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Abstract 

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. 
Compared with other screening technologies, computational de novo design has become a popular approach to 
overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic 
evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug 
design, that miniaturized a “lego-building” process within the pocket of a certain target. The key to virtual hits genera-
tion was then turned into a computational search problem. To enhance search and optimization, human intelligence 
and deep learning were integrated. Application of SECSE against phosphoglycerate dehydrogenase (PHGDH), proved 
its potential in finding novel and diverse small molecules that are attractive starting points for further validation. This 
platform is open-sourced and the code is available at http://github.com/KeenThera/SECSE.
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Introduction
Developing a new drug is an enduring process that is 
estimated to take 10–15 years with a cost of 1.5 billion 
US dollars or more. At the early drug discovery stage, the 
hit-finding program is crucial for a successful R&D cam-
paign, especially for the challenging targets, which usu-
ally yield meager hit rates. There are many options for 
hit-finding, such as high-throughput screening (HTS), 
affinity selection-mass spectrometry (AS-MS), fragment-
based drug design (FBDD), DNA-encoded library tech-
nology (DELT), and virtual screening (VS). However, all 
the above approaches suffer from the requirement of a 
predefined (real or virtual) compound library. To address 
the limitation, make-on-demand libraries [1–3] have 
gained some recent popularity in expanding the chemical 

space. Nevertheless, even the most extensive collection of 
compounds claimed so far with the size of 1026 [4, 5] is 
still a very tiny fraction of the estimated chemical space 
in the order of 1063 [6]. Therefore, a systemic chemical 
space searching strategy is needed to provide optimal 
starting points against the target of interest.

De novo design is one such strategy that is conceptu-
ally able to overcome the limitation of existing compound 
libraries, which produces novel compounds based on 
the 3D crystal structure of a given target from scratch. A 
comprehensive summary [7–11] of the recent develop-
ment in de novo design is out of the scope of this paper 
though, several seminal works that inspire us will be 
briefly reviewed in the following section.

LUDI [12] was an example of early attempts, where 
fragments from a predefined library were positioned 
into sub-pockets of the target. Then the fitted fragments 
were bridged together to form a new compound that bet-
ter occupied the pocket. A similar approach called Lig-
Builder [13] used module POCKET [14] to analyze and 
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parameterize protein pockets and then applied module 
GROW or LINK to build up new molecules. A genetic 
algorithm was implemented in the growing and linking 
steps to avoid the combinatorial explosion of the molecu-
lar generating process. Subsequently, module SCORE 
predicted the binding affinity of the molecules. Synthesis 
accessibility (SA) analysis and more druglike filters were 
incorporated in the upgraded program LigBuilder v2 [15]. 
While in the latest version LigBuilder v3 [15], the authors 
began to consider the flexibility of pockets by including 
several samples from a particular target or different tar-
gets with similar binding pockets in the generation work-
flow. Wang et  al. developed two versions of AutoT&T 
[16, 17] to automatically generate analogs for hit com-
pounds under the spatial constraints of the targeted 
binding pocket. Their valuable attempts opened a way for 
computational de novo design methods in lead optimi-
zation. OpenGrowth [18] was an open-sourced de novo 
design program which also based on the fragment-based 
growing strategy. The 3-mers screening method required 
that generated molecules be made by defined fragments 
derived from the drug library, which warranted druglike 
properties. Like LigBuilder v3, different conformations 
of the target were considered to address the protein flex-
ibility issue. Durrant et al. developed AutoGrow [19] to 
integrate fragment-based growing and docking with an 
evolutionary algorithm. The latest version is AutoGrow4 
[20], which employed reaction-based rules for growing as 
mutation operators in the genetic algorithm and merging 
two molecules with maximum common substructure as 
crossover operators. Substructure or property filters (like 
the rule of 5 [21], PAINS [22]) were used to control the 
quality of generated molecules. At the same time, open-
source docking programs were invoked to evaluate the 
binding affinity. Although AutoGrow4 performed well 
in some cases, reaction-based molecular generation is 
intrinsically limited for constructing novel chemical enti-
ties. Polishchuk published an open-sourced tool called 
CReM [23] to produce highly diverse structures by frag-
ment manipulation (mutate, grow and link). Nigam et al. 
proposed STONED for efficient search of chemical space 
using a SELFIES modification method [24]. Recently, 
Steinmann and Jensen reported a non-fragment-based 
approach [25], which used a set of reaction-like rules to 
build up chemical structures, yielding molecules with 
acceptable glide docking scores and synthetic feasibility 
by genetic algorithm.

In addition to rule-based generators, deep generative 
models have also been extensively explored. MolAICal 
[26] used generative deep learning models for 2D struc-
ture construction and classical methods for 3D evalua-
tion and simulation. Recently, Ma et al. [27] developed 
SBMolGen, which contained an RNN based SMILES 

generator called ChemTS [28], a Monte Carlo tree search, 
and docking simulations. Lai et al., the authors of Lig-
Builder, developed DeepLigBuilder [29] to generate 3D 
molecules directly from deep generative models. Several 
other new approaches utilizing deep learning methods 
to generate 3D molecules have been reported [30–33]. 
Compared with 1D/2D generative models or rule-based 
methods [34, 35], the competitive advantage of using 
these 3D models is direct 3D conformation generation 
with high speed. However, it is not easy to directly con-
verge when training deep learning models end to end. 
Researchers have to introduce some special treatments 
for the data type and model architecture to terminate the 
training process, which is usually difficult to interpret.

Inspired by previous attempts in the field, we present 
our work setting up a platform to explore the chemical 
space against a given target systemically. Analogous to 
other programs, the SECSE platform consists of three 
modules, namely, a molecular generator, a fitness evalu-
ator, and a genetic selector. The output is chemical 
structures that specifically fit the evaluation model for a 
defined pocket or other criteria. Moreover, PHGDH is 
chosen to demonstrate the potential of the SECSE plat-
form. Virtually generated molecules are shown, and the 
corresponding structure-activity relationship is analyzed 
for this target. Their high docking scores and reason-
able binding poses, in addition to structural novelty and 
patentability, warrant further exploration.

Implementation
SECSE is a de novo design software that mainly combines 
rule-based molecular generation and structure-based 
drug design methods using genetic algorithms, as well as 
a deep learning module. The SECSE platform is imple-
mented by a molecular generator, a fitness evaluator, and 
a genetic selector. In the molecular generator module, we 
have created more than 3000 rules for molecular trans-
formations based on knowledge and expertise from the 
literature domain and our internal medicinal chemists. 
These rules are comprehensively curated and strategi-
cally categorized for optimal output. In the fitness evalu-
ator module, molecular docking is utilized for compound 
assessment, which can also be replaced by shape-/phar-
macophore-based evaluation methods. In the genetic 
selector module, a genetic algorithm is used given the 
similarity between the triage strategy of fragment grow-
ing and the genetic rule “fitness to survive”.

The workflow of SECSE is described in Fig.  1. In the 
first place, fragments/groups are docked/positioned into 
the pocket, from which the ones with high docking scores 
or ligand efficiency are picked as elites. It is notewor-
thy to point out that fragments with less than 13 heavy 
atoms are exhaustively enumerated as initial input, yet 



Page 3 of 17Lu et al. Journal of Cheminformatics           (2022) 14:19 	

any given structures or functional groups can be used as 
starting points. Then all the elites are evolved to generate 
novel chemical structures by applying the rules. The child 
molecules are clustered and sampled to represent the 
pool. The sampled molecules are docked into the pocket 
again. Highly scored molecules adopting hereditary or 
reasonable 3D orientation are chosen as new elites. This 
process concludes one cycle. After multiple cycles of 
iteration, a considerable number of compounds are gen-
erated and accumulated. To comprehensively evaluate 
all compounds, we introduced a graph-based machine 
learning module to speed up elite selection in each gen-
eration. Finally, hit compounds are visually inspected and 
selected before wet lab synthesis.

Fragments collection
As starting points of the entire workflow, the quality of 
the fragment collection would determine the final output 
to some extent. Fragments derived from compounds in 
co-crystal structures or based on hypotheses can be used 
as proprietary input. However, it would inevitably be lim-
ited by the size of existing fragment collections or human 
bias. To ensure the diversity of the starting fragment 
library, we proposed an algorithm analogous to GDB13 
[36] that can potentially enumerate molecules containing 
up to 12 heavy atoms with MW ranging from 50 Da to 
210 Da. We provided the source code in order to explic-
itly present the details of the fragment space exploration.

