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SUMMARY

Disorders of human skin manifest themselves with patterns of lesions ranging from simple scattered

spots to complex rings and spirals. These patterns are an essential characteristic of skin disease, yet

the mechanisms through which they arise remain unknown. Here we show that all known patterns of

psoriasis, a common inflammatory skin disease, can be explained in terms of reaction-diffusion. We

constructed a computational model based on the known interactions between the main pathogenic

cytokines: interleukins IL-17 and IL-23, and tumor necrosis factor TNF-a. Simulations revealed that

the parameter space of themodel contained all classes of psoriatic lesion patterns. They also faithfully

reproduced the growth and evolution of the plaques and the response to treatment by cytokine tar-

geting. Thus the pathogenesis of inflammatory diseases, such as psoriasis, may be readily understood

in the framework of the stimulatory and inhibitory interactions between a few diffusing mediators.

INTRODUCTION

Most skin diseases manifest themselves with reproducible patterns of skin lesions, which are conventionally

described in terms of lesion morphology (e.g., macules, papules, plaques) and distribution on the skin sur-

face (Nast et al., 2016). The biological basis of pattern formation is only understood in a few special cases.

For instance, the segmental pattern of herpes zoster reflects dermatomal viral reactivation through sensory

nerves, and the linear pattern in Blaschko lines represents genetic mosaicism. In most cases, however, the

mechanisms by which pathological processes in the skin generate reproducible patterns remain virtually

unknown (Nast et al., 2016).

The majority of skin diseases are inflammatory, which explains why the lesions are often red, elevated, and

scaly (resulting from, respectively, vasodilation and hyperemia, inflammatory infiltrate and edema, and path-

ologically increased epidermal keratinization secondary to inflammation). The skin has a large surface

(average 1.5 m2–2.0 m2) compared with its thickness (0.5 mm–4mm; surface-to-volume ratio of approximately

650m2/m3) (Leider, 1949) and is therefore ideally suited to study themechanisms of the spatial propagation of

inflammatory processes in a tissue. Psoriasis, a chronic, autoimmune inflammatory skin disease affecting

2%–3% of the population in Western countries (Parisi et al., 2013) provides a particularly useful model. The

lesions are sharply demarcated, scaly, and distributed symmetrically on the body (Christophers, 2001; Griffiths

and Barker, 2007; Nestle et al., 2009). The plaques evolve from pinpoint papules by centrifugal growth, which

explains the oval contour ofmature lesions (Farber et al., 1985; Soltani and Van Scott, 1972). Individual plaques

may merge producing polycyclic contours (Christophers, 2001; Farber et al., 1985). In some instances the pla-

ques have the appearance of rings (referred to as annular, arciform, or circinate patterns) (Christophers, 2001;

Nast et al., 2016), which is the predominant morphological feature in approximately 5% patients (Morris et al.,

2001). The mechanisms responsible for these patterns are not readily explainable in terms of the lateral prop-

agation of inflammation, in which one would expect a gradual attenuation of inflammation due to the dilution

of proinflammatory agents that diffuse in the skin. In contrast, in psoriatic lesions the intensity of inflammation

is preserved throughout the whole plaque and sharply suppressed at its margin over the distance of a few

millimeters. We show that the phenotypic features of psoriasis can be explained in terms of interactions be-

tween key pathogenic cytokines consistent with a reaction-diffusion model. This model captures all cardinal

phenotypic features of psoriasis and may provide a wider framework to understand the patterning and main-

tenance of inflammation in other skin diseases.

RESULTS

Classification of Psoriasis Plaque Patterns

The patterns repetitively identified in the literature and in our clinical photograph repository are listed in

Figure 1, with further morphological details characteristic of different patterns shown in Figure S1. As
546 iScience 20, 546–553, October 25, 2019 ª 2019 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:pwp@ucalgary.ca
mailto:r.gniadecki@ualberta.ca
https://doi.org/10.1016/j.isci.2019.10.008
https://doi.org/10.1016/j.isci.2019.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.10.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Patterns of Skin Lesions in Psoriasis

See also Figure S1.
detailed in Transparent Methods, we have excluded linear psoriasis, psoriatic erythroderma, and guttate

psoriasis from our classification.

