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An in vitro heart disease model is a promising model used for identifying the genes responsible for the disease, evaluating the
effects of drugs, and regenerative medicine. We were interested in disease models using a patient-induced pluripotent stem (iPS)
cell-derived cardiomyocytes because of their similarity to a patient’s tissues. However, as these studies have just begun, we would
like to review the literature in this and other related fields and discuss the path for future models of molecular biology that can help
to diagnose and cure diseases, and its involvement in regenerative medicine. The heterogeneity of iPS cells and/or differentiated
cardiomyocytes has been recognized as a problem. An in vitro heart disease model should be evaluated using molecular biological
analyses, such as mRNA and micro-RNA expression profiles and proteomic analysis.

1. Introduction

Most of the genes responsible for congenital heart diseases
have been identified with genetic studies, where healthy
individuals and patients’ genes sequences were compared to
find mutations. The responsible genes were then subjected
to functional analyses, using knock-out mouse and/or other
animals to make a disease model which possessed the
mutated genes [1, 2].

Since their establishment [3–5], iPS cells have been used
to make in vitro disease models because of the difficulty in
using a patient’s cells or tissues, especially from the heart [6–
9]. Transfection of mutated genes into a normal parent cell
prior to formation of iPS cells has also been used to make
an in vitro disease model. Thus, iPS cells or differentiated
cells containing the mutated gene can be compared with
parent cells that do not have the mutated gene. ES cells and
iPS cells differentiate into heart cells more easily than adult
cardiac stem cells in both mice and humans because of their
multipotency and pluripotency characteristics. Therefore,
these cells have been used in regenerative medicine studies
[10–12]. Although cardiac stem cells have advantage for
in vivo regenerative medicine [13, 14], heterogeneity was

observed in long-term cultures in our in vitro cultures [15].
A previous report showed that immature cardiomyocytes
were obtained in vitro differentiation [16], suggesting the
limitations of using adult stem cells as a cell source for in
vitro disease model. Taken together, ES cells/iPS cells provide
a better cell source of cardiomyocytes required for in vitro
disease models.

In heart disease, iPS cells from Long-QT-syndrome-
(LQTS-) type1 [17] and LQTS-type2 [18] patients were made
and differentiated cardiomyocytes were obtained from these
iPS cells. These cardiomyocytes worked as in vitro heart
disease models since they possessed similar characters to
patients’ cardiomyocytes. LQT1 and LQT2 are caused by
missense mutations of the KCNH1 and KCNH2 gene, respec-
tively. These mutations in potassium channels lead to QT
interval prolongation [19]. Interestingly, the differentiated
cardiomyocytes also showed marked arrhythmogenicity and
early afterdepolarizations [18]. Potassium channel activators,
such as PD118057, cured prolonged action potentials of
LQT2-hiPS cell-derived cardiomyocytes [20]. Cardiomy-
ocytes derived from patients’ fibroblasts, or other somatic
cells, are gaining attention as promising models to discover
drug targets for disease.
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Figure 1: Whole concept of in vitro disease model for heart disease (channepathies and cardiomayopathies).

The differentiated cardiomyocytes from murine iPS cells,
mutated with the LQT3 gene (Scn5aΔ/+), showed prolonged
action potentials because of a Na channel dysfunction
mutation in an LQTS-type3 patient [21], suggesting even
murine iPS-derived cardiomyocytes can be used for an in
vitro disease model. iPS cell-derived cardiomyocytes from
Timothy syndrome showed irregular contractility consistent
with the disease phenotype [22]. At least 13 LQTS genes
have been reported so far, and similar abnormalities in iPS-
derived cardiomyocytes from patients can be anticipated.

Channelopathies have been currently used as in vitro
disease models because of the development of systematic
current measurements. Another recent model from chan-
nelopathy was catecholaminergic polymorphic ventricular
tachycardia (CPVT), carrying a novel mutation (S406L) of
the ryanodine receptor (RYR) 2 which reduced sarcoplasmic
reticular (SR) Ca2+ content to levels lower than control
myocytes. In this case, Dantrolene is a drug rescued arrhyth-
mogenic phenotype [23]. LEOPARD (lentigines, electrocar-
diographic abnormalities, ocular hypertelorism, pulmonary
valve stenosis, abnormal genitalia, retardation of growth,
and deafness) syndrome is caused by a different missense
mutation of the PTPN11 gene (T468M and Y279C are the
most recurrent). Differentiated cardiomyocytes from these
patients were larger than wt-iPS-cell- or ES-cell-derived
cardiomyocytes, which correspond to the disease phenotype
of LEOPARD cardiac hypertrophy [24].