As described in Additional file  1, sequential carbon 
strings, such as “CCC​CCC​”, are the starting point of 

fragment generation with fixed heavy atom numbers. 
The SMILES string is then modified to construct ali-
phatic rings, which are subsequently submitted for 
structure transformations (aromatic ring formation, 
sidechain rearrangement, and atom/bond replacement, 
etc.). A series of filters (the same filter rules in SECSE) 
are applied to remove fragments with undesired archi-
tecture/topology or functional groups. Final structures of 
121,860,917 fragments are stored in an SQLite database 
(See Data availability section).

Input preparation
In the workflow, chemical structures and protein struc-
tures are the primary inputs. Depending on different 
purposes, the chemical input can be an atom, a frag-
ment structure, or a fragment library in the format of a 
tab-separated file containing structure SMILES and ID. 
If needed, the provided SMILES can be converted into a 
3D structure using ETKDG v2 built in RDKit [37]. Tau-
tomer and spiro centers are also enumerated on demand. 
For AutoDock Vina docking, the ligands are converted 
from SDF format to PDBQT format using Open Babel 
v3.1.1 [38]. Fragment libraries are recommended for 
hypothesis-driven hit discovery, especially when limited 
binders against the target of interest are reported. Protein 
3D structures are prepared from crystal structures from 
the Protein Data Bank (PDB) [39]. Homology models or 
predicted structures from AlphaFold2 [40] /RoseTTA-
Fold [41] are also acceptable although with compromised 
accuracy and predicting power. In our demo case, protein 

Fig. 1  The general workflow of SECSE. A Fragment library or preferred structures can be used as starting point for molecule evolution. Either 
binding pocket of 3D protein structures (structure-based) or a set of known active ligands (ligand-based) can be used for fitness evaluation. B SECSE 
has three basic modules, molecular generator, fitness evaluator, and genetic selector. C Examples of generated structures and binding poses can be 
analyzed for virtual candidate prioritization. Protein structure is shown in white cartoon. A selected candidate is shown in cyan stick, while reference 
compound is shown in orange stick
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structures are prepared for docking with ADFR v1.2 [42, 
43].

Molecular generator
The molecular generator we have developed provides a 
rule-based generation approach. There are four types of 
transformation rules (growing, mutation, bioisostere, and 
reaction) in our database. Some representative cases of 
each class are shown in Fig. 2. 

(1)	 In the grow rules, any of the replaceable hydrogen 
atoms on the seed compound can be replaced with 
a new substructure, such as an atom, a functional 
group, a ring, or a ring with a linking spacer.

(2)	 The mutation rules include the following three cat-
egories: atom replacing, insertion, and deletion; 
ring-closing, ring-open, ring modification (expan-
sion, reduction, contraction); as well as aromatic-
aliphatic exchange.

Fig. 2  Categories of rules in SECSE and illustrative examples. AThe Growing rule means applicable hydrogen can be replaced by a defined 
functional group. B The Mutation rule contains a large set of structural transformations commonly practiced by medicinal chemists such as 
ring-closing-ring-opening, insertion or deletion of atoms, and etc. C  The Bio-isostere rule allows the interconversion of isosteric groups/atoms. D 
The Reaction rule identifies functional groups/moieties that can react with building blocks (BB) from a predefined BB library and hypothetically 
generates all possible products. Changed atoms are highlighted in dark blue color
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(3)	 The bioisostere rules refer to classical or non-classi-
cal bioisosteric replacements, which are commonly 
used by medicinal chemists.

(4)	 The reaction-based rules contain common organic 
reactions confined to one or two steps. A library 
of commercial building blocks is used as starting 
materials. Applying the chemical reaction rule is 
beneficial to efficiently increase the scaffold diver-
sity of the resulting molecules, although they can be 
generated from multiple rounds of rules from the 
previous three categories.

All the rules are represented in the reaction-like format 
using the SMARTS. Hybridization extension defined in 
RDKit was also used in the rules. A few examples from 
each category are provided in the SQLite database.

Property and  structure filter
To ensure that the platform generates molecules with 
decent chemical beauty [44], we construct several filters 
that define molecular properties, ring system count, and 
substructures. 

(1)	 The default parameters of the molecular prop-
erty filters are shown as follows: molecular weight 
(MW) ∈ [81, 450] ; LogP ∈ [0, 5] ; the number of 
hydrogen bond donors (HBD) ≤ 5 ; the number of 
hydrogen bond acceptor (HBA) ≤ 10 ; the number 
of rotatable bonds (RB) ≤ 4 ; and topological polar 
surface area (TPSA)≤ 200 . All properties here are 
calculated by RDKit v2021.03.5. The bond between 
two connecting parts that both have π/p orbitals is 
not rotatable because it tends to form a conjugated 
system with up to two stable rotamers. To count 
the real rotatable bonds, the definition of RB was 
replaced as ’[C⌃3!D1;!$(C(F)(F)F)]-!@[!Br!F!Cl!I!H3
&!$(*#*)!D1;!$([!Br!F!Cl!I](F)(F)F)]’ here.

(2)	 The default constraints for ring systems are: total 
ring system count ≤ 4 ; the number of rings in a 
polycyclic ring system ≤ 3 ; ring size ≤ 7 ; fused ring 
count ≤ 3 ; bridged ring count ≤ 1 ; and spiro ring 
count ≤ 1.

(3)	 Undesirable structures are also discarded by iden-
tity filters (sulfur, phosphorus, or structure alert), 
and count filters (e.g., max number of carboxylic 
acid or alkyne in one compound). PAINS filters are 
also included.

One thing worthy of note is that the filters are arbitrar-
ily set depending on project requirements, which can be 
adjusted if the output is not ideal.

Fitness evaluator
Structure-based virtual screening engines such as molec-
ular docking or pharmacophore-based screening meth-
ods are optional for fitness evaluation. Docking is the first 
choice for fitness evaluation. The default docking soft-
ware in our platform is AutoDock Vina v1.2.0 [45, 46]. 
We also provide a Glide interface for users with commer-
cial licenses. Additionally, we offer shape-based screen-
ing and similarity scoring functions to evaluate fitness 
for ligand-based drug design (i.e., the initial input is not 
a protein structure but one or more ligands with known 
activity).

Several scoring functions are optimized to achieve the 
evaluator function for different scenarios. If the dock-
ing mode is selected, both docking score and ligand effi-
ciency (LE) [47, 48] are considered as ranking criteria, 
where

The docking score tends to favor larger molecules in 
our previous tests. In contrast, LE can correct the issue 
by preventing premature enrichment of large molecules 
before reaching the upper molecular weight cutoff. 
Root Mean Square Deviation (RMSD) of aligned atoms 
between docking poses of the previous and current gen-
eration is calculated to determine whether the binding 
mode has changed in the two consecutive generations. 
If the similarity search mode is selected, the optional 
scoring functions will be a Tanimoto index of different 
molecular fingerprints from the generated molecules 
and reference compounds. In addition, the retrosynthe-
sis module from Chemical.AI [49] is invoked to assess the 
synthetic availability.

Seed selector
After scoring, molecules with RMSD less than 2 Å or 
with significantly decreased docking scores are selected 
as seeds for the next generation. The purpose of the 
selector is to make sure compounds with consistent bind-
ing modes are maintained while compounds with much 
better binding modes won’t be carved out. Then we apply 
a genetic algorithm [50–52] to select seeds from all eli-
gible molecules. In our platform, the default GA opera-
tor is the tournament selection which is the most widely 
used selection strategy. Consequently, it can quickly con-
verge to the optimal solution within noisy environments 
and introduce some randomness to avoid the limitations 
caused by local optimization.

Because of the limited computing resources, we sam-
ple data from the molecules generated by all the rules. 
Likewise, we use a partition clustering algorithm (see 

LE =
Docking score

1+ ln (Number of heavy atoms)
.
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Additional file 1) before sampling to ensure the diversity 
of the selected molecules. We calculate the molecular 
fingerprint and Tanimoto index to evaluate the distance/
dissimilarity between generated molecules, based on 
which the sampling is executed.