A feature not explicitly discussed in the literature is the patterning of the plaque itself, manifest in the shape

of the scales and/or irregularities of the plaque surface. The intensity of the inflammatory process is not ho-

mogeneous within the plaque. In the very early pinpoint papules the inflammatory infiltrate is most dense at

the center, which translates into higher proliferative activity of the keratinocytes and a thicker scale centrally

in the papule (Figure S1A) (Soltani and Van Scott, 1972). As the lesion grows the inflammatory infiltrate be-

comes more irregular, with a tendency toward higher activity at the periphery and occasional hotspots in-

side the plaque. A growing plaque, such as a nummular lesion, is thus often slightly thicker and scalier at the

periphery than in the center. Likewise, the central portion of the plaque clears more rapidly during treat-

ment, whereas the regression of inflammatory hotspots and the marginal region is delayed (Griffin et al.,

1988). Large, mature plaques demonstrate a complex pattern of polygonal faceting rather than thickening

of the margins (Figure S1D).

Model of Cytokine Interactions in Psoriasis

Cytokines interleukin IL-23, IL-17, and tumor necrosis factor TNF-a are central mediators in psoriatic plaque

formation, as underscored by the fact that pharmacological blockade of either cytokine by monoclonal an-

tibodies causes clinical remission in a large proportion of patients (Jabbar-Lopez et al., 2017). Interactions

between the cytokines inferred from the available data are shown schematically in Figure 2A. The most

important pathogenic cytokines are those of the IL-17 family, being produced primarily by TH17 lympho-

cytes (interaction 0) (Krueger et al., 2012). These cells require IL-23 for expansion and activation (Cosmi

et al., 2008; Wilson et al., 2007; Zheng et al., 2006) and amplify the inflammatory process by inducing other

proinflammatory cytokines, the most important of which is TNF-a (Boehncke and Schön, 2015). Psoriatic

plaques contain both dendritic cells producing IL-23 and TH17 cells expressing the IL-23 receptor (Cosmi

et al., 2008; Lee et al., 2004; Tillack et al., 2014; Wilson et al., 2007). Treatment with guselkumab, a selective

therapeutic monoclonal antibody inhibiting IL-23, attenuates IL-17s in psoriatic plaques and in serum in pa-

tients with psoriasis (interaction 1) (Hawkes et al., 2018; Sofen et al., 2014; Tillack et al., 2014). This attenu-

ation is correlated with the clinical clearing of psoriasis lesions (Sofen et al., 2014). IL-17 and TNF-a

synergize with each other (Alzabin et al., 2012; Krueger et al., 2012; Xu et al., 2017): IL-17 increases the

expression of TNF-a (Jovanovic et al., 1998) (interaction 2), whereas therapeutic TNF-a inhibition blocks

IL-17 in responding patients (interaction 3) (Zaba et al., 2007, 2009). The positive feedback of IL-17 cytokines

on their own production (interactions 2 and 3) is further demonstrated by the findings that IL-17A induces

IL-17C (Xu et al., 2018) and that the therapeutic inhibition of the IL-17 receptor with brodalumab reduces

the expression of the IL-17 cytokine (IL-17A, C, F) (Russell et al., 2014). TNF-a downregulates IL-23 (interac-

tion 4) either directly (Notley et al., 2008; Zakharova and Ziegler, 2005) or indirectly via the inhibition of
iScience 20, 546–553, October 25, 2019 547



Figure 2. Modeling Plaque Formation in Psoriasis

(A) Interactions between key cytokines involved in psoriasis plaque formation. Labels numbered 0–4 refer to the

observations from which these interactions have been inferred (see Results).

(B) A simplified diagram of interactions, in which cytokines IL-17 and TNF-a are considered jointly.

(C) Diagram (B) relabeled as an activator (A) - depleted substrate (S) system.

