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Abstract
In this paper, we propose a worst-case weighted approach to the multi-objective n-person
non-zero sum game model where each player has more than one competing objective. Our

“worst-case weighted multi-objective game”model supposes that each player has a set of

weights to its objectives and wishes to minimize its maximum weighted sum objectives

where the maximization is with respect to the set of weights. This new model gives rise to a

new Pareto Nash equilibrium concept, which we call “robust-weighted Nash equilibrium”.

We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the

weight sets are unbounded. For the worst-case weighted multi-objective game with the

weight sets of players all given as polytope, we show that a robust-weighted Nash equilib-

rium can be obtained by solving a mathematical program with equilibrium constraints

(MPEC). For an application, we illustrate the usefulness of the worst-case weighted multi-

objective game to a supply chain risk management problem under demand uncertainty. By

the comparison with the existed weighted approach, we show that our method is more

robust and can be more efficiently used for the real-world applications.

1 Introduction
Multi-objective game is a generalization of the scalar criterion game and is used to model situa-
tions where two or more decision makers, called players, take actions by considering their indi-
vidual multiple objectives. The study for multi-objective game can be dated back to Blackwell’s
work where the author considers the zero-sum games with multi-objective payoffs [1]. Since
then much attention has been attracted to the game models with multiple payoffs [2–4]. One of
the reasons is that multi-objective models can be better applied to real-world situations [2].

In this paper, we consider n-person worst-case weighted multi-objective games where each
player has two or more objectives and is ambiguous about the weights to the objectives. More
specifically, we focus on finite multi-objective games where the weights of objectives are
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uncertain and assumed to belong to an convex and compact set. In our model, we suppose that
all players are risk-averse and a player uses the robust optimization approach to manage the
weight uncertainty, assuming that other players are robust optimizers as well. Note that the
robust optimization approach is not concerning game data or the other players’ strategies, but
concerning the weights to the objectives.

In multi-objective games, since each player needs to consider several competing objectives
and it is not possible to simultaneously optimize all objectives, so a commonly accepted
approach for coping with this setting is the weighted approach by assigning a nonnegative
weight by considering the importance of the corresponding objective function. And then a
player can make a decision by optimizing a weighted sum objectives by assuming that other
players also make their decision by optimizing their own weighted sum objectives [2, 3, 5]. A
weighted Nash equilibrium point can be obtained if each player makes his decision by optimiz-
ing his weighted sum function. However the current weighted approach has several shortcom-
ings. As shown in applications, the weights are not known in advance and the player has to
choose them. Ambiguity often exists in the choice of the weights to objectives, as it is not easy
to decide relative weight for each objective. In addition, as shown in multi-objective optimiza-
tion in the literature that relative weights given by the same decision-maker may rely on the
elicitation methods [6, 7]. Therefore, it is necessary to provide a new approach to cope with
these issues.

Hence, our motivation to utilize a worst-case weighted approach is that it provides an alter-
native way to deal with the weights ambiguity. Furthermore, if each player in multi-objective
games chooses the worst-case weighted approach, then we show that there is at least a robust
weighted Nash equilibrium which further guarantees the existence of the Pareto Nash equilib-
rium. The computation for such an equilibrium, with the choice of polytope weight set for each
player, is reformulated as a solution to a mathematical program with equilibrium constraints
(MPEC) which can be solved by the existed methods (for example the sequential quadratic pro-
gramming (SQP) methods).

A concrete example that could receive the benefit of our model takes place in a supply chain
which contains multiple risk-averse retailers who compete in quantities of a set of products to
satisfy the uncertain consumer demand. By considering the wholesale price each retailer
chooses its wholesale market order quantity for each of the products in order to maximize the
mean of its profit and minimize the standard deviation of its profit simultaneously. Each
retailer has more than one objectives to be considered and the corresponding robust weighted
Nash equilibrium can be obtained by utilizing the proposed method in this paper.

1.1 Summary of Contributions
We feel that the primary contributions of this paper are:

• We propose a worst-case weighted approach for multi-objective n-person non-zero sum
games, extending the notion of robust weighted multi-objective optimization models to
multi-objective games. Our work can also be seen as an extension of the robust one-shot sca-
lar games.

