividual yearÞ�1 7:4e� 3
d death rate of exposed infants year�1 1e-2
r average virus growth rate year�1 0.1, 1
m adjustable constant controlling the intrinsic virus growth rate year�1 individual�1 1e-11, 1e-5
c viral load introduced at each exposure virions 20
b number of effective contacts with infectious adult females year�1 16
k adjustable saturation constant 1e-6, 1
A viral load needed for infection virions 1e3, 1e5
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endemic equilibrium in the region of bi-stability at time t ¼ 0:1. Each parameter was sampled within 80e120% interval of its
base value assuming the uniform distribution. Altogether 8000 sets of parameters were generated. For each set of parameters,
a condition for the existence of an endemic equilibriumwas evaluated and the sets with no viable endemic equilibriumwere
discarded (4202 sets were accepted).

The results are captured on Figure H.3. We observe that while the virus dynamic parameters determine the attractor
landscape, they do not influence the location of the equilibrium itself. Themost important parameters for all four components
of the system are the infection rate b, the proportion of infected infants that will proceed to be infectious adults p, and the
average lifetime of an infectious female 1 =a. S does not have a dependence on any other parameters. However, the remaining
three components have a pronounced relationship with both the recruitment and death rate of susceptible infants. In short,
an increase of the average life span of a susceptible infant causes an increase in the equilibrium values of both infected
compartments. Not surprisingly, the average death rate of an infected infant, g, has a correlation with the number of infected
infants at an endemic equilibrium.

Next, we consider sensitivity of the system to the initial data in the region of bi-stability with three different values of p
sampled and the rest of parameters fixed. The base for the initial data was a perturbed stable endemic equilibrium in the
region of bi-stability, ðbS;bIc;bI f ; btÞ at time t ¼ 0:1 and DFE for t <0:1. The components of the state at time t ¼ 0:1, Xð0:1Þ, were
sampled on the following intervals:

S : ð0:001�1Þ� bSð0:1Þ ;
Ic : ð0:001�1Þ�bIcð0:1Þ ;
If : ð0:001�1Þ�bI f ð0:1Þ ;
t : ð0:8�20Þ� btð0:1Þ :

using LHS with 3000 bins. The results are captured in Figure H.4. We observe that in the region of bi-stability, provided that
there is a non-zero number of infected individuals (infants or adults) at time t ¼ 0:1, the initial value of the delay determines
whether the solutionwill converge to a DFE or an endemic equilibrium. If it is significantly large, the solutionwill converge to
the DFE.

Next we investigate the role of the initial size of the infected populations on the attractor of the system. From Figures H.5
and H.6 it follows (for the interval that we have considered) that the initial value of t is the key determinant of the shape of the
basin of attraction. However, for a certain range of tð0:1Þ, the total number of infected individuals in the system has a sig-
nificant correlation with the attractor. We observe (Figure H.5) that joined initial population of infected adults and children
determine the basin of attraction, although they fail to do so separately. For example, it is evident that there are values of If
which cause a trajectory to converge to an endemic equilibrium and (depending on the remaining components of the initial
data) can also cause the trajectory to converge to the disease-free equilibrium. We also observe that as the incoming rate of
susceptible infants, p, increases, the basin of attraction of the DFE narrows, i.e., as p increases, the influence of total number of
infected people on the division of basins of attraction becomes less pronounced. Finally, we observe (Figure H.7) that the size
of Sð0Þ does not affect the basin of attraction.
8. Discussion

Breastfeeding is an important route of mother-to-child HIV transmission. Immuno-epidemiological models, that embed
individual levels of pathogenesis into population level models of disease, provide the tools necessary to study the effects of
individual-level effects of infectious diseases on the population, and vice versa.

In this paper we proposed an immuno-epidemiological model with threshold delay to investigate the effects of the
duration of breastfeeding on the disease dynamics in a population of infants, infectious women, and infected children. This
model represents an important first step towards the development of a larger immuno-epidemiological framework that also
includes the disease dynamics of HIV in the entire population (including of healthy and infected men, women, children, and
infants), not only given the fact that it is the first of its kind, but that the model analysis shows a clear connection between
population level results and individual-level parameters. We now summarize the results and provide a discussion on the
connection between the two scales.