(D) Skin representation and simulation initialization. The skin surface is partitioned into square regions. A lesion is initiated

by an activated TH17 cell (red), which is either a resident memory T cell activated by a dendritic cell (green, interaction a) or

has migrated from circulation through a capillary wall (interaction b). The area of microinflammation around the activated

TH17 cell is considered as a ‘‘seed’’ region, and its projection to the surface (arrow c) is colored in red. The epidermis, the

upper layer of the skin, is shaded in gray and capillaries in the dermis are colored in red (arterioles) and blue (venules).

Skin-resident memory T cells are marked in gray.

(E) Detail of skin surface representation. Each region is a two-dimensional projection of the underlying activator-depleted

substrate system of proinflammatory cytokines and represents a computational cell implementing reaction system (C).

These computational cells are interconnected (double arrows), allowing for the diffusion of cytokines.
interferons (Palucka et al., 2005; Tillack et al., 2014). Disturbance of this negative interaction is probably

responsible for paradoxical induction of psoriasis in patients with rheumatoid arthritis and inflammatory

bowel disease treated with TNF-a antibodies (Palucka et al., 2005; Tillack et al., 2014). This induction is

readily reverted by therapeutic inhibition of the excess of IL-23 by ustekinumab, an antibody binding to

the p40 chain of IL-23 (Tillack et al., 2014).

Computational Model Construction

To analyze whether the molecular-level interactions depicted in Figure 2A can account for the observed

plaque patterns and the response of the disease to treatment, we constructed a mathematical model.

We followed the standard method of simplifying the modeled system to focus on its essence and make

it more amenable to analysis (Bak, 1996; Gaines, 1977; Prusinkiewicz, 1998). This simplification reduced

the size of the parameter space and thus, to the extent possible, the use of parameters for which
548 iScience 20, 546–553, October 25, 2019



quantitative data are currently unavailable. It has also related the problem of plaque pattern formation to a

known class of reaction-diffusion systems, which provided guidance for the exploration of the parameter

space, and facilitated the analysis and interpretation of the results.

We have pursued the following train of thought. The mutual promotion of cytokines IL-17 and TNF-a, rep-

resented by interactions 2 and 3 in Figure 2A, suggests that their concentrations may change in concert.

Assuming this is the case, we reduced the three-substance graph in Figure 2A by representing IL-17 and

TNF-a jointly. The resulting two-substance graph (Figure 2B) has the structure of an activator-depleted sub-

strate reaction-diffusion model (Gierer and Meinhardt, 1972; Marcon et al., 2016) (Figure 2C). In this model,

the substrate S with concentration s is locally converted into the activator A with concentration a according

to the canonical equations (Gierer and Meinhardt, 1972; Meinhardt, 1982):

va

vt
= ka2s+ ra0 � maa+DaV

2a;

vs

vt
= � ka2s+ rs0 � mss+DsV

2s:

(Equation 1)

The term ka2s indicates that the conversion is autocatalytically promoted by the activator, with the rate

controlled by parameter k. The activator concentration increases at the expense of the substrate, thus

the activator downregulates the substrate. Parameters ra0 and rs0 are the rates of the base production

of the activator and the substrate, and ma and ms control their turnover. The remaining terms, DaV
2a and

DsV
2s, represent diffusion of the activator and substrate at rates controlled by parameters Da and Ds,

respectively (for simplicity, diffusion is not explicitly represented in Figures 2A–2C). Consistent with Figures

2B and 2C, we identify variable a with the concentration of cytokines TNF-a and IL-17 and s with the con-

centration of IL-23:

a = ½TNFa; IL17�; s= ½IL23�:
In the simulations, a patch of skin surface (Figure 2D) is represented by an array of interconnected compu-

tational ‘‘cells,’’ each of which performs local computation according to Equation 1 (Figure 2E). The initial

state in all simulations is a uniform distribution of IL-23 in the whole array, except for randomly distributed

small ‘‘seed’’ areas with a high concentration of IL-17 and TNF-a. These areas represent IL-17-secreting

cells (such as the TH17-cell) that either have been activated in situ (Figure 2D, interaction a) or have

migrated from the circulation to the skin (Figure 2D, interaction b) (Krueger et al., 2012).
Exploration of the Model Parameter Space