• We prove the existence of a robust weighted Nash equilibrium even when the weight sets
chosen by the players are unbounded. Our proof extends the existence proof for the weighted
Nash equilibrium in multi-objective games [2, 5].

• We then show that a robust weighted Nash equilibrium point can be calculated by solving a
MPEC when the weight sets chosen by the players are polytopes. We note that the MPEC has
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been extensively studied and can be solved by the sequential quadratic programming (SQP)
method [8, 9].

• We demonstrate the usefulness of worst-case weighted multi-objective games in a multi-
objective competition problem within supply chain.

1.2 Literature Review
Our work relates several streams in the literature in robust optimization, multi-objective optimi-
zation and game theory. Robust optimization approach is an effective methodology to deal with
the optimization problem contaminated by uncertainties [10, 11]. However, there are few stud-
ies for utilizing robust optimization approach to analyze the multi-objective optimization. Some
technology from robust optimization has been successfully extended to the multi-objective opti-
mization setting, but computational and theoretical challenges remain (see, for example, [12–
16]). Hu andMehrotra present a robust and stochastically weighted approach to the multiobje-
citve optimization by considering inconsistency and ambiguity in relative weights given to
objectives [12]. Cromvik and Lindroth introduce a new definition of robustness for multi-objec-
tive optimization based on some utility function [16]. Soares et al. present a definition of the
worst-case Pareto optimum and discuss its applications in design optimization [13, 14].

This paper is also related to the incomplete information game theory area, the robust game
formulation has been extensively utilized to lower the performance variation under the
parameters uncertainty [17–19]. In the robust game setting, it is supposed that the parameters
are not known exactly, but they can be any number of a known set without distributional
information and a robust game reformulation is utilized to cope with such parameter uncer-
tainty. In these papers, the authors prove the existence of a robust equilibrium point and show
that the computation for such a point can be cast as some computationally tractable problem
under the standard assumptions about the uncertain parameters. However, to the best of our
knowledge there is no research about utilizing the robust optimization approach to the multi-
objective games.

Since “many real-life decision-making situations involve a choice between options which
will influence the degree of achievement of each of several objectives” [20], so there are many
researchers study multi-objective optimization. White is one of them who has done a great job
in the theory, computation and applications in the multi-objective optimization stream [21,
22]. Recently as an extension to multi-objective optimization, the games with multi-objective
payoff functions attract people’s interest. The first work can be dated back to Blackwell’s zero-
sum games with multi-objective payoffs [1]. Then, Shapley introduces the concept of equilib-
rium points in games with vector payoffs [23]. Since then much attention has been attracted to
the game models with multiple payoffs [2–4]. However, the studies mainly focus on the exis-
tence proof of a Pareto Nash equilibrium and the improvement for the solution concepts [2, 5,
24–28]. For example, by fixed point theorem and other techniques, Wang [2], and Yu and
Yuan [5] prove the existence of Pareto equilibria. Yuan and Tarafdar study the existence of
weighted Nash equilibria and Pareto equilibira for multi-objective games with noncompact
strategic sets [28]. Borm et al. present the existence theorem of the Pareto Nash equilibrium for
two person multicritera games [26]. Borm, van Megen and Tijs [24], Zhao [25], and Radijef
and Fahem [27] study the improvement for the solution concepts. The well-posedness for
multi-objective games is also studied. For example, Peng and Wu [4] present a generalized
Tykhonov well-posedness concept; Morgan [29] discusses the parametrically well-posedness
for multi-objective games. There are few studies to discuss the applications and to present the
numerical algorithm for obtaining an equilibrium point in multi-objective game.
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1.3 Outline of the Paper
This introductory section is concluded with notations which will be used in this paper. In sec-
tion 2, we review some basic concepts in multi-objective game theory and then introduce a
new concept of robust weighted Nash equilibrium. We show that a robust weighted Nash equi-
librium is also a weighted Nash equilibrium and then is also a Pareto Nash equilibrium. In sec-
tion 3, we prove the existence of a robust weighted Nash equilibrium by utilizing Kakutani’s
fixed point theorem. We also prove that there is at least one robust weighted Nash equilibrium
point even when the weight sets chosen by the players are unbounded. In section 4, we show
that when the weight sets are given as polytopes, the robust weighted Nash equilibrium can be
cast as a MPEC which can be efficiently solved by SQP methods. In section 5, we show the effi-
ciency of our approach by an example for analyzing a multi-objective competition problem
within supply chain. Finally, we conclude this paper in section 6.