The basic reproduction number, R0, as given by Eq. (12), is a key parameter in the model. The non-delayed analog model
has a globally asymptotically stable DFE when the associated R0 <1, and it is unstable R0 >1. However, an R0 <1 may not be
sufficient to eradicate the disease. When condition (14) holds achieving an R0 <1will eradicate the disease (the DFE is locally
asymptotically stable), but when condition (14) does not hold and Rc <R0 <1 the system undergoes a backward bifurcation.
The existence of the backward bifurcation depends on individual-level parameters. In Proposition 4 we showed that the
existence of the backward bifurcation depends on the effective number of contacts b. Therefore, the analysis of the proposed
model indicates that while the population level processes determine the level of the disease prevalence in the population
being studied, an in-host process parameter determines the possibility of bi-stability. Given the connection between the
population level outcomes and the in-host level parameters found here, a direct conclusion is to allocate resources towards
the determination of accurate approximations of these parameters, and a thorough knowledge of the in-host process and
response functions.



A. Teslya et al. / Infectious Disease Modelling 4 (2019) 188e214 201
There are several limitations to themodel presented here. Important extensions include: a density dependent birth rate so
that the effects of mother-to-child breastfeeding can be studied in smaller populations; an in-host model of HIV viral load in
infected women, to allow for different infectious doses over the entire course of HIV infection; a stochastic in-host model of
HIV pathogenesis in infants to study the probability of viral clearance after exposure; the explicit consideration of health
resources available to the population (i.e., therapeutics, community programs), and adherence regimens to any drug therapies
being studied; a comprehensive model of HIV transmission in an entire population, including healthy and infected men,
women, children and infants.

Threshold models for infectious disease transmission dynamics have been formulated and analyzed before, and some of
the earlier relevant developments can be found in the monograph Walthman (1974). A case study in Smith (1993) suggested
that in many instances, as is in this paper, structured population models can be reduced to threshold delay equations through
integration along characteristics. In Barbarossa, Hadeler, and Kuttler (2014), it was shown that a class of state-dependent
delay equations can be derived from some fundamental biological principles governing the birth, death, and maturation
processes in which the length of the juvenile phase depends on the total adult population size. The breastfeeding infection
model we studied describes a similar epidemiological process, where the length of time, during which infants remain
exposed but not yet infected, depends on the total infected female population.

It remains to be seen whether the novel class of neutral equations similar to that derived by Barbarossa et al. Barbarossa
et al. (2014) can also occur in the epidemiological setting. While our present study focuses on steady state dynamics and
backward bifurcations, an interesting issue to be addressed in a future study is whether nonlinear oscillations can be observed
when the assumption of the birth rate being a constant is relaxed and replaced by a more nonlinear feedback depending on
the total female population. This will require the applications of some type of Hopf bifurcation theory or fixed-point theory. As
the pioneering work Arino, Hadeler, and Hbid (1998a, b) shows, this will be a highly non-trivial task since the state-
dependent duration from initial exposure to final stage of being infection of infants due to breastfeeding adds additional
multiplicity of zero eigenvalues for the linearized systems.
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Appendix A. Reduction of system (6) to ODE threshold-dependent delay form

Set 1 =g ¼ R ∞
0 anðaÞ da and 1 =m ¼ R ∞

0 ahðaÞ da. Recall that the sojourn in the exposed compartment is negligible in the
grand scheme of things and therefore, the age since infection and maturation age can be tracked by a single variable.

We assume that the general population is currently at both epidemic and age-of-population steady state and the dynamics
of populations described by Eq. (6b) and Eq. (6c) do not affect it in any significant way. We start by considering Eq. (6b) and
dividing the age-since-exposure interval into n subintervals: ½ai�1;ai�, for i ¼ 1…n with allowing an ¼ ∞. Set

NiðtÞ ¼
Z ai

ai�1

Icðt; aÞ da :
Assuming that the size of each age interval is infinitesimal, set hi and ni to be death and maturation rates on time interval
½ai�1;ai�.