Deep learning‑based fitness prediction
Although SECSE can generate a significant number of 
molecules, most of them are not evaluated due to limita-
tions in computing and storage resources. Therefore, we 
apply deep learning (DL) modeling to reduce computa-
tional costs and make it possible to evaluate the fitness 
of all molecules. We use the data generated after each 
generation to train the model and then predicts the fit-
ness of unsampled molecules. Docking score or ligand 
efficiency can be considered as target for prediction if 
the docking mode was selected. Fitness prediction mod-
els are constructed using package Chemprop (version 
1.3.1). Chemprop builds a directed message passing neu-
ral network and learns to predict molecular properties 
directly from the graph representation of molecules. [53] 
Two strategies are provided here for the integration of 
DL technology. One is the combined mode, where top-
ranked molecules prioritized by predicted scores were 
evaluated by the fitness module. These molecules were 
applied for seed selection together with docked mol-
ecules from sampling procedure. Moreover, in the com-
bined mode deep learning models will be updated with 
each round of molecular generation. The other one is 
called clean mode. The DL model is trained based on 
the docking results after a SECSE campaign is finished. 
Data from each generation can be trained independently 
or together. The model can then be applied on undocked 
molecules for fitness prediction. Molecules with good 
performance from DL models can be subjected for fur-
ther inspection. Additionally, these two modes can be 
used alone or in combination.

The platform uses some open-source packages: RDKit 
v2021.03.5, Open Babel v3.1.1, AutoDock Vina v1.2.0, 
Chemprop v1.3.1, and GNU parallel v20190922 [54].

Results
Properties of generated molecules
We constructed a random library using SECSE without 
any other evaluation constraint to estimate the molecu-
lar properties of generated compounds. Benzene was 
assigned as the only input fragment. During each itera-
tion, one hundred molecules that passed the filter were 
randomly selected as seeds for the next iteration. The 
final random library after ten rounds of iteration contains 
2,042,863 molecules, which are included in the Figshare. 
More information can be found in the  Data availability 
section.

We calculated the physicochemical properties of the 
random library, such as molecular weight (MW), LogP, 
and the fraction of sp3 hybridized carbons (Fsp3) [55], as 
well-illustrated in Fig. 3. Despite the upper limitation of 
MW in the filters, we could find that the peak falls around 
450 Da. The distribution of LogP showed that the major-
ity of molecules have a value between 0 and 5. Molecules 
with a high Fsp3 tended to be more three-dimensional in 
shape. The Fsp3 of the random library was well-distrib-
uted from 0 to 0.8. In addition, five thousand molecules 
were randomly sampled to plot the principal moments 
of inertia (PMI) [56], a more direct descriptor for assess-
ing the distribution of molecular geometry (rod-shaped, 
disc-shaped, and sphere-shaped). We used the MMFF94 
force field in RDKit to optimize the conformers of sam-
pled molecules. As presented in Fig.  3D, the molecules 
scattered more towards the top-right vertex (sphere-
shaped) in comparison with traditional HTS compounds 
that predominately dropped between the top-left ver-
tex (rod-shaped) and bottom vertex (disc-shaped) (data 
not shown).  HTS Compounds are usually  built by two 
or three building blocks linearly. However, the trans-
formation rules here can be used to extend fragments 
in any direction without human bias. That is why struc-
tures in our data set are more spherical than structures 
from other libraries designed by medicinal chemists. The 
results presented here indicate that SECSE can generate 
structures with suitable druglike properties and diverse 
geometry.

Case: phosphoglycerate dehydrogenase (PHGDH)
PHGDH is a crucial enzyme that catalyzes the first com-
mitted step of the de novo serine synthesis pathway. It 
converts 3-phosphoglycerate to 3-phosphopyruvate in 
a reduced nicotinamide adenine dinucleotide (NADH)/
nicotinamide adenine dinucleotide (NAD+)-dependent 
oxidation reaction. Many reports [57, 58] have indicated 
that overexpression of PHGDH is associated with various 
diseases, especially cancer. Inhibition of PHGDH may be 
a promising strategy for cancer therapy [59–63].

Regeneration of PDB ligands
To validate the retrospective accuracy of SECSE, we per-
formed a test to reproduce experimental binding modes 
for co-crystal ligands against PHGDH. By the time of 
our analysis, there are fourteen co-crystal structures of 
PHGDH containing drug-like ligands in PDB. Seven of 
the ligands are fragments with molecular weights of less 
than 150 Da. To narrow down the chemical space under 
limited computational resources, we selected a small 
set of rules (see Additional file 4) to generate molecules 
for this test. The set of rules can be found in the Addi-
tional file 4 in SMARTS format. The protein structure of 
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6RJ3 was selected as input. All water were removed from 
the original crystal structure. Benzene was employed 
as the initial fragment. AutoDock Vina was selected for 
molecular docking. After seven rounds of iterations, ten 
ligands were reproduced. The growing paths are shown 
in Fig. 4. Four of them evolved from the same branch and 
shared a common ancestor GEN_2_M_002106. Fig.  5 
shows the poses and RMSD of rediscovered ligands com-
pared to crystal conformation (6RJ3, 6RJ5, and 6RIH), 
respectively.

The three RMSD values are all less than 2.0 Å. Com-
pared with the ligand in 6RJ3, the left carboxyl and 
phenyl of GEN_5_M_576819-CC1 are shifted, result-
ing in a RMSD of 1.1 Å. The reason for less constrained 
conformation in this part is due to removal of the crys-
tal water at this position (shown in Fig.  5A). In addi-
tion, the other four crystallographic ligands (ligands 
from 6RJ2, 6PLF, 6PLG, 6RJ6) were not regenerated. 
The ligand from 6RJ2 was not reproduced because of 
the low ligand efficiency ranking of its parent mol-
ecule. In addition, ligands from 6PLF, 6PLG and 6RJ6 
were not regenerated since their parent molecules 
did not continue to evolve as a result of insufficient 

sampling. The raw data can be found in Figshare (see 
Data Availability section).

From the test run, SECSE has proven to be powerful in 
the rediscovery of known ligands against PHGDH. Next, 
we sought to demonstrate its value in the generation of 
novel compounds, the transferable process of which can 
be applied in hit identification against novel targets with 
limited ligand-bound information available.

Generation of novel compounds
The upper limitation of molecular weight was set to 500 
Da, and the starting fragment was benzene. The crystal 
structure of PHGDH (PDB code: 6RJ3) was prepared 
using previous descriptions in Implementation. Together, 
502,226 poses were collected after five generations. The 
docking scores were gradually decreased (Fig.  6). Not 
surprisingly, compared with the average docking score 
of the top 1000 of each generation, that of the top 100 
molecules was improved more rapidly. After three gen-
erations, the average docking scores of either the top 
100 or top 1000 compounds were better than that of the 
reference compound (−  8.8 kcal/mol). Additionally, it 
was observed that the scores started to converge at later 

Fig. 3  Properties of the randomly generated library. A–C shows the distribution of MW, Fsp3, and LogP of molecules in the random library, 
respectively. D The PMI plot illustrates the shape of sampled molecules from the randomly generated library. The top-left vertex represents 
rod-shaped, the top-right vertex represents sphere-shaped, and the bottom vertex represents disc-shaped
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Fig. 4  Evolution tree leading to the ligands in the co-crystal structures of PHGDH. Benzene is the initial seed. Each generated intermediate is 
labeled with name in black. Each reproduced structure is labeled with name in blue and an underlined PDB code

Fig. 5  Alignment of ligands in the co-crystal structures and the corresponding reproduced molecules. The ligands from PDB 6RJ3 (A), 6RJ5 (B), 6RIH 
(C) are shown in white stick. The generated structures are shown in stick colored by light blue (A), marine (B), orange (C), respectively. The water (A) 
in the co-crystal structure is represented in red sphere. The unit of Vina score is kcal/mol. The unit of RMSD is Å
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generations indicating the pocket occupancy was quickly 
approaching its optimum. It is plausible that the converg-
ing rate for different targets might be different. More 
rounds of iteration can be performed. Yet in this case, we 
stopped here for further analysis.

Finally, 14,413 poses with AutoDock Vina score less 
than −  9 kcal/mol were obtained. Then, the similarity 
distance cutoff was set to 0.15 to cluster these molecules 
according to the RDKit fingerprint. The one with the low-
est docking score of each cluster was chosen for further 
binding pose inspection. Afterwards, we retrieved ana-
logs of molecules of interest from the original docking 
pose pool. To keep the long-range electrostatic (LRE) 
interactions in the phosphate channel [62], the generated 
molecules with electron-rich functional groups are pref-
erably selected using substructure filters. The final list of 
compounds is compiled manually. Table 1 (see Additional 
file 2) below includes some selected examples.