1.4 Notation
Throughout this paper we use the following notations. R is the set of real numbers; R+ denotes
the set of non-negative real numbers and R++ is the set of strictly positive real numbers; Let

Rm ¼ R� � � � � R|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

;Rm
þ ¼ Rþ � � � � � Rþ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m

;Rm
þþ ¼ Rþþ � � � � � Rþþ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

m

;

For any u, v 2 Rm, denote

v � u ðresp: v � uÞ()v � u 2 Rm
þ ðresp: u� v 2 Rm

þÞ
()vj � uj � 0; j 2 I ðresp: vj � uj � 0; j 2 IÞ;

u � v ðresp: v � uÞ()v � u 2 Rm
þþ ðresp: u� v 2 Rm

þþÞ
()vj � uj > 0; j 2 I ðresp: vj � uj < 0; j 2 IÞ;

v≽u ðresp: v≼uÞ()v � u 2 Rm
þ and u 6¼ vðresp: u� v 2 Rm

þ and u 6¼ vÞ
()vj � uj � 0; j 2 I and u 6¼ v ðresp: vj � uj � 0; j 2 I and u 6¼ vÞ;

where I: = {1, � � �,m} is the index set; Given any vector function h: Rn ! Rm, by h 2 C1(Rn, Rm),
we indicate that h is a continuously differentiable function from Rn to Rm and we userh(x)2
Rn × m to denote the gradient of the function h at x; For x: = (x1, � � �, xn), we define (x−i, ui) as
the vector with all components same as that in x except ith component being ui, that is (x−i, ui):
= (x1, � � �, xi − 1, ui, xi + 1, � � �, xn).

2 The Robust Weighted Multi-objective Game
In this paper, we consider the following multi-objective game with finite players in the normal
form,MG: = (N, {Si}i 2 N, {F

i}i 2 N), here N: = {1, � � �, n} is a finite set of players, Si 	 Rai is the
set of actions for player i and Fi is the multi-objective payoff function of player i which is a
mapping from the Cartesian product S :¼ Q

i2N
Si into R

bi (since this paper considers the multi-

objective game, so without loss any generality throughout this paper we assume that each
player i has more than one objectives in his payoff function, that is bi � 2). Specifically, given
x: = (x1, � � �, xn)2S to be played, then each player i has his multi-objective payoff function as
FiðxÞ :¼ ðf i1ðxÞ; � � � ; f ibiðxÞÞ which means that each player i has more than one competing

objectives.

TheWcWMoG

PLOSONE | DOI:10.1371/journal.pone.0147341 January 28, 2016 4 / 22



Since there are more than one objectives for each player in the above multi-objective game,
so a comprehensively accepted strategy for each player is the (weak) Pareto optimal strategy
which is a concept borrowed from multi-objective optimization and can be defined as follows
(see [2–4]).

Definition 2.1 For any player i, i 2 N, whose strategy xi 2 Si to the other player’s strategies
x�i 2 S�i :¼

Q
j2N;j 6¼i

Sj is called a Pareto optimal strategy (resp. a weak Pareto optimal strategy) if

xi is a Pareto optimal strategy (resp. a weak Pareto optimal strategy) respectively to the following
multi-objective optimization,

min
xi2Si

FiðxÞ; ð1Þ

that is xi 2 Si is called a Pareto optimal strategy (resp. a weak Pareto optimal strategy) of player i
to the other player’s strategies x−i 2 S−i if there is no strategy u

i 2 Si such that

Fiðx�i; xiÞ≼Fiðx�i; uiÞ ðresp: Fiðx�i; xiÞ � Fiðx�i; uiÞÞ:

With the above definition, we can give the Pareto (resp. weak Pareto) equilibrium concept for
multi-objective game which can be expressed as a mixed strategy where each player’s strategy is a
Pareto optimal strategy (resp. a weak Pareto optimal strategy) to the other player’s strategies.