Using the process similar to the one described by Hethcote (1997), with ci >0 being transition constants from Ni
compartment into Niþ1 compartment, for i ¼ 1…n, we obtain the following set of ODEs corresponding to the description
given by Eq. (6b):

dN1

dt
¼ be

�
Z tðtÞ

0

dðuÞ du
Sðt� tðtÞÞIf ðt� tðtÞÞ� ðn1 þ h1 þ c1ÞN1ðtÞ ;

dN1

dt
¼ c1N1ðtÞ� ðn2 þ h2 þ c2ÞN2ðtÞ ;

«

dNn

dt
¼ cn�1Nn�1ðtÞ� ðnn þ hnÞNnðtÞ :

(A.1)
Since IcðtÞ ¼ Pn
i¼1NiðtÞ, then adding up system (A.1) yields:
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dIc
dt

¼be
�
Z tðtÞ

0

dðuÞ du
Sðt � tðtÞÞIf ðt � tðtÞÞ �

Xn
i¼1

ðhi þ niÞNi :

P

Divide and multiply the last term by n

i¼1Ni to obtain:

dIc
dt

¼be
�
Z tðtÞ

0

dðuÞ du
Sðt � tðtÞÞIf ðt � tðtÞÞ � IcðtÞ

IcðtÞ
Xn
i¼1

ðhi þ miÞNi :

P P

Observe that in the last term IcðtÞ is multiplied by theweighted averages 1

IcðtÞ
n
i¼1hiNi and 1

IcðtÞ
n
i¼1niNi. Since the size of age

intervals is infinitesimal, then mz 1
IcðtÞ

Pn
i¼1hiNi and gz 1

IcðtÞ
Pn

i¼1niNi and thus we obtain the following ODE capturing the
dynamics of Ic compartment:

dIc
dt

¼be
�
Z tðtÞ

0

dðuÞ du
Sðt � tðtÞÞIf ðt � tðtÞÞ � ðmþ gÞIcðtÞ : (A.2)
Consider Eq. (6c) with boundary condition given by Eq. (7b).
Similarly to the process followed for infected infants compartment, we divide the age interval into n subintervals: ½ai�1;ai�,

for i ¼ 1…n with allowing an ¼ ∞. Set

MiðtÞ ¼
Z ai

ai�1

If ðt; aÞ da

and ki to be the exit rate due to the termination of breastfeeding on time interval ½ai�1;ai�. Recall that ni is the maturation rate

on time interval ½ai�1; ai�. Set ci >0 to be transition constants from Mi compartment Miþ1 compartment, for i ¼ 1…n, we
obtain the following set of ODEs:

dM1

dt
¼ l

Z ∞

0
If ðt; aÞ daþ

Z ∞

0
pnðaÞIcðt; aÞ da� ðaþ c1 þ k1ÞM1ðtÞ ; (A.2a)

dM1
dt
¼ c1M1ðtÞ � ðaþ c2 þ k2ÞM2ðtÞ ; (A.2b)

« (A.2c)
dMn
dt
¼ cn�1Mn�1ðtÞ � ðaþ knÞMnðtÞ : (A.2d)
Summing system (A.2) yields:

dIf
dt

¼ l

Z ∞

0
If ðt; aÞ daþ

Z ∞

0
pnðaÞIcðt; aÞ da� aIf ðtÞ �

Xn
i¼1

kiMiðtÞ :

R P

Since we assume that the age intervals are sufficiently small, we can approximate ∞

0 nðaÞIcðt; aÞ da ¼ n
i¼1niNi andPn

i¼1kiMiðtÞ ¼ rIf ðtÞ. Similarly to the above proof we obtain the following ODE capturing the dynamics of If compartment:

dIf
dt

¼ lIf ðtÞ þ pgIcðtÞ � aIf ðtÞ � rIf ðtÞ : (A.3)
Finally, since the general population is in a steady state, the incoming rate lIf ðtÞ and outgoing rate rIf ðtÞ are equal.
Therefore, the equation reduces to

dIf
dt

¼pgIcðtÞ � aIf ðtÞ : (A.4)
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Appendix B. Proof of Proposition 1

To prove the proposition, we use the global Implicit Function Theorem (GIFT) in (Ichiraku, 1985, Theorem 3). In what
follows, we show that conditions 1e3 of the theorem apply to system (8).

Step 1. Let f2Cþ. Consider the following equation

Hðs;fÞ : ¼
Z 0

�s
e

Z 0

v

qðfðuÞÞ du
FðfðvÞÞ dvþ cers � A ¼ 0 (B.1)

for s>0.
Since the derivative DsHðs;fÞ is given by

DsHðs;fÞ¼ crers þ e

Z 0

�s

qðfðuÞÞ du
Fðfð�sÞÞ ;

then, similarly to the proof in Appendix B of Qesmi et al. (2015), Hð:;fÞ is increasing.