All the molecules shared similar binding modes with 
the reference compound from 6RJ3. Compounds 1–7 
share a common topology. Similar to the phenylpyra-
zole-5-carboxamide part of the reference compound, the 
phenylpyridopyrazin-5-one occupies the same position 
of the adenine pocket. The nitrogen atom in the pyra-
zine ring forms a polar interaction with the side chain of 
D174 to stabilize the lipophilic aromatic fragment. The 
cyclopropanecarboxylic acid motif, which mimics the 
benzoic acid in the reference compound, has long-range 
Van der Waals interactions with the basic residues in the 
phosphate channel. The hydroxy-pyrrol-2-yl acetic acid 
moiety of compounds 8 and 9 act as the same role for 
Van der Waals interactions, as well as oxazolone of com-
pounds 11 and 12.

The step-by-step elaboration of compound 2 from the 
benzene ring in the NADH/NAD+ binding pocket was 
presented in Fig. 7A to F. The final pose of compound 2 
was aligned to the reference compound. The common 
structure between current and previous generations 
showed nearly identical orientations. The AutoDock Vina 
docking scores decreased from − 4.3 kcal/mol to − 10.8 
kcal/mol, while the MW increased from 78 Da to 485 
Da. Despite the decent docking scores, conformation of 
compounds in D, E, F generated by AutoDock Vina may 
not be energetically favorable. The oxygen atom of the 
carbonyl group is near the nitrogen atom of pyrazine, 
whereas they should stay away in the lowest energy con-
formations. More accurate docking programs are needed 
for better outcomes.

Subsequently, the Synthetic Accessibility Module from 
Chemical.AI was used to estimate accessibility of these 
proposed molecules. The Synthetic Accessibility Module 
provides a primary estimation for many organic com-
pounds under restricted computing resources. The pre-
dicted routes may not be the best choice, but it gives a 
quick estimate that can be used to assess whether the 
compound is easy to make or not. Generally speaking, 
majority of compounds can be made within 15 synthetic 
steps with no more than 7 linear steps. Unfortunately, no 
synthetic routes of compound 5 are suggested under the 
default setting of Synthetic Accessibility Module. In such 
cases, or when dealing with a short list of candidates that 
are of high interest, more accurate predictions can be 
done using the Synthesis Plan Module, which performs 
extensive searches for all possible synthetic routes.

To address the sampling limitation of generated mol-
ecules before fitness evaluation, a new selection proto-
col combined deep learning method was developed. As 
described previously in the Implementation section, the 
clean mode was used to build the DL model. Fig. 8 dem-
onstrates the details of the model performance of each 
generation (A-E) and combined set (F), which includes 
data from all previous generations. The value of R2 from 
Generation 1 to Generation 5 was gradually improved 
from 0.66 to 0.85. Furthermore, the R2 of the DL model 
from the combined set was 0.85, slightly better than 
other models trained only by a single generation. It is rea-
sonable to believe the model performance is sufficient for 
prediction [64–66]. The model F was then used for the 
prediction of the 66,687,173 molecules and 2,094 mol-
ecules with predicted scores less than −  10.5 kcal/mol 
were subjected for redocking. The structures, MW, LogP, 
and synthetic accessibility analysis of representative mol-
ecules were listed in Table 2 (see Additional file 3). It was 
pleased to see compounds that share similar scaffold with 
compound 2. Compounds that have completely differ-
ent scaffolds were also identified to provide diverse and 

Fig. 6  Average docking scores of top N compounds in each 
generation. The unit of vina score is kcal/mol. The compound in 
generation 0 is the initial fragment. The vina score of reference 
compound is -8.86 kcal/mol. The blue line represents the average 
vina score of top 1000 compounds. The orange line represents the 
average vina score of top 100 compounds
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Table 1  List of selected candidates
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valuable hypotheses for further validation. The superior 
performance of the deep learning model in the SECSE 
platform was speculated to result from the intrinsic logic. 
The 3D structural information of the parent compound 
was inherited in its child compounds, while the child 
generation would feedback rich structure-activity rela-
tionship (SAR) for model training. It also explained the 
model performance was improved in later generations 
while the combined set yielded the best result.

In this case, we used an 80-core computer, which took 
40.5 hours in total. The Fig. 9 shows the calculation time 
of each generation. As the molecules grow larger and 
their complexity increases, the running time of each 
generation would gradually increase. Deep learning 
modeling significantly reduces search time and makes it 
possible to obtain estimated fitness scores for all gener-
ated molecules.

Discussion
To our knowledge, the previously reported de novo 
design tools are not widely used in hit-finding pro-
grams. A potential reason is the inadequate explora-
tion of chemical space. Moreover, limitation in chemical 
space coverage of current chemical libraries is a com-
mon problem the field is facing. Intensively expanding 
the chemical space via brute-force exploration, which 
leads to ultra-large chemical libraries such as GDB [36, 
67, 68] is explored. A more widespread attempt is the 

make-on-demand library [4], which comprises of struc-
tures from the enumeration of commercial building 
blocks based on reliable reaction schemes. The commer-
cial providers also claim to have a relatively high synthe-
sis success rate (at least 30%). The success of ultra-large 
compounds virtual screening contributes to the vigor of 
the make-on-demand library [2, 3]. Furthermore, people 
train machine learning models to accelerate the speed of 
virtual screening to balance the tradeoff between accu-
racy and speed [64]. However, it is still a very tough task 
to do virtual screening of ultra-large libraries directly on 
the present hardware.

All these factors are considered and balanced in our 
own platform. It is probably unrealistic to enumerate all 
druglike molecules, but an exhaustive enumeration of 
fragments with less than 13 heavy atoms is doable. Com-
pared with previous de novo design softwares, reaction 
rules are a systemically curated to enrich the diversity of 
structures. Many heulistic filters from medicinal chem-
ists’ knowledge were incorporated in SECSE to maintain 
the beauty and practicality of molecules. To avoid the 
combinatorial explosion, protein pockets are constraints 
to direct the evolution. In addition, the unexpected accu-
racy of the deep learning model allows us to evaluate a 
large amount of compounds with minimal false positives 
or false negatives.

Recently, deep generative neural networks have 
become a promising approach for molecular genera-
tion. Many seminal reviews [10, 69] have summarized 

Fig. 7  Evolutionary path of compound 2. (A–E) fragment binding poses of Compound 2 in generation 1-5. F binding pose of compound 2 and 
reference compound in the NADH/NAD+ binding pocket. The protein structure is shown in white cartoon. Compound 2 is shown in cyan stick. 
The reference compound is represented as white stick. Asp 174 is shown as lightblue stick. The adenine pocket is highlighted in a yellow circle. Vina 
score, RMSD(Å) of shared structure between two consecutive generations, and MW(Da) are provided
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the development of these deep generative models with 
different generative architectures (like recurrent neu-
ral networks, autoencoders, and generative adversarial 
networks) based on various molecular representations 
(SMILES, molecular graph). Despite the limitations of 
these generative models and the inaccuracy of current 
evaluation techniques for these models [70], they are 
indeed one choice for de novo molecular generation.

In parallel, rule-based molecular generation is also 
very popular such as AbbVie’s project Drug Guru [34, 
35], the abbreviation of drug generation using rules. A 

data-driven method called matched molecular pairs 
(MMPs) [71–73] is another way to collect the experts’ 
knowledge from literature. Indeed, the rules of Drug 
Guru and MMPs are essentially the same method and 
nearly from the same source, that is molecular design 
thoughts of human beings. They can be stored as lines 
of reaction SMARTS code in RDKit. Scientists from 
Shanghai Institute of Materia Medica constructed Drug-
SpaceX [74], a virtual compound library, using Nova 
and BIOSTER rules from StarDrop. Scientists from 
GSK did a Turing test [75, 76] for molecular generators 

Table 2  List of selected candidates based on the evaluation of DL models
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by comparing three molecular generators in-house. The 
first one is BioDig, an MMPs-based algorithm. The sec-
ond one is BRICS, a molecular generator by fragment 
recombination. The last one is RG2Smi, a deep generative 
model for generating molecules, which translates a mol-
ecule into a pharmacophore-based graph representation, 
then generates smiles string by deconvolution algorithm 
trained using natural language processing architecture. 
BioDig performed better than the other two methods 
across all tests in their report. Despite the fact that rule-
based methods are somewhat limited to human knowl-
edge or bias, we prefer rule-based methods for practical 
considerations.