Currently it is not feasible to measure the diffusion of cytokines in human skin, hence there are no exper-

imental data to provide suggestions for the parameter values of the model. Consequently, we adopted a

reverse strategy, where we explored the model parameter space by searching for values that would yield

psoriasis patterns observed in patients (Figure 1). To guide this search, we referred to the Gray-Scott reac-

tion-diffusion system (Gray and Scott, 1984), for which the parameter space has been thoroughly explored:

va

vt
= a2s� ðf + cÞa+DaV

2a

vs

vt
= � a2s+ ð1� sÞf +DsV

2s

(Equation 2)

We observe (see also Yamamoto and Miorandi, 2010; Yamamoto et al., 2011) that Equation 2 are a special

case of Equation 1, where

k = 1; ra0 = 0; ma = f + c; rs0 = f ; ms = f :

The parameter space and details of six patterns obtained for specific parameter values are shown in Fig-

ure 3. These patterns correspond visually to the six types of psoriasis identified in patients (Figure 1).

Note that, consistent with the common assumption of the Gray-Scott reaction-diffusion model, the ratio

of the diffusion rates of substrate and activator was set to Ds:Da = 2 (Pearson, 1993). This is a departure

from the much larger ratios typically used in reaction-diffusion models (Diego et al., 2018; Gierer and

Meinhardt, 1972; Kondo and Miura, 2010; Lengyel and Epstein, 1991; Marcon et al., 2016; Vastano

et al., 1987). On biochemical grounds, this departure is justified by the commensurate small size of

the three cytokines, implying comparable diffusion rates (see Table S1). The small ratio of diffusion rates

does not preclude Turing instability and spontaneous pattern emergence for carefully chosen values of
iScience 20, 546–553, October 25, 2019 549



Figure 3. Parameter Space of the Model and Selected Patterns

Top left: A comprehensive representation of the range of patterns generated using Equation 2 for different values of the

synthetic parameters c and f.

(A–D) Magnified views of patterns generated using select parameter values. These labels and patterns correspond to the

psoriatic skin lesions identified in Figure 1.
the remaining parameters (see Figure S2). Nevertheless, the parameter values leading to the formation

of plaque patterns are compatible with the ‘‘filtering’’ operation mode, in which the patterns do not

emerge spontaneously in a homogeneous medium and elaborate the initial pre-patterns instead (Diego

et al., 2018; Lee et al., 1993; Muratov and Osipov, 2000; Pearson, 1993). This latter mode is more perti-

nent to the development of psoriasis plaques, which is initiated by activated TH17 cells in the skin

(Figure 2D).

The Development of Lesions and Response to Treatment

The simulated development of psoriasis lesions and the response to treatment are shown in Figure 4 and in

Videos S1, S2, S3, S4, S5, and S6. The development was simulated by using the forward Euler method to

advance the state of the reaction-diffusion model over time, given an initial random distribution of small

papules. The parameter values and initial conditions for each of these simulations are listed in Table S2,

with additional information characterizing the sensitivity of simulations to the variation of (individual)

parameter values collected in Table S3. Minimum values of the activator A, representing cytokines IL-17

and TNF-a, needed to initiate pattern formation are given in Table S4. The simulated patterns shown in

Figure 4 have a striking resemblance to the actual patterns of psoriatic skin lesions shown in Figure 1.

Next, we simulated the effect of therapy by increasing the decay rate of cytokines IL-17 and TNF-a (acti-

vator A), which mimics real-life treatment with an anti-cytokine antibody. Interestingly, the simulated lesion

clearing was not simply a time reversal of the processes of plaque formation: the interior of the plaques

cleared first, producing annular lesions (Figure 4, row 5). The residual lesions dispersed slowly, eventually

disappearing entirely or leaving residual spots (Figure 4, row 6). These results closely resemble clinical sit-

uations, in which residual annular or papular lesions are often observed (Figure S1C).