Step 2. The second partial derivative DðfÞHðs;fÞ is given, for j2C, by

DfHðs;fÞj¼
Z 0

�s
e

Z0
v

qðfðuÞÞ du
DFðfðvÞÞjðvÞ dv

þ
Z 0

�s
e

Z0
v

qðfðuÞÞ duZ 0

v
DqðfðuÞÞjðuÞ duFðfðvÞÞ dv

for s� 0 and f2C. This map is invertible since F and q are increasing functions.
Step 3. Let ðsi;fiÞi�1 be a sequence of vectors in Rþ � C such that Hðsi;fiÞ ¼ 0 and the sequence ðfiÞi�1 converge to f in C as
i/∞. Thus, for i � 1,

0<
Z 0

�si
e

Z 0

v

rðfiðuÞÞdu
FðfiðvÞÞdv¼ � cersi þ A

and, consequently,
cersi <A :

þ
Therefore, sequence siis bounded and, thus, there exists a subsequence of siwhich converges to a point in R .
Finally, using the GIFT theorem in (Ichiraku, 1985, Theorem 3), there exists a unique and continuous map s : C/ Rþsuch

that HðsðfÞ;fÞ ¼ 0for any f 2C. Let, for t � 0;f : ¼ If ;t2C. Then

J
�
s
�
If ;t

�
; If ;t

�
¼H

�
s
�
If ;t

�
; If ;t

�
¼ 0 :
Thus, similarly to the proof in Appendix B of Qesmi et al. (2015) we conclude that map s is decreasing and continuously
differentiable and satisfy, for all j2C;This achieves the proof of the proposition.

Appendix C. Proof of Theorem 1

If rR0 <1; then, for ε sufficiently small,

r
�p
d
þ ε

� bpg
a

e
�
Z sð0Þ

0

dðsÞds
<mþ g (C.1)
must hold. Since, by Proposition 2, solutions of system (10) with non-negative initial data remain non-negative, then,
using the Comparison Theorem (see Lakshmikantham and Leela (1969)), we obtain
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lim sup
t/∞

xðtÞ � p

d
:

Then for ε>0; there is T1 >0such that xðtÞ� p
dþ ε, for t � T1. Thus, for t� T1 þ sð0Þ

_yðtÞ� � ðmþgÞyðtÞþb
�p
d
þ ε

�
e
�
Z sðztÞ

0

dðsÞ ds
zðt�sðztÞÞ

� � ðmþgÞyðtÞþb
�p
d
þ ε

�
e
�
Z s�

0

dðsÞ ds
zðt� sðztÞÞ

� � ðmþgÞyðtÞþ rb
�p
d
þ ε

�
e
�
Z sð0Þ

0

dðsÞ ds
zðt� sðztÞÞ :

(C.2)
Consider the following linear system of differential equations

8>>><
>>>:

y0ðtÞ¼ � ðmþgÞyðtÞþ rb
�p
d
þ ε

�
e
�
Z sð0Þ

0

dðsÞ ds
zðt� sð0ÞÞ ;

z0ðtÞ¼ pgyðtÞ�azðtÞ :
(C.3)
We claim that the trivial equilibrium ðy;zÞ ¼ ð0;0Þof system (C.3) is globally asymptotically stable (GAS). Indeed, system
(C.3) is linear and its characteristic equation around the trivial equilibrium is given by

DðlÞ¼ ðlþ mþ gÞðlþ aÞ � rb
�p
d
þ ε

�
pge

�
Z sð0Þ

0

dðsÞds
e�lsð0Þ ¼ 0 :

� �

Let l ¼ aþ ibbe a root of DðlÞsuch that a � 0. Then �e�lsð0Þ� � 1. Therefore, from the above characteristic equation and Eq.

(C.1), it follows that

jlþaj , jlþmþgj ¼ pgrb
�p
d
þ ε

�
e
�
Z sð0Þ

0

dðsÞ ds���e�lsð0Þ
���

� pgrb
�p
d
þ ε

�
e
�
Z sð0Þ

0

dðsÞ ds

<aðmþgÞ :
However, since a � 0, then jl þ aj � aand jl þ mþ gj � mþ ghold.We arrive at a contradiction and, therefore, every root of
the equation DðlÞ ¼ 0has negative real part and the trivial equilibrium ðy;zÞ ¼ ð0;0Þof system (C.3) is locally asymptotically
stable. It follows directly that ðy;zÞ ¼ ð0;0Þof this system is also GAS.