Another challenge in computational de novo drug 
design is that compounds proposed by these tools are 
often hard to synthesize. Therefore, synthetic accessibil-
ity is a critical assessment for meaningful output. Previ-
ous retrosynthesis analysis tools were usually incapable 

Fig. 8  Test data R2 of deep learning models. All the docking data are randomly split into three parts: training (80%), test (10%), and validation 
(10%) datasets. A–E) shows the performance of models using docking data set from generation 1–5, respectively. F shows the performance of the 
aggregate dataset, including data from the previous five generations

Fig. 9  Time consumption. Running time of each generation (GEN 
1–5). DL represents the time cost of a final search by deep learning 
model. With 80 cores, a five-generation computing cost was 40.5 
hours
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of handling complex synthetic routes. Recently, with the 
development of deep learning and the growing number 
of available reaction collections, several new algorithms 
[77–79] have been developed to improve the capability of 
synthetic route planning. We introduce synthetic acces-
sibility evaluator of Chemical.AI to analyze the feasibil-
ity of generated structures. Yet increasing the evaluation 
throughput is challenging since it may take a few minutes 
to find practical routes for a single molecule. A batch 
mode that can evaluate thousands to millions of mol-
ecules at an affordable cost within a given timeframe is 
urgently needed.

SECSE mainly relies on structure-based computa-
tional design tools. Different tools will lead to different 
search directions, which might result in different chemi-
cal structure output. SECSE platforms are built to be 
compatible with various tools as fitness evaluators, like 
molecular docking, shape-based screening, and pharma-
cophore alignment, even ligand-based screening meth-
ods. Until now, docking has been the primary choice 
of SECSE because of its tradeoff between accuracy and 
speed. Despite the excellent performance of SECSE dock-
ing mode, there are still some inherent shortcomings in 
molecular docking methods, such as simplistic scoring 
with empirical energy function, rigid protein structures, 
ill-modeled poses. To enhance the prediction power, 
theoretically more accurate methods need to be intro-
duced into the fitness assessment module. Claudio et 
al. [80] proposed a new QM-based docking program to 
replace the current docking methods based on molecu-
lar mechanics (MM) force fields. The new scoring func-
tion has achieved excellent performance in most cases. 
However, their QM docking scoring function is ten times 
slower than traditional MM-based scoring functional 
per core. To explicitly consider the dynamic nature of 
proteins, molecular dynamics (MD) simulation is the 
best choice. Hugo Guterres et al. [81] reported a high-
throughput molecular dynamics (HTMD) simulations 
method to refine the docking results from AutoDock 
Vina. They calculated the RMSD of ligand by aligning 
protein structure from the initial docking pose and all 
protein structures in MD trajectory. They used a large 
set of 56 diverse target proteins and 560 ligands from the 
DUD-E dataset. The results show that short time MD 
simulations increase the area under the curve (AUC) of 
0.8 from a value of 0.68 from AutoDock Vina. Enabled by 
the increasing computational power, attempts to add QM 
and MD concepts to the current docking program will be 
a promising way to improve the fitness evaluation mod-
ule of SECSE. Results of the application of SECSE in our 
internal research projects will be reported in due course.

Conclusion
We have developed a de novo design platform SECSE 
that integrates human intelligence for systemic evolu-
tionary chemical space exploration against a specific 
protein pocket. The platform incorporated design rules 
of medicinal chemistry, computational evaluation meth-
ods, and deep learning models to efficiently speed up the 
search process of virtual hit compounds. The application 
in a demo target PHGDH proved its utility in finding 
diverse, potent and novel drug-like chemotypes. Fur-
ther optimization considering high-precision evaluation 
methods and protein dynamics is currently underway. 
SECSE is released as an open-source project under the 
Apache License, Version 2.0. Any efforts and suggestions 
to improve its performance are welcomed.

Abbreviations
HTS: High-throughput screening; AS-MS: Affinity selection-mass spectrometry; 
FBDD: Fragment-based drug design; DELT: DNA-encoded library technology; 
VS: Virtual screening; MW: Molecular weight; HBD: Number of hydrogen bond 
donors; HBA: Number of hydrogen bond acceptor; RB: Number of rotatable 
bonds; TPSA: Topological polar surface area; RMSD: Root Mean Square Devia-
tion; DL: Deep learning; PDB: Protein Data Bank; Fsp3: Fraction of sp3 hybrid-
ized carbons; PMI: Principal moments of inertia; PHGDH: Phosphoglycerate 
Dehydrogenase; NADH: Reduced nicotinamide adenine dinucleotide; NAD+: 
Oxidized nicotinamide adenine dinucleotide; LRE: Long-range electrostatic; 
MMP: Matched molecular pair; MM: Molecular mechanics; MD: Molecular 
dynamics; QM: Quantum mechanics; HTMD: High-throughput molecular 
dynamics; AUC​: Area under curve; SAR: Structure-activity relationship; SA: 
Synthetic accessibility.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​022-​00598-4.

Additional file 1: Fragment library generation and clustering algorithms.

Additional file 2: Table S1.SMILES and releated information of molecules 
from Table 1.

Additional file 3: Table S2. SMILES and releated information of molecules 
from Table 2.

Additional file 4: Rules for regeneration test in SMARTS format.

Acknowledgements
We thank all of our colleagues at Keen Therapeutics, who have contributed 
to this work. We appreciate Chemical.AI for their help. Finally, we thank Dr. 
Yingxiao Cai for assistance with SA evaluation.

Availability and requirements
Project name: Systemic Evolutionary Chemical Space Explorer.
Project home page: https://​github.​com/​KeenT​hera/​SECSE.
Operating system: Linux.
Programming language: Python, Shell.
License: Apache License, Version 2.0.

Authors’ contributions
CL and SL are co-first authors and contributed equally to this work. YW initi-
ated this project. WS, JY, and YW collected and designed the growing rules 

https://doi.org/10.1186/s13321-022-00598-4
https://doi.org/10.1186/s13321-022-00598-4
https://github.com/KeenThera/SECSE


Page 15 of 17Lu et al. Journal of Cheminformatics           (2022) 14:19 	

and filters. CL and SL wrote the code, tested its performance, and finished the 
demo case. NX evaluated the SA score of selected structures. All authors were 
involved in the analysis and discussion of results. CL and SL prepared the first 
version of this manuscript. ZZ, XZ, XL, FC, and NX assisted in the preparation 
of the manuscript. Y. W. revised this manuscript. All authors approved the final 
manuscript.

Funding
Not applicable.

Data availability
Fragment Library: https://​doi.​org/​10.​6084/​m9.​figsh​are.​17142​236.
Random Library: https://​doi.​org/​10.​6084/​m9.​figsh​are.​19142​624.
Raw data of regeneration test : https://​doi.​org/​10.​6084/​m9.​figsh​are.​19235​217.
Raw data of demo case PHGDH: https://​doi.​org/​10.​6084/​m9.​figsh​are.​17141​
879.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Keen Therapeutics Co., Ltd., Shanghai, China. 2 Chemical.AI, Shanghai, China. 

Received: 13 December 2021   Accepted: 11 March 2022

References
	1.	 MADE Building blocks from Enamine. https://​enami​ne.​net/​build​ing-​

blocks/​make-​on-​demand-​build​ing-​blocks. Accessed 1 Dec 2021
	2.	 Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, O’Meara MJ, Che T, 

Algaa E, Tolmachova K, Tolmachev AA, Shoichet BK, Roth BL, Irwin JJ 
(2019) Ultra-large library docking for discovering new chemotypes. 
Nature 566(7743):224–229. https://​doi.​org/​10.​1038/​s41586-​019-​0917-9

	3.	 Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, 
Balius TE, Carlsson J, Irwin JJ, Shoichet BK (2021) A practical guide to 
large-scale docking. Nat protoc 16:1–34

	4.	 Warr W (2021). Report on an NIH Workshop on Ultralarge Chemistry 
Databases. ChemRxiv.https://​doi.​org/​10.​26434/​chemr​xiv.​14554​803.​v1

	5.	 BioSolveIT: Efficient 3D exploration of multi-billion compound spaces. 
BioSolveIT. https://​cactus.​nci.​nih.​gov/​prese​ntati​ons/​NIHBi​gDB_​2020-​12/​
Chris​tianL​emmen​4NIHw​orksh​op.​pdf. Accessed 01 Dec 2021

	6.	 Bohacek RS, McMartin C, Guida WC (1996) The art and practice of 
structure-based drug design: a molecular modeling perspective. Med Res 
Rev 16(1):3–50. https://​doi.​org/​10.​1002/​(SICI)​1098-​1128(199601)​16:​1<​3::​
AID-​MED1>3.​0.​CO;2-6

	7.	 Schneider G, Fechner U (2005) Computer-based de novo design of drug-
like molecules. Nat Rev Drug Discov 4(8):649–663. https://​doi.​org/​10.​
1038/​nrd17​99

	8.	 Hartenfeller M, Schneider G, Bajorath J (2011) De novo drug design. 
Humana Press, Totowa, pp 299–323. https://​doi.​org/​10.​1007/​978-1-​
60761-​839-3_​12