Finally, to verify that the modeling results do not critically depend on the reduction of the three-substance

system in Figure 2A to the two-substance system in Figure 2B, we have constructed a simulation model cor-

responding directly to Figure 2A (see Supplemental Equations). Guided in part by parameter values found

for the two-substance model (Tables S2 and S3), we found values for which the three-substance model pro-

duces qualitatively the same plaque patterns (Table S5). This result validates the simplification underlying

the two-substance model.
550 iScience 20, 546–553, October 25, 2019



Figure 4. The Simulated Progression of Different Types of Psoriatic Lesions

Rows 1–3: Development of the lesions. The earliest stage of a papule (Row 1) consists of randomly distributed small seed

areas. Later forms of the disease (Rows 2 and 3) correspond to patterns identified in Figures 1 and 3. Rows 4–6: The effect

of treatment simulated by increasing the decay rate of IL-17 and TNF-a. Note that the treatment does not result in a

simple reversal of the original pattern development, but produces residual lesions with more activity at the margin of the

plaques (Row 5). In some instances, residual papules persist (Row 6).
DISCUSSION

Since the foundation of dermatology as a medical specialty in the beginning of the 19th century,

morphological patterns provided a useful and robust criterion for the diagnosis and classification of

skin diseases. However, the mechanisms by which skin diseases produce diverse patterns remained un-

known. We have shown that all major morphological types of the common skin disease psoriasis

(papular, small plaque, large plaque, and different forms of circinate patterns) can be generated by a

reaction-diffusion model with different parameter values. The model is based on the currently known

up- and down-regulating interactions between three proinflammatory cytokines: TNF-a, IL-23, and

IL-17. These interactions are not direct chemical reactions, but are mediated by immunologically active

cells stimulating or inhibiting the release and proliferation of intermediary cytokines. The model has a

spatiotemporal character, explaining the emergence of patterns during disease development and their

disappearance during subsequent treatment. Reaction-diffusion thus provides a promising framework for

studying mechanisms underlying the progress and treatment of psoriasis. As detailed data regarding the

interaction and diffusion of cytokines involved in psoriasis become available, more elaborate models may

be constructed to re-create the actual biological processes in the skin with increased accuracy. Recent

advances in the theoretical understanding of reaction-diffusion (Diego et al., 2018) suggest that the

resulting models may also become more robust to parameter changes, currently limited to narrow

ranges.

Inflammatory patterns related to psoriasis are found in other diseases as well. For example, annular lesions

are seen in erythema multiforme, dermatophytosis, and erythema annulare centrifugum; reniform patterns

in erythema gyratum repens, urticaria, and lupus erythematosus; and rosettes in granuloma annulare. We
iScience 20, 546–553, October 25, 2019 551



thus hypothesize that reaction-diffusion models can be applied further to explain the patterns of other

inflammatory skin diseases and suggest their treatment by selective cytokine inhibition. Eventually, reac-

tion-diffusion models could provide a framework for understanding the pathogenesis and pharmacologic

intervention of a broad spectrum of skin diseases.

Limitations of the Study

The model is based on qualitative results describing the interaction of cytokines in the skin, but its predic-

tions have not yet been confirmed by measurements of cytokine concentrations and propagation rates in

the skin. Such measurements are currently difficult for a combination of technical and ethical reasons and

thus are left as a topic for further research, which we hope our work will motivate.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.008.
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Transparent Methods 

Source of information on the patterns of psoriatic lesions 

Patterns of skin lesions in psoriasis have been reviewed using the “(psoriasis AND clinical AND 

(pattern OR shapes)) OR (clinical spectrum AND psoriasis)” search phrases in PubMed. We 

retrieved 715 papers and after reviewing the titles and abstracts we selected 40 relevant papers 

(Ayala, 2007; Baker, 1971; Balato et al., 2009; Beylot et al., 1979; Buxton, 1987; Champion, 1986; 