Another attractive method can be direct programming
into stem cells/progenitors/cardiomyocytes from patients’
somatic cells. iPS cells induced from adult neural stem
cells with only one transcription factor (TF), Oct4, were
similar to ES cells [25]; therefore, primitive cells may be
more suitable than differentiated cells to make iPS cells

with only one factor introduction. Transient introduction
of Yamanaka 4 factors (Oct3/4, Sox2, Klf4, and c-myc)
and immediate growth factors, mainly bone morphogenetic
protein 4 (BMP4), to cultured cells adequately directed
cardiomyogenesis [26]. Interestingly, direct reprogramming
from fibroblasts into cardiomyocytes was successful using 3
TFs, which are associated with cardiomyogenesis [27], which
is another possible method of producing cardiomyocytes.

2. Generation of iPS Cells from Patients

Although a retrovirus was originally used, recently there
have been several methods of reprogramming developed to
introduce Yamanaka 4 factors (Figure 1). The Sendai-virus
[28, 29], transient transfection of mRNA [30, 31], is more
attractive than conventional retroviral infections because of
safety, which is important for regenerative medicine and also
in vitro models. If reprogramming vectors are integrated
into the host genome, tracking the location can be difficult.
Moreover, additional artifacts are also a concern. Recent
studies show that epigenetic modulators such as the histone
deacetylase inhibitor, valproic acid (VPA) can affect repro-
gramming efficiency [32]. In this way, only two factors (Sox2
and Oct4) efficiently induce iPS cells [33]. The butyrate [34]
DNA methyl transferase inhibitor, RG108 [35], improves the
efficiency of skeletal myoblast reprogramming. Interestingly,
cardiomyocytes differentiated from these skeletal myoblast-
derived iPSs (SiPS) improved the cardiac function of an
infarcted heart without tumorgenesis [35, 36]. Epigenetic
studies of reprogramming and stemness have attracted the
interest of many researchers [37–40]. Indeed, hot spots are
investigated that are difficult to methylate [41]. Therefore,
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more efficiency is expected by identifying and modifying
these spots.

Congenital heart diseases, modified from the work of
Ackerman et al. [42], are summarized in Table 1. The diseases
of channelopathies and cardiomyopathies are listed and
summarized with experts evaluation, “is recommended”
or “not is recommended,” according to the present char-
acterization of gene mutations. Currently, channelopathies
have been well characterized because of systematic mea-
surements of cardiomyocytes or beating embryonic bodies
(EBs). These diseases are candidates for in vitro models
from iPS cells. Recently, iPS cell-derived cardiomyocytes
from Pompe disease, known as a glycogen storage disease,
were established and were revealed to have higher glycogen
contents than hESC and control iPS-derived cardiomyocytes
[43]. The generation of iPS-derived cardiomyocytes from
these patients is expected to provide important information
about these diseases.

3. Generation of Cardiomyocytes from iPS Cells

The differentiation method from iPS cells into cardiomy-
ocytes basically follows the protocol of embryonic stem (ES)
cells, using embryonic bodies (EBs, see Figure 2). Yang et al.
showed that KDRlow/C-KIT neg EBs differentiated into car-
diomyocyte lineages and became NKX2.5, ISL1, TBX5 posi-
tive but not KDRlow/C-KITpos or KDRneg/C-KITpos [44].
The combination of activin A, BMP 4, basic fibroblast growth
factor (bFGF), vascular endothelial growth factor (VEGF),
and Dickkopf homolog 1 (DKK1) in a serum-free media was
necessary for cardiomyogenesis. Likewise, addition of Wnt
inhibitors to BMP 4 enhanced cardiomyogenesis [45]. These
activin/nodal and BMP signaling pathways promote cardiac
differentiation in a stage-specific manner [46]. The role of
c-kit may be different even in the embryonic stage, since c-
kit high-expressing cells became cardiomyocytes and other
cardiac cell lineages near birth [47]. The level and timing of
c-kit expression can change its role [48]. Flk-1+ cells from
EB clusters are produced in ES cell cultures without LIF, and
cardiac progenitors and cardiovascular cells were also formed
from these EB clusters [49, 50].

Cardiomyocytes obtained from iPS cells were function-
ally similar to ES cells-derived cardiomyocytes [51], and
multiple type action potential (nodal, atrial, and ventricular)
phenotypes were observed [52]. Overall, the gene expression
profiles of iPS cells were similar to ES cells, but differentiation
direction and efficiency were variable [53, 54]. Overall, iPS-
cell-derived cardiomyocytes have similar contractile behav-
iors to ES cell-derived cardiomyocytes but are significantly
different from native tissues from comparable ages [52].
However, the drug effect on iPS-cell-derived cardiomyocytes
is similar to cardiomyocytes derived from hES cells [55].
As a cell source, ventricular cardiomyocytes produced more
cardiomyocytes than somatic cells such as tail-tip fibroblasts
[56]. The variability of differentiation among the cell lines
has been previously reported [57]. The heterogeneity of iPS-
derived cardiomyocytes is a problem for establishing good
models [58]. One of the solutions is to obtain extremely