	9.	 Schneider G, Clark DE (2019) Automated de novo drug design: are we 
nearly there yet? Angew Chem Int Ed 58(32):10792–10803. https://​doi.​
org/​10.​1002/​anie.​20181​4681

	10.	 Mouchlis VD, Afantitis A, Serra A, Fratello M, Papadiamantis AG, Aidinis V, 
Lynch I, Greco D, Melagraki G (2021) Advances in de novo drug design: 
From conventional to machine learning methods. Int J Mol Sci 22(4):1–22. 
https://​doi.​org/​10.​3390/​ijms2​20416​76

	11.	 Dollar O, Joshi N, Beck DAC, Pfaendtner J (2021) Attention-based genera-
tive models for: de novo molecular design. Chem Sci 12(24):8362–8372. 
https://​doi.​org/​10.​1039/​d1sc0​1050f

	12.	 Böhm HJ (1992) LUDI: rule-based automatic design of new substituents 
for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606. 
https://​doi.​org/​10.​1007/​BF001​26217

	13.	 Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for 
structure-based drug design. J Mol Model 6(7–8):498–516. https://​doi.​
org/​10.​1007/​s0089​40006​0498

	14.	 Chen J, Lai L (2006) Pocket vol 2: further developments on receptor-
based pharmacophore modeling. Journal of Chem Inform Model 
46(6):2684–2691. https://​doi.​org/​10.​1021/​ci600​246s

	15.	 Yuan Y, Pei J, Lai L (2020) LigBuilder V3: a multi-target de novo drug 
design approach. Front Chem 8(5):1083–1091. https://​doi.​org/​10.​3389/​
fchem.​2020.​00142

	16.	 Li Y, Zhao Y, Liu Z, Wang R (2011) Automatic tailoring and transplanting: 
a practical method that makes virtual screening more useful. J Chem 
Inform Model 51(6):1474–1491. https://​doi.​org/​10.​1021/​ci200​036m

	17.	 Li Y, Zhao Z, Liu Z, Su M, Wang R (2016) AutoT&T vol 2: an efficient and 
versatile tool for lead structure generation and optimization. J Chem 
Inform Model 56(2):435–453. https://​doi.​org/​10.​1021/​acs.​jcim.​5b006​91

	18.	 Chéron N, Jasty N, Shakhnovich EI (2016) OpenGrowth: an automated 
and rational algorithm for finding new protein ligands. J Med Chem 
59(9):4171–4188. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​5b008​86

	19.	 Durrant JD, Amaro RE, McCammon JA (2009) AutoGrow: a novel algo-
rithm for protein inhibitor design. Chem Biol Drug Design 73(2):168–178. 
https://​doi.​org/​10.​1111/j.​1747-​0285.​2008.​00761.x

	20.	 Spiegel JO, Durrant JD (2020) AutoGrow4: an open-source genetic 
algorithm for de novo drug design and lead optimization. Cheminform 
12(1):1–16. https://​doi.​org/​10.​1186/​s13321-​020-​00429-4

	21.	 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental 
and computational approaches to estimate solubility and permeabil-
ity in drug discovery and development settings. Adv Drug Deliv Rev 
64(Suppl.):4–17. https://​doi.​org/​10.​1016/j.​addr.​2012.​09.​019

	22.	 Baell JB, Holloway GA (2010) New substructure filters for removal of pan 
assay interference compounds (PAINS) from screening libraries and for 
their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://​doi.​
org/​10.​1021/​jm901​137j

	23.	 Polishchuk P (2020) CReM: chemically reasonable mutations framework 
for structure generation. J Cheminform 12(1):28. https://​doi.​org/​10.​1186/​
s13321-​020-​00431-w

	24.	 Nigam A, Pollice R, Krenn M, Gomes GDP, Aspuru-Guzik A (2021) Beyond 
generative models: superfast traversal, optimization, novelty, exploration 
and discovery (STONED) algorithm for molecules using SELFIES. Chem Sci 
12(20):7079–7090. https://​doi.​org/​10.​1039/​d1sc0​0231g

	25.	 Steinmann C, Jensen JH (2021) Using a genetic algorithm to find mol-
ecules with good docking scores. PeerJ Phys Chem 3:18. https://​doi.​org/​
10.​7717/​peerj-​pchem.​18

	26.	 Bai Q, Tan S, Xu T, Liu H, Huang J, Yao X (2021) MolAICal: A soft tool for 
3D drug design of protein targets by artificial intelligence and classical 
algorithm. Brief Bioinform 22(3):161. https://​doi.​org/​10.​1093/​bib/​bbaa1​61

	27.	 Ma B, Terayama K, Matsumoto S, Isaka Y, Sasakura Y, Iwata H, Araki M, 
Okuno Y (2021) Structure-based de novo molecular generator combined 
with artificial intelligence and docking simulations. J Chem Inform Model 
61(7):3304–3313. https://​doi.​org/​10.​1021/​acs.​jcim.​1c006​79

	28.	 Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K (2017) ChemTS: an effi-
cient python library for de novo molecular generation. Sci Technol Adv 
Mater 18(1):972–976. https://​doi.​org/​10.​1080/​14686​996.​2017.​14014​24

	29.	 Li Y, Pei J, Lai L (2021) Structure-based de novo drug design using 3D 
deep generative models. Chem Sci 12(41):13664–13675. https://​doi.​org/​
10.​1039/​d1sc0​4444c

	30.	 Gebauer NWA, Gastegger M, Schütt KT (2019) Symmetry-adapted gener-
ation of 3D point sets for the targeted discovery of molecules. Adv Neural 
Inform Process Syst. 32 (2019). https://arxiv.org/abs/1906.00957https://​
arxiv.​org/​abs/​1906.​00957

	31.	 Imrie F, Bradley AR, Van Der Schaar M, Deane CM (2020) Deep genera-
tive models for 3D linker design. J Chem Inform Model 60(4):1983–1995. 
https://​doi.​org/​10.​1021/​acs.​jcim.​9b011​20

	32.	 Green H, Koes DR, Durrant JD (2021) DeepFrag: a deep convolutional 
neural network for fragment-based lead optimization. Chemical Science 
12(23):8036–8047. https://​doi.​org/​10.​1039/​d1sc0​0163a

	33.	 Nesterov V, Wieser M, Roth V (2020) 3DMolNet: A generative network for 
molecular structures. arXiv. https://​arxiv.​org/​abs/​2010.​06477

https://doi.org/10.6084/m9.figshare.17142236
https://doi.org/10.6084/m9.figshare.19142624
https://doi.org/10.6084/m9.figshare.19235217
https://doi.org/10.6084/m9.figshare.17141879
https://doi.org/10.6084/m9.figshare.17141879
https://enamine.net/building-blocks/make-on-demand-building-blocks
https://enamine.net/building-blocks/make-on-demand-building-blocks
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.26434/chemrxiv.14554803.v1
https://cactus.nci.nih.gov/presentations/NIHBigDB_2020-12/ChristianLemmen4NIHworkshop.pdf
https://cactus.nci.nih.gov/presentations/NIHBigDB_2020-12/ChristianLemmen4NIHworkshop.pdf
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1038/nrd1799
https://doi.org/10.1038/nrd1799
https://doi.org/10.1007/978-1-60761-839-3_12
https://doi.org/10.1007/978-1-60761-839-3_12
https://doi.org/10.1002/anie.201814681
https://doi.org/10.1002/anie.201814681
https://doi.org/10.3390/ijms22041676
https://doi.org/10.1039/d1sc01050f
https://doi.org/10.1007/BF00126217
https://doi.org/10.1007/s0089400060498
https://doi.org/10.1007/s0089400060498
https://doi.org/10.1021/ci600246s
https://doi.org/10.3389/fchem.2020.00142
https://doi.org/10.3389/fchem.2020.00142
https://doi.org/10.1021/ci200036m
https://doi.org/10.1021/acs.jcim.5b00691
https://doi.org/10.1021/acs.jmedchem.5b00886
https://doi.org/10.1111/j.1747-0285.2008.00761.x
https://doi.org/10.1186/s13321-020-00429-4
https://doi.org/10.1016/j.addr.2012.09.019
https://doi.org/10.1021/jm901137j
https://doi.org/10.1021/jm901137j
https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1039/d1sc00231g
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.1093/bib/bbaa161
https://doi.org/10.1021/acs.jcim.1c00679
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1039/d1sc04444c
https://doi.org/10.1039/d1sc04444c
https://arxiv.org/abs/1906.00957
https://arxiv.org/abs/1906.00957
https://doi.org/10.1021/acs.jcim.9b01120
https://doi.org/10.1039/d1sc00163a
http://arxiv.org/abs/2010.06477