Chau et al., 2017; Christophers, 2001; Cordoro, 2008; Di Meglio et al., 2014; Fernandes et al., 

2011; Gropper, 2001; Hernández-Vásquez et al., 2017; Hodge and Comaish, 1977; Jablonska et 

al., 2000; Kumar et al., 1995; Lal, 1966; Lebwohl, 2003; Magro and Crowson, 1997; Meier and 

Sheth, 2009; Melski et al., 1983; Menter and Barker, 1991; M G et al., 2013; Mitchell, 1962; 

Morris et al., 2001; Naldi and Gambini, 2007; de Oliveira et al., 2010; Picciani et al., 2017; 

Rasmussen, 1986; Raychaudhuri et al., 2014; Reich et al., 2009; Saleh and Tanner, 2018; Schön 

et al., 2005; Seneschal et al., 2012; Stankier, 1974; Stern, 1997; Talwar et al., 1995; Whyte and 

Baughman, 1964; Wollenberg and Eames, 2011; Ziemer et al., 2009). We also reviewed 482 

clinical photographs of psoriasis in the database of the Department of Dermatology, University of 

Copenhagen and the Division of Dermatology, University of Alberta. We have excluded linear 

psoriasis, psoriatic erythroderma, and guttate psoriasis from our analyses. The linear pattern is the 

isomorphic (Köbner) response to trauma and does not emerge spontaneously (Melski et al., 1983). 

Erythroderma manifests itself as diffuse redness and inflammation of the entire skin, and thus lacks 

features of a pattern. Guttate psoriasis is considered to be a separate clinical type of the disease 

(Rasmussen, 1986; Raychaudhuri et al., 2014; Whyte and Baughman, 1964), but it is not 

distinguishable from papular or nummular psoriasis based on lesion morphology.  

 

Computer model 

The progress and treatment of the disease was simulated by numerically solving the initial value 

problem for the reaction-diffusion equations using the forward Euler method. Simulations have 

been implemented using a custom reaction-diffusion modeling program written in C++ within the 

Windows Visual Studio programming environment. To facilitate interactive exploration of the 

models and their parameters, computation has been accelerated (carried out in a parallel fashion) 

on a Nvidia GeForce GTX 850M Graphical Processing Unit, with arrays representing the previous 

and current state of the simulation in each step implemented as textures (Dematté and Prandi, 2010; 

Harris et al., 2005). The textures used in all simulations had a resolution of 500 x 500 texels, with 

each texel representing a sample point of a discretized patch of the skin. Parameters of individual 

simulations are collected in Table S1. We assumed Neumann boundary conditions set to 0, i.e., no 

diffusion of activator A and substrate S across the boundary. The initial activator concentration a 

was set to 0 in each texel except for 50 seed spots, placed randomly across the domain.  Each spot 

was represented by a 3x3 array of texels with a concentration of 0.5 (See Table S3 for the minimum 

values). The initial concentration of the substrate s was 1.0 everywhere.  All concentrations were 

represented with 32-bit floating point accuracy.  
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Supplementary Equations 

To show that the results obtained for the two-substance system in Fig. 2B also hold for the three-

substance system in Fig. 2A, we have constructed a simulation model corresponding directly to 

Fig. 2A. The equations have the form:  

 
𝜕[𝑇𝑁𝐹𝛼]

𝜕𝑡
=  𝜌[𝑇𝑁𝐹𝛼]0 − 𝜇[𝑇𝑁𝐹𝛼][𝑇𝑁𝐹𝛼] + 𝜂[𝐼𝐿17] − 𝑘[𝑇𝑁𝐹𝛼]2[𝐼𝐿23] + 𝐷[𝑇𝑁𝐹𝛼]∇

2[𝑇𝑁𝐹𝛼] 

𝜕[𝐼𝐿17]