On the other hand, by Lemma (1), s is continuously differentiable and its derivative, s0, is bounded on C. Thus, using
Theorem 2.4 in Gyori and Hartung (2007), we deduce that the trivial equilibrium of system

8>>><
>>>:

y0ðtÞ¼ � ðmþgÞyðtÞþ rb
�p
d
þ ε

�
e
�
Z sð0Þ

0

dðsÞds
zðt� sðztÞÞ ;

z0ðtÞ¼ pgyðtÞ�azðtÞ :

is GAS.
Let ðxðtÞ;yðtÞ;zðtÞÞbe a solution of system (10) with positive initial data. It follows, by comparison, that ðyðtÞ;zðtÞÞconverges

to 0 as t/∞. Furthermore, integrating the first equation in system (10) and taking the limit, we obtain limt/∞xðtÞ ¼ p
d. The

proof of Theorem 1 is complete.
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Appendix D. Proof of Theorem 2

Observe that characteristic equation (18) at the DFE Efwith ye ¼ ze ¼ 0and xe ¼ x, is given by

DðlÞ¼ ðlþ aÞðlþ mþ gÞ � bpgxe
�
Z sð0Þ

0

dðsÞ ds
e�lsð0Þ ¼ 0 : (D.1)
Thus,

Dð0Þ¼ � bxe
�
Z sð0Þ

0

dðsÞds
þðmþgÞa¼

�
1� bpgx

ðmþ gÞae
�
Zsð0Þ
0

dðsÞds�
ðmþgÞa;

¼ ð1�R0ÞðmþgÞa
and liml/∞DðlÞ ¼ þ ∞. If R0 >1, then Dð0Þ<0, and therefore, there exists l0 >0such that Dðl0Þ ¼ 0. Subsequently, if
R0 >1, then the trivial steady state is unstable.

Conversely, consider the case when R0 <1. Using proof by contradiction, we assume that l ¼ aþ ibis a root of DðlÞwith a �
0. Then

��e�lsð0Þ�� � 1. Therefore, from Eq. (D.1),

jðlþaÞðlþmþgÞj ¼bpgxe
�
Z sð0Þ

0

dðsÞ ds���e�lsð0Þ
���

� bpgxe
�
Z sð0Þ

0

dðsÞ ds

¼ R0ðmþgÞa
< ðmþgÞa :
However, since a � 0; jl þ aj � aand jl þ mþ gj � mþ ghold. We arrive at a contradiction and, therefore, every root of
equation DðlÞ ¼ 0has negative real part and DFE Ef is locally asymptotically stable.

Appendix E. Proof of Theorem 3

The stability and uniqueness of the DFE, as n passes through n, follow from Theorem 2 and Proposition 3. We investigate
local asymptotic stability of E�ðnÞfor n2½0; n½in a neighborhood of n. The characteristic equation at l ¼ 0is given by

Dð0; nÞ¼aðmþ gÞ � bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
þ QðnÞ ;
where

QðnÞ¼gbpe
�
Z n~sðz�ðnÞÞ

0

dðsÞ dsbx�ðnÞz�ðnÞ
dþ bz�ðnÞ

þnbpgz�ðnÞx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
dðn~sðz�ðnÞÞÞ~s0ðz�ðnÞÞ

¼ gbpe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
x�ðnÞz�ðnÞ

�
b

dþ bz�ðnÞþ ndðn~sðz�ðnÞÞÞ~s0ðz�ðnÞÞ
�
:

However, from Eq. (21), it follows that
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aðmþ gÞ�bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
¼ aðmþ gÞ � pbpge

�
Z n~sðz�ðnÞÞ

0

dðsÞ ds

dþ bz�ðnÞ ¼ 0 :
On the other hand, since c0ðz�ðnÞÞ<0, we have

b

dþ bz�ðnÞ þ ndðn~sðz�ðnÞÞÞ~s0ðz�ðnÞÞ>0
for n2½0; n½:Hence, QðnÞ>0, and subsequently Dð0; nÞ>0. Therefore, l ¼ 0is not a root of Dðl; nÞ ¼ 0for n< n. Then, Dðl; nÞ ¼
0can be written as