Page 16 of 17Lu et al. Journal of Cheminformatics           (2022) 14:19 

	34.	 Stewart KD, Shiroda M, James CA (2006) Drug Guru: a computer software 
program for drug design using medicinal chemistry rules. Bioorgan Med 
Chem 14(20):7011–7022. https://​doi.​org/​10.​1016/j.​bmc.​2006.​06.​024

	35.	 Stewart KD, Shanley J, Ahmed KBA, Bowen JP (2012) The drug guru pro-
ject, Chap. 11. vol. 54, pp 183–198.  West Sussex: John Wiley. https://​onlin​
elibr​ary.​wiley.​com/​doi/​abs/​10.​1002/​97835​27654​307.​ch11

	36.	 Blum LC, Reymond JL (2009) 970 Million druglike small molecules for 
virtual screening in the chemical universe database GDB-13. J Am Chem 
Soc 131(25):8732–8733. https://​doi.​org/​10.​1021/​ja902​302h

	37.	 RDKit: Open-source cheminformatics. http://​www.​rdkit.​org. Accessed 13 
Oct 2021

	38.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutch-
ison GR (2011) Open babel: an open chemical toolbox. J Cheminform 
3(10):1–14. https://​doi.​org/​10.​1186/​1758-​2946-3-​33

	39.	 Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, 
Dalenberg K, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Ganesan S, Good-
sell DS, Ghosh S, Green RK, Guranovic V, Guzenko D, Hudson BP, Lawson 
CL, Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose 
A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao YP, Voigt M, Westbrook 
JD, Young JY, Zardecki C, Zhuravleva M (2021) RCSB Protein Data Bank: 
powerful new tools for exploring 3D structures of biological macromol-
ecules for basic and applied research and education in fundamental biol-
ogy, biomedicine, biotechnology, bioengineering and energy sciences. 
Nucleic Acids Res 49(D1):437–451. https://​doi.​org/​10.​1093/​NAR/​GKAA1​
038

	40.	 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunya-
suvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl 
SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back 
T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, 
Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu 
K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction 
with AlphaFold. Nature 596(7873):583–589. https://​doi.​org/​10.​1038/​
s41586-​021-​03819-2

	41.	 Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, 
Wang J, Cong Q, Kinch LN, Dustin Schaeffer R, Millán C, Park H, Adams 
C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, Van Dijk AA, 
Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, 
Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Christopher Garcia K, 
Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of 
protein structures and interactions using a three-track neural network. 
Science 373(6557):871–876. https://​doi.​org/​10.​1126/​scien​ce.​abj87​54

	42.	 Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF (2015) 
AutoDockFR: advances in protein-ligand docking with explicitly specified 
binding site flexibility. PLoS Comput Biol 11(12):1–28. https://​doi.​org/​10.​
1371/​journ​al.​pcbi.​10045​86

	43.	 Ravindranath PA, Sanner MF (2016) AutoSite: an automated approach 
for pseudo-ligands prediction-from ligand-binding sites identification to 
predicting key ligand atoms. Bioinformatics 32(20):3142–3149. https://​
doi.​org/​10.​1093/​bioin​forma​tics/​btw367

	44.	 Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quanti-
fying the chemical beauty of drugs. Nat Chem 4(2):90–98. https://​doi.​org/​
10.​1038/​nchem.​1243

	45.	 Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accu-
racy of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem. https://​doi.​org/​10.​1002/​jcc.​21334

	46.	 Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 
1.2.0: new docking methods, expanded force field, and python bindings. 
J Chem Inform Model 61(8):3891–3898. https://​doi.​org/​10.​1021/​acs.​jcim.​
1c002​03

	47.	 Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of 
ligands. Tech Rep. https://​doi.​org/​10.​1073/​pnas.​96.​18.​9997

	48.	 How is Ligand Efficiency calculated? Schrödinger, Inc. https://​www.​schro​
dinger.​com/​kb/​1622. Accessed October 13, 2021

	49.	 Chemical.AI. Wuhan Zhihua Technology Co., Ltd. https://​chemi​cal.​ai. 
Accessed October 13 Oct 2021

	50.	 Goh GK-m, Foster JA (1999) Evolving molecules for drug design using 
genetic algorithms via molecular trees. In: Proceedings of the Genetic 
and Evolutionary Computation Conference. pp. 27–33

	51.	 Goldberg DE, Holland JH (1988) Genetic algorithms and machine learn-
ing. Mach Learn 3(2):95–99. https://​doi.​org/​10.​1023/A:​10226​02019​183

	52.	 Rocke DM, Michalewicz Z (2000) Genetic Algorithms + Data Structures = 
Evolution Programs. vol. 95, p. 347. New York; Springer. https://​doi.​org/​10.​
2307/​26695​83

	53.	 Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., 
Hopper, T., Kelley, B., Mathea, M., Palmer, A., Settels, V., Jaakkola, T., Jensen, 
K., Barzilay, R (2019) Analyzing Learned Molecular Representations for 
Property Prediction. Journal of Chemical Information and Modeling 59(8), 
3370–3388. https://​doi.​org/​10.​1021/​acs.​jcim.​9b002​37. arXiv:​1904.​01561

	54.	 Tange O (2011) GNU parallel - the command-line power tool. In: login. 
The USENIX Magazine, vol 36. pp. 42–47. https://​doi.​org/​10.​5281/​zenodo.​
16303

	55.	 Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing 
saturation as an approach to improving clinical success. J Med Chem 
52(21):6752–6756. https://​doi.​org/​10.​1021/​jm901​241e

	56.	 Sauer WHB, Schwarz MK (2003) Molecular shape diversity of combinato-
rial libraries: a prerequisite for broad bioactivity. J Chem Inform Comput 
Sci 43(3):987–1003. https://​doi.​org/​10.​1021/​ci025​599w

	57.	 Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M, 
Vakifahmetoglu-Norberg H, Norberg E (2017) PHGDH defines a meta-
bolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 
19(11):2289–2303. https://​doi.​org/​10.​1016/j.​celrep.​2017.​05.​067

	58.	 Rathore R, Schutt CR, van Tine BA (2020) PHGDH as a mechanism for 
resistance in metabolically-driven cancers. Cancer Drug Resist 3(4):762–
774. https://​doi.​org/​10.​20517/​cdr.​2020.​46

	59.	 Zhao JY, Feng KR, Wang F, Zhang JW, Cheng JF, Lin GQ, Gao D, Tian P 
(2021) A retrospective overview of PHGDH and its inhibitors for regulat-
ing cancer metabolism. Eur J Med Chem. https://​doi.​org/​10.​1016/j.​
ejmech.​2021.​113379

	60.	 Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, Dai Z, Gao X, Wang Q, Liu 
Y, Lai L, Locasale JW (2018) Serine synthesis through PHGDH coordinates 
nucleotide levels by maintaining central carbon metabolism. Nat Com-
mun 9(1):1–11. https://​doi.​org/​10.​1038/​s41467-​018-​07868-6

	61.	 Mullarky E, Xu J, Robin AD, Huggins DJ, Jennings A, Noguchi N, Olland 
A, Lakshminarasimhan D, Miller M, Tomita D, Michino M, Su T, Zhang 
G, Stamford AW, Meinke PT, Kargman S, Cantley LC (2019) Inhibition 
of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides 
abrogates de novo serine synthesis in cancer cells. Bioorg Med Chem Lett 
29(17):2503–2510. https://​doi.​org/​10.​1016/j.​bmcl.​2019.​07.​011

	62.	 ...Weinstabl H, Treu M, Rinnenthal J, Zahn SK, Ettmayer P, Bader G, Dah-
mann G, Kessler D, Rumpel K, Mischerikow N, Savarese F, Gerstberger T, 
Mayer M, Zoephel A, Schnitzer R, Sommergruber W, Martinelli P, Arnhof H, 
Peric-Simov B, Hofbauer KS, Garavel G, Scherbantin Y, Mitzner S, Fett TN, 
Scholz G, Bruchhaus J, Burkard M, Kousek R, Ciftci T, Sharps B, Schrenk A, 
Harrer C, Haering D, Wolkerstorfer B, Zhang X, Lv X, Du A, Li D, Li Y, Quant 
J, Pearson M, McConnell DB (2019) Intracellular trapping of the selective 
phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts 
serine biosynthesis. J Med Chem 62(17):7976–7997. https://​doi.​org/​10.​
1021/​acs.​jmedc​hem.​9b007​18