pure cardiomyocytes to eliminate heterogeneity as much as
possible. Ma et al. selected highly purified iPS cell-derived
cardiomyocytes using blastcidin resistance gene expression
controlled from the cardiac-specific endogenous MYH6
promoter and investigated drug electrophysical properties
[59]. Another method used to eliminate heterogeneity was
to establish a systematic protocol which produced highly
purified cardiomyocytes (more than 90%) by optimization
of the culture condition [60]. Cao et al. reported that
ascorbic acid robustly enhanced cardiomyogenesis of all
11 lines so that differences were smaller [61]. Ascorbic
acid functioned to proliferate cardiomyocyte progenitors.
Ribosomal S6 kinase [62] and mitogen-activated protein
kinase (MAPK) activities [63] affected cardiomyogenesis.
Some small molecules had been known to have effect
on cardiomyogenesis. Previously investigated effects of 36
small molecules using ES cells were summarized [64]. In
addition to that, recently, small molecule, dorsomorphin, an
inhibitor of BMP signaling [65], and XAV929, an inhibitor
of Wnt/β signaling [45, 66], promoted cardiomyogenesis.
Cyclosporin-A [67], sulfonyl hydrazone-1 [68], and even a
simple dissociation of EBs [69] enhanced cardiomyogenesis.
These molecules will help to accelerate cardiomyogenesis.
However, a more concise profiling of molecular signatures
is necessary to evaluate maturity and function.

Recently, a unique method to purify cardiomyocytes
using the high number of mitochondria within cardiomy-
ocytes was reported [70, 71]. In this method, genetic
engineering is not required, and damage to cells should be
decreased. On the other hand, another method was estab-
lished using the signal-regulatory protein alpha (SIRPA),
which can select immature cardiomyocytes which have fewer
mitochondria [72].

4. Future Model of Heart Disease Composed of
the iPS-Cells-Derived Cardiomyocytes

Very recently, in a genomic mutation heterozygous for
polysystic kidney disease 1 (Pkd1), the deletion is restored
by spontaneous mitotic recombination [73]. Indeed, the
frequency of genetic repair events by spontaneous mitotic
recombination in pluripotent stem cells is higher than that in
somatic cells [74]. Interestingly, from the RT-PCR data from
Cheng et al., not only wild-type iPS cells but also −/− iPS
were detected [73]. These results are also important to heart
diseases, especially for dominant mutation. Comparison of
these (+/+ and −/−) cells can be perfect because there is no
genetic background difference, since they are derived from
the same person.

Currently, several multielectrode array systems for in
vitro extracellular electrophysiology are available for QT
prolongation screening with iPS cell-derived myocytes. In
order to screen the function of mutated channels located on
subcellular organelles such as the RYR2, fluctuations in intra-
cellular Ca2+ concentrations should be measured. Devel-
opment of a user-friendly detection system for stimulation
and recording of such channels in patient cardiomyocytes is
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Figure 2: The methodology for in vitro cardiomyocyte differentiation.

expected [75], as well as sensor techniques and bioanalytical
approaches for cardiotoxicity testing [76].

Because tissues are three dimensional, 3D in vitro models
can be made using scaffolds [77] or cell sheets [78, 79]
in the near future. The process of tissue formation can be
observed and compared with normal tissue formation. For
this purpose, not only cardiomyocytes, but also other cardiac
cells should be developed. Hearts contain a vascular system,
which is difficult to constitute using a 2D model; however, it
may be possible using a 3D model [80].

Gene expression levels [81, 82] and protein profiles
[83] can be analyzed similarly to other cell culture systems.
Recent progresses in the investigation of micro-RNA have
provided information on the process to disease. Micro-
RNA can be biomarkers for cardiovascular diseases [84]
and have gained attention as regulators for cardiac injury
and protection [85]. Cardiac differentiation by BMP from
cardiac progenitors was mediated by micro-RNA [86]. In
fact, micro-RNA is associated with cell fate decision [87].
In cardiomyocyte differentiation, miR-1 and miR-133 are
upregulated, and miR-499 promotes cardiomyogenesis [88].
Thus, the state of the disease can be more precisely assessed
by micro-RNA expression. Networks of mRNA and micro-
RNA to determine human cardiomyocytes differentiation
were investigated [89], and such attempts should be required,
and analytical development is also required to fit this. Not
only gene expression, but also global methylation analysis
of CpG islands and the identification of non-CpG islands
by next generation sequences is also useful. Other epigenetic
approaches should make progress in this field [90]. Because
some differences were reported between iPS-cell-derived
cardiomyocytes and tissue-derived cardiomyocytes, where
iPS cell-derived cardiomyocytes were more immature than
tissue derived cardiomyocytes, further studies should be
performed to evaluate their quality.

5. Conclusion

Using iPS cells for in vitro heart disease models is a
promising method for evaluating drug effects. Many disease
models should be constructed. However, further studies are
necessary to evaluate cardiomyocytes in terms of hetero-
geneity using molecular biological analyses derived from the
patient’s tissues.
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