ðlþ aÞðlþ mþ gÞþ bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
e�ln~sðz�ðnÞÞ ¼ Q1 þ Q2 (E.1)
where

Q1 ¼ bz�ðnÞ
lþ dþ bz�ðnÞbpgx

�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
e�ln~sðz�ðnÞÞ
and

Q2 ¼ nbpgx�ðnÞdðn~sðz�ðnÞÞÞz�ðnÞ~s0ðz�ðnÞÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
:

Let l ¼ aþ ibbe a root of Dðl; nÞwith a � 0. Then
��e�ln~sðz�ðnÞÞ�� � 1. Thus,

jQ1 þQ2j ¼ bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds

�
���� bz�ðnÞ
lþ dþ bz�ðnÞe

�ln~sðz�ðnÞÞ þ nz�ðnÞdðn~sðz�ðnÞÞÞ~s0ðz�ðnÞÞ
����

� bpgx�ðnÞz�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds���� b

dþ bz�ðnÞþ dðn~sðz�ðnÞÞÞn~s0ðz�ðnÞÞ
���� :
However, b
dþbz�ðnÞ þ dðn~sðz�ðnÞÞÞn~s0ðz�ðnÞÞ>0and ~s0ðz�ðnÞÞ<0. Therefore,

����Q1 þQ2

�����bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds� bz�ðnÞ
dþ bz�ðnÞþ dðn~sðz�ðnÞÞÞn~s0ðz�ðnÞÞz�ðnÞ

�

� bpgx�ðnÞe
�
Z m~sðz�ðnÞÞ

0

dðsÞ ds
:

Additionally, aðmþ gÞ ¼ bpgx�ðnÞe�
R n~sðz�ðnÞÞ

0
dðsÞ dsand ðlþ aÞðlþ mþ gÞ>aðmþ gÞ. Therefore,
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bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds���1þ e�ln~sðz�ðnÞÞ
���¼ ���aðmþgÞþ bpgx�ðnÞe

�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
e�ln~sðz�ðnÞÞ

���

�
���ðlþaÞðlþmþgÞþ bpgx�ðnÞe

�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
e�ln~sðz�ðnÞÞ

���

¼ jQ1 þQ2j �bpgx�ðnÞe
�
Z n~sðz�ðnÞÞ

0

dðsÞ ds
:

Consequently,���1þ e�ln~sðz�ðmÞÞ
��� � 1 ;

which implies that l ¼ 0is a root of Dðl;nÞ. We arrive at a contradiction. Therefore, every root of Dðl;nÞhas negative real part
and therefore, the endemic equilibrium is locally asymptotically stable when n< n. If n> n, the system has only one equilib-
rium, the DFE. Stability and uniquness follow from Theorem 2 and Proposition 3.

Appendix F. Proof of Theorem 4

The stability and uniqueness results for the DFE, as n passes through n, follow from Theorem 2 and Proposition 3.
Next, we prove that equilibrium EMðnÞ ¼ ðxMðnÞ; yMðnÞ; zMðnÞÞis locally asymptotically stable and EmðnÞ ¼ ðxmðnÞ; ymðnÞ;

zmðnÞÞis unstable when R0 <1(or equivalently n> n).
We begin by proving that l ¼ 0is not a root of Dðl;nÞ ¼ 0at EMðnÞ ¼ ðxMðnÞ;yMðnÞ;zMðnÞÞ, for n close to n. The characteristic

equation associated with EMevaluated at l ¼ 0is given by

Dð0; nÞ¼aðmþ gÞ � bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
þ QðnÞ ;

where
QðnÞ¼gbpe
�
Z n~sðzM ðnÞÞ

0

dðsÞ dsbxMðnÞzMðnÞ
dþ bzMðnÞ

þnbpgzMðnÞxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
dðn~sðzMðnÞÞÞ~s0ðzMðnÞÞ

¼ gbpe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
xMðnÞzMðnÞ

�
b

dþ bzMðnÞþ ndðn~sðzMðnÞÞÞ~s0ðzMðnÞÞ
�
:

However, by Eq. (25b), b
dþbzMðnÞ þ ndðn~sðzMðnÞÞÞ~s0ðzMðnÞÞ>0and therefore, QðnÞ>0. On the other hand, from Eq. (21) it

follows that

aðmþ gÞ� bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
¼ aðmþ gÞ � pbpge

�
Z n~sðzM ðnÞÞ

0

dðsÞ ds

dþ bzMðnÞ ¼ 0 :
Thus, Dð0; nÞ>0, and, subsequently, l ¼ 0is not a root of Dðl; nÞ ¼ 0for n is in a sufficiently close neighborhood of n.
Therefore, we can re-state equation Dðl; nÞ ¼ 0as

ðlþ aÞðlþ mþ gÞþ bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
e�ln~sðzMðnÞÞ ¼ Q1 þ Q2 ;

where
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Q1 ¼ bzMðnÞ
lþ dþ bzMðnÞ bpgxMðnÞe

�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
e�ln~sðzMðnÞÞ

and
Q2 ¼ nbpgxMðnÞdðn~sðzMðnÞÞÞzMðnÞ~s0ðzMðnÞÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
:

�� �lbn~sðzMðnÞÞ��
Now, let l ¼ aþ ibbe a root of Dðl; nÞwith a � 0. Then ls0and e � 1. Thus,

jQ1 þQ2j ¼ bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds���� bzMðnÞ
lþ dþ bzMðnÞe

�ln~sðzMðnÞÞ þ nzMðnÞdðn~sðzMðnÞÞÞ
����

� bpgxMðnÞzMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds���� b

dþ bzMðnÞþ dðn~sðzMðnÞÞÞn~s0ðzMðnÞÞ
���� :

b 0
However, from Eq. (25b), dþbzMðnÞ þ dðn~sðzMðnÞÞÞn~s ðzMðnÞÞ>0and ~s0ðzMðnÞÞ<0. Thus,

jQ1 þQ2j � bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds� b

dþ bzMðnÞþ dðn~sðzMðnÞÞÞn~s0ðzMðnÞÞ
�
zMðnÞ

� bpgxMðnÞe
�
Z m~sðzM ðnÞÞ

0

dðsÞ ds
:

�
R n~sðzMðnÞÞ

dðsÞ ds
Additionally, aðmþ gÞ ¼ bpgxMðnÞe 0 and ðlþ aÞðlþ mþ gÞ>aðmþ gÞ. Therefore,

bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds���1þ e�ln~sðzMðnÞÞ
���

� jaðmþgÞþbpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
e�ln~sðzMðnÞÞj

� jðlþaÞðlþmþgÞþ bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
e�ln~sðzMðnÞÞj

¼ jQ1 þQ2j � bpgxMðnÞe
�
Z n~sðzM ðnÞÞ

0

dðsÞ ds
:

Consequently,���1þ e�ln~sðzMðmÞÞ
��� � 1 :
We arrive on a contradiction, since l ¼ 0is not a root of Dðl;nÞ. Therefore, if n> nthen every root of Dðl;nÞat EMhas negative
real part and the endemic equilibrium is locally asymptotically stable.

The characteristic equation associated with EmðnÞ ¼ ðxmðnÞ;ymðnÞ;zmðnÞÞsatisfies

Dð0; nÞ ¼ gbpe
�
Z n~sðzmðnÞÞ

0

dðsÞ ds
xmðnÞzmðnÞ

�
b

dþ bzmðnÞ þ ndðn~sðzmðnÞÞÞ~s0ðzmðnÞÞ
�
:

b
��
However, from Eq. (25a), dþbzmðnÞ þ ndðn~szmðnÞ and Dð0;nÞ<0. Furthermore liml/∞Dðl;nÞ ¼ þ∞. Thus, if n> nthen there
exists l� >0such that Dðl�; nÞ ¼ 0. This concludes the proof of the theorem.
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Appendix G. Proof of Proposition 4

From Appendix B we have Hðsðb;0Þ;0Þ ¼ Hðsð0;yÞ;yÞ ¼ 0for b � 0and y � 0, where H is the function given by Eq. (B.1). It
follows that for any b � 0and y � 0;

sðb;0Þ¼sð0; yÞ ¼ sð0;0Þ ¼ 1
r
ln
�
A
c

�
:

Recall the dependence of the function c, given by Eq. (23), on the number of contacts during the exposure period, b.
Namely, cðb;yÞ ¼ cðyÞfor b � 0and y � 0. We have

cð0; yÞ ¼ bpe
�
Z sð0;0Þ

0

dðsÞds

byþ d
<cð0;0Þ

for all y � 0and cðb;0Þ ¼ cð0;0Þfor all b � 0:Furthermore, c is increasing when b>0.
Using equation Hðsðb;yÞ;yÞ ¼ 0with y2R, following a few computations, the derivative of the function sðbÞis given by

s0yðb; yÞ ¼

�
q
0ðyÞ
qðyÞ FðyÞ þ F 0ðyÞ

��
1� eqðyÞsðyÞ

�
qðyÞ�crersðyÞ þ eqðyÞsðyÞFðyÞ� :
In particular, we have

s0yð0; yÞ¼0; s0yðb;0Þ ¼ b

�
1� eqð0Þsð0;0Þ

�
rersð0;0Þqð0Þ and lim

b/∞
s0yðb;0Þ ¼ �∞ :
On the other hand, cðbÞis differentiable and its derivative, for b � 0; is given by

c0yðb; yÞ ¼ bpe
�
Z sðb;yÞ

0

dðsÞds�s0yðb; yÞdðsðb; yÞÞðbyþ dÞ � b

ðbyþ dÞ2
Thus, c0yð0;0Þ ¼ � pe�
R sð0;0Þ

0
dðsÞdsb2

d2 <0and limb/∞c0yðb; 0Þ ¼ þ ∞:Furthemore, for each b � 0; c0yð ,; 0Þis an increasing
function. Hence, since c0ð ,; 0Þis a continuous function on Rþ; there exists a unique b�1 >0such that c0yðb�1; 0Þ ¼ 0, c0yðb;
0Þ<0for b2½0;b�1½and c0ðb;0Þ>0for b> b�1:In particular, for each b> b�1;there exists y� >0close to zero and satisfies cðb;y�Þ>
cðb;0Þ. This means that the backward bifurcation appears for all b> b�1(See the proof of Proposition 3).

On the other hand, for y>0;

c0yð0; yÞ¼ � e
�
Z sð0;0Þ

0

dðsÞds b2p

ðbyþ dÞ2
<0
Thus, there exists b�2 >0such that, for b< b�2;cðb;yÞ<cðb;0Þfor all y>0:Finally, the backward bifurcation disappears for all
b< b�2.
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Appendix H. Figures

Figure H.1. Flow diagram for system (3).

Figure H.2. Bifurcation diagrams for system (8) with b ¼ 7:4e� 3, d ¼ 0:512, d ¼ 1e� 2, m ¼ 0:0099, g ¼ 0:995, p ¼ 0:5, a ¼ 0:0381, c ¼ 20, b ¼ 165. (a) Given
A ¼ 1e5, r ¼ 0:05, m ¼ 1e� 11, an endemic equilibrium undergoes a backward bifurcation as p decreases through 5.534. (b) Given A ¼ 1e3, r ¼ 1, m ¼ 1e� 5,
an endemic equilibrium undergoes a transcritical bifurcation at p ¼ 29:11.
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Figure H.3. Sensitivity analysis of an attractor of system (8) with the system (a) in the region where two endemic equilibria exist and (b) a single endemic
equilibrium exists.
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Figure H.4. Sensitivity analysis for system (8) to the initial data in the parametric region where bi-stability exists with (a) R0is closer to Rcthan to 1; (b) R0is
halfway between Rcand 1; (c) R0is closer to 1 than to Rc .
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Figure H.5. Basin of attraction of a stable endemic equilibrium in system (8) in terms of Icð0Þand tð0Þwith the system in the regime of bi-stability with (a) R0is
closer to Rcthan to 1; (b) R0is halfway between Rcand 1; (c) R0is closer to 1 than to Rc .

Figure H.6. Basin of attraction of a stable endemic equilibrium in for system (8) with the system in the regime of bi-stability with (a) R0is closer to Rcthan to 1;
(b) R0is halfway between Rcand 1; (c) R0is closer to 1 than to Rc .

Figure H.7. Basin of attraction of a stable endemic equilibrium in for system (8) with the system in the regime of bi-stability with (a) R0is closer to Rcthan to 1; (b)
R0is halfway between Rcand 1; (c) R0is closer to 1 than to Rc .
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