	63.	 Unterlass JE, Baslé A, Blackburn TJ, Tucker J, Cano C, Noble MEM, Curtin 
NJ, Unterlass JE, Baslé A, Blackburn TJ, Tucker J, Cano C, Noble MEM, 
Curtin NJ (2016) Validating and enabling phosphoglycerate dehydroge-
nase (PHGDH) as a target for fragment-based drug discovery in PHGDH-
amplified breast cancer. Oncotarget 9(17):13139–13153. https://​doi.​org/​
10.​18632/​ONCOT​ARGET.​11487

	64.	 Yang Y, Yao K, Repasky MP, Leswing K, Abel R, Shoichet BK, Jerome SV 
(2021) Efficient exploration of chemical space with docking and deep 
learning. J Chem Theory Comput. https://​doi.​org/​10.​1021/​acs.​jctc.​1c008​
10

	65.	 Gentile F, Agrawal V, Hsing M, Ton AT, Ban F, Norinder U, Gleave ME, 
Cherkasov A (2020) Deep docking: a deep learning platform for aug-
mentation of structure based drug discovery. ACS Cent Sci 6(6):939–949. 
https://​doi.​org/​10.​1021/​acsce​ntsci.​0c002​29

	66.	 Choi J, Lee J (2021) V- dock: fast generation of novel drug-like molecules 
using machine-learning-based docking score and molecular optimiza-
tion. Int J Mol Sci. https://​doi.​org/​10.​3390/​ijms2​22111​635

	67.	 Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-
molecule chemical universe below 160 daltons. Angew Chem Int Ed 
44(10):1504–1508. https://​doi.​org/​10.​1002/​anie.​20046​2457

	68.	 Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumeration 
of 166 billion organic small molecules in the chemical universe database 

https://doi.org/10.1016/j.bmc.2006.06.024
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527654307.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527654307.ch11
https://doi.org/10.1021/ja902302h
http://www.rdkit.org
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1093/NAR/GKAA1038
https://doi.org/10.1093/NAR/GKAA1038
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1371/journal.pcbi.1004586
https://doi.org/10.1371/journal.pcbi.1004586
https://doi.org/10.1093/bioinformatics/btw367
https://doi.org/10.1093/bioinformatics/btw367
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1073/pnas.96.18.9997
https://www.schrodinger.com/kb/1622
https://www.schrodinger.com/kb/1622
https://chemical.ai
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.2307/2669583
https://doi.org/10.2307/2669583
https://doi.org/10.1021/acs.jcim.9b00237
http://arxiv.org/abs/1904.01561
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.1021/jm901241e
https://doi.org/10.1021/ci025599w
https://doi.org/10.1016/j.celrep.2017.05.067
https://doi.org/10.20517/cdr.2020.46
https://doi.org/10.1016/j.ejmech.2021.113379
https://doi.org/10.1016/j.ejmech.2021.113379
https://doi.org/10.1038/s41467-018-07868-6
https://doi.org/10.1016/j.bmcl.2019.07.011
https://doi.org/10.1021/acs.jmedchem.9b00718
https://doi.org/10.1021/acs.jmedchem.9b00718
https://doi.org/10.18632/ONCOTARGET.11487
https://doi.org/10.18632/ONCOTARGET.11487
https://doi.org/10.1021/acs.jctc.1c00810
https://doi.org/10.1021/acs.jctc.1c00810
https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/10.3390/ijms222111635
https://doi.org/10.1002/anie.200462457


Page 17 of 17Lu et al. Journal of Cheminformatics           (2022) 14:19 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

GDB-17. J Chem Inform Model 52(11):2864–2875. https://​doi.​org/​10.​
1021/​ci300​415d

	69.	 Sousa T, Correia J, Pereira V, Rocha M (2021) Generative deep learning for 
targeted compound design. J Chem Inform Model. https://​doi.​org/​10.​
1021/​acs.​jcim.​0c014​96

	70.	 Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G (2019) 
On failure modes in molecule generation and optimization. Drug Discov 
Today Technol 32–33:55–63. https://​doi.​org/​10.​1016/j.​ddtec.​2020.​09.​003

	71.	 Warner DJ, Griffen EJ, St-Gallay SA (2010) WizePairZ: A novel algorithm to 
identify, encode, and exploit matched molecular pairs with unspecified 
cores in medicinal chemistry. J Chem Inform Model 50(8):1350–1357. 
https://​doi.​org/​10.​1021/​ci100​084s

	72.	 Hussain J, Rea C (2010) Computationally efficient algorithm to identify 
matched molecular pairs (MMPs) in large data sets. J Chem Inform Model 
50(3):339–348. https://​doi.​org/​10.​1021/​ci900​450m

	73.	 Awale M, Hert J, Guasch L, Riniker S, Kramer C (2021) The playbooks of 
medicinal chemistry design moves. J Chem Inform Model 61(2):729–742. 
https://​doi.​org/​10.​1021/​acs.​jcim.​0c011​43

	74.	 Yang T, Li Z, Chen Y, Feng D, Wang G, Fu Z, Ding X, Tan X, Zhao J, Luo X, 
Chen K, Jiang H, Zheng M (2021) DrugSpaceX: a large screenable and 
synthetically tractable database extending drug space. Nucleic Acids Res 
49(D1):1170–1178. https://​doi.​org/​10.​1093/​nar/​gkaa9​20

	75.	 Green DVS, Pickett S, Luscombe C, Senger S, Marcus D, Meslamani J, 
Brett D, Powell A, Masson J (2020) BRADSHAW: a system for automated 
molecular design. J Comput Aided Mol Design 34(7):747–765. https://​doi.​
org/​10.​1007/​s10822-​019-​00234-8

	76.	 Bush JT, Pogany P, Pickett SD, Barker M, Baxter A, Campos S, Cooper AWJ, 
Hirst D, Inglis G, Nadin A, Patel VK, Poole D, Pritchard J, Washio Y, White 
G, Green DVS (2020) A turing test for molecular generators. J Med Chem 
63(20):11964–11971. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​0c011​48

	77.	 Coley CW, Rogers L, Green WH, Jensen KF (2017) Computer-assisted ret-
rosynthesis based on molecular similarity. ACS Cent Sci 3(12):1237–1245. 
https://​doi.​org/​10.​1021/​acsce​ntsci.​7b003​55

	78.	 Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses 
with deep neural networks and symbolic AI. Nature 555(7698):604–610. 
https://​doi.​org/​10.​1038/​natur​e25978

	79.	 Genheden S, Thakkar A, Chadimová V, Reymond JL, Engkvist O, Bjerrum E 
(2020) AiZynthFinder: a fast, robust and flexible open-source software for 
retrosynthetic planning. J Cheminform 12(1):1–9. https://​doi.​org/​10.​1186/​
s13321-​020-​00472-1

	80.	 Cavasotto CN, Aucar MG (2020) High-throughput docking using quan-
tum mechanical scoring. Front Chem 8:246. https://​doi.​org/​10.​3389/​
fchem.​2020.​00246

	81.	 Guterres H, Im W (2020) Improving protein-ligand docking results with 
high-throughput molecular dynamics simulations. J Chem Inform Model 
60(4):2189–2198. https://​doi.​org/​10.​1021/​acs.​jcim.​0c000​57

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/acs.jcim.0c01496
https://doi.org/10.1021/acs.jcim.0c01496
https://doi.org/10.1016/j.ddtec.2020.09.003
https://doi.org/10.1021/ci100084s
https://doi.org/10.1021/ci900450m
https://doi.org/10.1021/acs.jcim.0c01143
https://doi.org/10.1093/nar/gkaa920
https://doi.org/10.1007/s10822-019-00234-8
https://doi.org/10.1007/s10822-019-00234-8
https://doi.org/10.1021/acs.jmedchem.0c01148
https://doi.org/10.1021/acscentsci.7b00355
https://doi.org/10.1038/nature25978
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.3389/fchem.2020.00246
https://doi.org/10.3389/fchem.2020.00246
https://doi.org/10.1021/acs.jcim.0c00057

	Systemic evolutionary chemical space exploration for drug discovery
	Abstract 
	Introduction
	Implementation
	Fragments collection
	Input preparation
	Molecular generator
	Property and  structure filter
	Fitness evaluator
	Seed selector
	Deep learning-based fitness prediction

	Results
	Properties of generated molecules
	Case: phosphoglycerate dehydrogenase (PHGDH)
	Regeneration of PDB ligands
	Generation of novel compounds


	Discussion
	Conclusion
	Acknowledgements
	References