Definition 2.2 A mixed strategy x 2 S is called a Pareto (resp. weak Pareto) equilibrium for
MG if for each player i, xi 2 Si is a Pareto optimal strategy (resp. a weak Pareto optimal strategy)
against x.

The above Pareto (resp. weak Pareto) equilibria concept has been extensively used in multi-
objective game which is closely related with another concept-the weighted Nash equilibrium.

Definition 2.3 A mixed strategy x 2 S is called a weighted Nash equilibrium with given

weight combination w: = (w1, � � �, wn) ðwi 2 RbiþÞ of MG if for each player i, 0 ≼ wi and xi is the
optimum to the following optimization problem

ðPiðwiÞÞ min
ui2Si

ðwiÞTFiðx�i; uiÞ:

In special case with kwik1 = 1, 8i 2 N, the mixed strategy x 2 S is called a normalized weighted
Nash equilibrium.

The above definition means that a normalized weighted Nash equilibrium is a correspond-
ing weighted Nash equilibrium. However in the following lemma we show that a weighted
Nash equilibrium is also a corresponding normalized weighted Nash equilibrium. Therefore in
the rest of this paper, we always assume that the weighted Nash equilibrium is the normalized
weighted Nash equilibrium, that is we always suppose that the given weight w: = (w1, � � �, wn)

satisfies wi 2 Wi
r :¼ fwi 2 Rbiþj k wik1 ¼ 1g, 8i 2 N.

Lemma 2.4 If a mixed strategy x 2 S is a weighted Nash equilibrium of MG with given weight
combination w = (w1, � � �, wn) and 0 ≼ wi, 8i 2 N, then x is also a normalized weighted Nash
equilibrium of MG with some weight combination �w :¼ ð�w1; � � � ; �wnÞ, where �wi 2 Wi

r, 8i 2 N.
Proof.The assertion follows directly from both definition 2.3 and the conclusion that for any

i 2 N, optimization problems (Pi(wi)) and ðPið�wi :¼ wi

kwik1ÞÞ have the same optimal solutions.

In the MG literature, Definition 2.3 is one of the most often used concepts and many papers
discuss it’s relationship to the Pareto equilibrium. If x 2 S is a weighted Nash equilibrium of
MG with given weight combination w = (w1, � � �, wn) and 0 ≼ wi, 8i 2 N (resp. 0� wi, 8i 2 N),
then x 2 S is also a weak Pareto equilibrium (resp. Pareto equilibrium) to MG. However, the
weighted approach is also criticized for several shortcomings. For example, as shown in appli-
cations, the weights are not known in advance and the modeler or decision-maker has to
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choose them while it is often difficult to make a reasonable decision for choosing appropriate
weight for each objective, since in many situations there may be ambiguity in the weights pro-
vided by the decision-maker. Therefore, there is a need for providing a novel methodology to
cope with these issues which is based on a worst-case approach.

In our paper, we suppose that each player i has a setWi of weights for his objectives, then
we can give a robust weighted Nash equilibrium concept for MG.

Definition 2.5 Given a close set Wi 	 Wi
r , i 2 N, then a mixed strategy x 2 S is called a

robust weighted Nash equilibrium of MG if for each player i, xi is the optimum to the following
robust optimization problem

ðRoPðWiÞÞ min
ui2Si

max
wi2Wi

ðwiÞTFiðx�i; uiÞ: ð2Þ

For the simplicity, we denote by RoP(Wi) for problem Eq (2) with givenWi and its optimal
value (with the convention that RoP(Wi) = +1 if the problem is infeasible). For any i 2 N,
given two weight setsWi

1 	 Wi
2, it is obvious that ðRoPðWi

1ÞÞ � ðRoPðWi
2ÞÞ. Furthermore, in

this robust weighted Nash equilibrium concept, although we do not suppose the convexity of
Wi, 8i 2 N, actually the robust weighted Nash equilibrium concept of MG with closed weight
sets combinationW :¼ ðW1; � � � ;WnÞ 	 Wr :¼ ðW1

r ; � � � ;Wn
r Þ, is equivalent to the robust

weighted Nash equilibrium concept of MG with closed weight sets conv(W): = (conv(W1), � � �,
conv(Wn))	Wr, where conv(�) means the convex hull. This is actually equivalent to show for
any player i and fixed x−i 2 S−i the equivalence of the following two sets

wi ¼ ðg; xiÞ 2 R� Sij ui 2 Si; ðwiÞTFiðx�i; uiÞ � g; 8wi 2 Wi
� �

and

�w i ¼ ðg; xiÞ 2 R� Sij ui 2 Si; ðwiÞTFiðx�i; uiÞ � g; 8wi 2 convðWiÞ� �
:

It is easy fromWi	 conv(Wi) to see that for any ðg; xiÞ 2 �w i, (w
i)T Fi(x−i, ui)�γ, 8wi 2Wi, that

is (γ, xi)2χi, which means that �w i 	 wi. Next we are going to prove that wi 	 �w i. To this end, for
any (γ, xi)2χi, next we will show ðg; xiÞ 2 �w i. For any w

i 2 conv(Wi), there exist wik 2Wi, k = 1,

� � �, κ, such that wi ¼Pk
k¼1

lkw
ik, here λk � 0(k = 1, � � �, κ), andPk

k¼1

lk ¼ 1 for some κ� bi + 1.

From (γ, xi)2χi, (wik)T Fi(x−i, xi)�γ, k = 1, � � �, κ, which implies that

ðwiÞTFiðx�i; xiÞ ¼
Xk
k¼1

lkðwikÞTFiðx�i; xiÞ � g:

This means that wi 	 �w i. Hence, wi ¼ �w i, 8i 2 N. Therefore, in the rest of this paper, we always
assume thatWi is a closed and convex subset ofWi

r, 8i 2 N.
Different from the weighted Nash equilibrium concepts, the robust weighted Nash equilib-

rium proposed in this paper seeks to find an equilibrium solution that is robust, that is feasible
for the worst-case weight within the family of weights. Wang shows that any normalized
weighted Nash equilibrium of MG with weight given inWi

r , 8i 2 N, then it is either a weak
Pareto equilibrium or a Pareto equilibrium [2]. In the following proposition we show that the
robust weighted Nash equilibrium of MG inherits the properties of normalized weighted Nash
equilibria, that is any robust weighted Nash equilibrium of MG with weights setWi 	 Wi

r, i 2
N is either a weak Pareto equilibrium or a Pareto equilibrium.

Theorem 2.6 For any i 2 N, given a close set Wi 	 Wi
r , if x


: = (x1


, � � �, xn


)2S is a robust
weighted Nash equilibrium of MG with the combination W: = (W1, � � �,Wn) of weight sets, then
we have the following results,
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1. x
 is a weak Pareto Nash equilibrium of MG;

2. if for any player i, i 2 N, all of its’ weights inWi are all positive, then x
 is a Pareto Nash
equilibrium of MG;

3. if for any player i, i 2 N, xi


is the unique optimal solution of RoP(Wi), then x
 is a Pareto

Nash equilibrium of MG.

Proof.The proof for this theorem directly follows from Theorem 2.2 of Hu and Mehrotra
[12] and Definitions 2.1, 2.2 and 2.5.

Below we describe a class of multi-objective games that can be resolved by using robust
weighted approach.

Example 1 A set of J hospitals (the players) provide I types of healthcare services in order to
minimize the social costs and minimize the dissatisfaction at the same time by anticipating the
patient volume for services and the patients’ average strategic reactions to the prices of different
services in each hospital. Hospital j (j = 1, � � �, J) prices his i’s service (i = 1, � � �, I) to minimize
the social costs and minimize the dissatisfaction, assuming that the other hospitals keep their
prices fixed, and anticipating the total patient volume as well as patients’ average strategic reac-
tions to the prices of different services in each hospital. Mathematically, hospital j faces the fol-
lowing multi-objective decision problem,

min f 1j ðdjÞ; f 2j ðdj; pjÞ
� �

s:t: 0 � di
j ? E½ui

jðxÞ � ui
jðdj; pij; xÞ� � 0;XJ

j¼1

di
j ¼ Di; pij � 0; 8i; j;