𝜕𝑡
  =  𝜌[𝐼𝐿17]0 − 𝜇[𝐼𝐿17][𝐼𝐿17] + 𝑘[𝑇𝑁𝐹𝛼]2[𝐼𝐿23] + 𝐷[𝐼𝐿17]∇

22[𝐼𝐿17] 

𝜕[𝐼𝐿23]

𝜕𝑡
  =  𝜌[𝐼𝐿23]0 − 𝜇[𝐼𝐿23][𝐼𝐿23] − 𝑘[𝑇𝑁𝐹𝛼]2[𝐼𝐿23] + 𝐷[𝐼𝐿23]∇

2[𝐼𝐿23] 

Parameter values resulting in the different pattern classes shown in Fig. 4 are collected in Table 

S3. 

 

Supplementary Tables and Figures 

 

Molecule MW [kDa] Dtiss [µm2/s] 

TNFα 26 154.4 

IL17 35 123.6 

IL23 54.1 89.1 

 

Table S1. Diffusion coefficients for the three cytokines involved in our model using the empiri-

cal formula 𝐷𝑡𝑖𝑠𝑠 = 1.778 × 10−4 × 𝑀𝑊−0.75
  (Swabb et al., 1974) (Equation F in their paper; 

MW = molecular weight), related to Figure 2. The actual rates of macromolecule transport in a 

tissue may differ from these estimates, as other factors may also play a role.  These include  

convection, which may run in the direction opposite to the concentration-gradient-driven diffusion 

(Swabb et al., 1974), and cell proliferation, which may be relevant to the transport of cytokines 

otherwise mostly confined to their mother cells. 
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 Name Papular Small Plaque Large Plaque Annular Rosette Reniform 

 ρs0=μs 0.046 0.084 0.091 0.001 0.009 0.011 

 μa (before treatment) 0.116 0.141 0.148 0.028 0.056 0.057 

 μa (during treatment) 0.120 0.1467 0.153 0.04 0.0625 0.065 

maxSteps 12,620 14,000 143,000 4,500 3,900 15,500 

treatSteps 12,000 12,000 140,000 1,700 2,700 13,000 

 

Table S2. Parameter values used to generate the six classes of psoriasis plaque patterns, related to 

Fig. 4. In all simulations k = 1, ρa0 = 0, Da = 0.25, and Ds = 0.5.  Simulations were carried out using 

forward Euler methods with time step dt = 0.4 for maxSteps iterations, with the treatment starting 

after treatSteps iterations.  

 

 

 

Name Papular Small Plaque Large Plaque Annular Rosette Reniform 

ρs0 [0.04510, 

0.04705] 

[0.08375, 

0.15000] 

[0.09060, 

0.09110] 

[0.00075, 

0.00285] 

[0.00875, 

0.00910] 

[0.01085, 

0.01112] 

ρa0 [0.00000, 

0.00075] 

[0.00000, 

0.00525] 

[0.00000, 

0.00002] 

[0.00000, 

0.00022] 

[0.00000, 

0.00015] 

[0.00000, 

0.00008] 

μs [0.04435, 

0.04725] 

[0.03475, 

0.08475] 

[0.09085, 

0.09175] 

[0.00000, 

0.00125] 

[0.00875, 

0.00910] 

[0.01085, 

0.01120] 

μa [0.11265, 

0.11899] 

[0.10000, 

0.14180] 

[0.14785, 

0.14870] 

[0.01500, 

0.03500] 

[0.05360, 

0.05650] 

[0.05620, 

0.05750] 

Ds [0.46000, 

0.57500] 

[0.42500, 

0.80000] 

[0.46100, 

0.50500] 

[0.00000, 

1.05000] 

[0.47500, 

0.52500] 

[0.42500, 

0.61500] 

Da [0.22000, 

0.27000] 

[0.17500, 

0.29000] 

[0.24500, 

0.27000] 

[0.15000, 

0.75000] 

[0.23500, 

0.27500] 

[0.22500, 

0.28500] 

k [0.95900, 

1.05000] 

[0.98800, 

1.60000] 

[0.99000, 

1.00200] 

[0.75000, 

1.35000] 

[0.98500, 

1.06500] 

[0.97500, 

1.01500] 

 

Table S3. Ranges of parameter values resulting in pattern formation, related to Figure 4. For each 

varied parameter all remaining values are as in Table S2. 

 

 

 

 

 
 



 

 

Pattern A B C D1 D2 D3 

Minimum initial concentration 

of the activator at the spots 

0.208 0.244 0.256 0.088 0.126 0.127 

    

Table S4. Minimum concentrations of activator A needed to initiate the formation of patterns, 

related to Figure 4.  

 
 

 

Parameter Papular Small Plaque Large Plaque  Annular  Rosette  Reniform 

𝜇[𝐼𝐿23] = 𝜌[𝐼𝐿23]0 0.04 0.045 0.055 0.001 0.009 0.011 

𝜇[𝑇𝑁𝐹𝛼](before treatment) 0.103 0.103 .115 0.028 0.055 0.054 

𝜇[𝑇𝑁𝐹𝛼] (during treatment) 0.107 0.1087 0.12 0.04 0.0615 0.062  

maxSteps 13,000 14,000 143,000 4,500 3,900 15,500 

treatSteps 12,000 12,000 140,000 1,700 2,700 13,000 

 

Table S5. Parameter values for generating the six classes of psoriasis plaque patterns using the 

three-substance model, related to Figure 4.  In all simulations k = 1, 𝜂 = 2,  𝜌[𝑇𝑁𝐹𝛼]0= 𝜌[𝐼𝐿17]0=0, 

𝜇[𝐼𝐿17]=1, 𝐷[𝐼𝐿23]
 = 0.5, 𝐷[𝑇𝑁𝐹⍺] = 𝐷[𝐼𝐿17] = 0.25.  Simulations were carried out using forward 

Euler methods with time step dt = 0.4 for maxSteps iterations, with the treatment starting after 

treatSteps iterations.  
 

 



 

 

 
 

Figure S1. Morphological details of different patterns of skin lesions in psoriasis, related to Figure 

1. A: Psoriatic papule. Note that the scale and the thickness is accentuated in the center, indicating 

that the inflammatory reaction is most intense in the center of the lesion. B: Mature psoriasis 

plaque showing more activity in the periphery (open arrowheads) than in the center. C: Resolution 

of psoriatic plaques during treatment. Note central clearing of the plaque and residual peripheral 

activity producing a circinate pattern. D: Internal patterning of the plaques showing polygonal 

faceting. E: Merging circinate lesions. Annular plaques merge into polycyclic structures with 

clearance of the cross-sectioning parts of the lesions (open arrowhead). F: Reniform pattern on 

mucosal surface of the tongue (lingua geographica, left) and on the skin (right). Yellow solid 

arrows show the notched part of the lesion, black open arrowheads show the curled part at the 

notch. 



 

 

 

 

 
 

Figure S2. Example of a pattern generated de novo using the Gray-Scott model (Equation 2) after 

6000 iterations, related to Figure 3. The concentration is visualized from blue to orange. Parameter 

values: 𝑓 = 0.042, 𝑐 = 0.06, 𝐷𝑎 = 0.25, 𝐷𝑠 = 0.5, 𝑑𝑡 = 1. The initial conditions are a 

homogenous distribution everywhere, with the addition of a small amount of noise: a=0.22557, 

s=0.45219±0.000001. 

 

  



 

 

Supplementary Movies  

 

Movie S1. Simulated development and response to treatment of papular lesions, related to Figure 

4 

 

Movie S2. Simulated development and response to treatment of small plaque / nummular 

lesions, related to Figure 4 

 

Movie S3. Simulated development and response to treatment of large plaque lesions, related to 

Figure 4 

 

Movie S4. Simulated development and response to treatment of annular lesions, related to  

Figure 4 

 

Movie S5. Simulated development and response to treatment of rosette lesions, related to  

Figure 4 

 

Movie S6. Simulated development and response to treatment of reniform lesions, related to 

Figure 4 
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