ð3Þ

where f 1j ðdjÞ :¼
PI
i¼1

Ci
jðdi

jÞ denotes the cost of j0 s hospital for providing I types healthcare ser-

vices, f 2j ðdj; pjÞ :¼ E
PI
i¼1

cijðdi
j ; p

i
j; xÞdi

j þ ĉjðdj; xÞdi
j

� �
denotes the dissatisfaction for j0 s hospital,

dj :¼ ðd1
j ; � � � ; dI

j Þ, pj :¼ ðp1j ; � � � ; pIj Þ; di
j and p

i
j are the patient volume and the price for service i

at hospital j; x : O ! R
l is a random variable defined on ðO;F ; PÞ with support X to denote

the social, medical and patient physical uncertainties; cijðdi
j ; p

i
j; xÞ and ĉjðdj; xÞ denote the indi-

vidual patients’ dissatisfaction level to the treatment of service i and the dissatisfaction level to
hospital j0 s; ui

jðxÞ is patients’ utility for service i at hospital j; ui
jðdj; pij; xÞ is the individual

patients’ utility function of receiving service i at hospital j.
If each hospital has a set of weightsWj 	 Wj

r :¼ fwj 2 R2
þj k wjk1 ¼ 1g, j = 1, � � �, J, then a

robust weighted equilibrium can be obtained if each hospital solves the following robust
weighted problem, j = 1, � � �, J

min max
wj2Wj

wi
1f

1
j ðdjÞ þ wj

2f
2
j ðdj; pjÞ

� �
s:t: 0 � di

j ? E½ui
jðxÞ � ui

jðdj; pij; xÞ� � 0;XJ

j¼1

di
j ¼ Di; pij � 0; 8i; j:

ð4Þ

An important equilibrium concept is the ex post equilibrium arising from Harsayi’s Bayes-
ian scalar game model with incomplete information. It follows from this concept, we give the
following equilibrium concepts named as ex post weighted equilibrium for MG. With all
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possible realizations of the weight within the family of weights, a tuple of strategies is said to be
an ex post weighted equilibrium if each player’s strategy is a best weighted response to the
other player’s weighted strategies. This definition is rigorously stated as follows.

Definition 2.7 A mixed strategy (x1, � � �, xN)2S is an ex post weighted equilibrium for MG
with the combination W: = (W1, � � �,Wn) of weight sets if for any i 2 N, xi is the optimal solution
of the following problem,

min
ui2Si

ðwiÞTFiðx�i; uiÞ; 8wi 2 Wi:

The above definition implies that if (x1, � � �, xn)2S is an ex post weighted equilibrium of MG,
then it must be a weighted Nash equilibrium for any weights choosing fromW. Note that this
condition is quite strong, since it is easy to prove that every ex post weighted equilibrium of
MG is a weighted Nash equilibrium with the corresponding weight from the combination of
weight set. Furthermore, the following lemma describes the relationship of the ex post weight
ed equilibrium and our robust weighted Nash equilibrium.

Lemma 2.8 Given a close set Wi 	 Rbiþ, i 2 N, then if a mixed strategy (x1, � � �, xn)2S is an ex
post weighted equilibrium of MG with the combination W = (W1, � � �,Wn) of weight sets, then it
is also a corresponding robust weighted Nash equilibrium of MG.

Proof.Let (x1, � � �, xn)2S be an ex post weighted equilibrium of MG. We will prove this
lemma by contradiction, that is, (x1, � � �, xn) is not a robust weighted Nash equilibrium. This
means that there is i 2 {1, � � �, N} and ui 2 Sai, such that

max
wi2Wi

ðwiÞTFiðx�i; xiÞ > max
wi2Wi

ðwiÞTFiðx�i; uiÞ: ð5Þ

From the definition of ex post weighted equilibrium, 8i 2 N,

ðwiÞTFiðx�i; uiÞ � ðwiÞTFiðx�i; xiÞ; 8wi 2 Wi:

This means that

max
wi2Wi

ðwiÞTFiðx�i; xiÞ � max
wi2Wi

ðwiÞTFiðx�i; uiÞ;

which contradicts Eq (3). This contradiction means that (x1, � � �, xn)2S is a robust weighted
Nash equilibrium of MG with weight combination setW.

Because the ex post weighted equilibrium concept is too strong, it may not exist for some
MG. So we will use the concept of robust weighted equilibrium for MG and in the following
section, we will prove that this equilibrium always exists for all MG.

3 Existence of robust weighted Nash equilibria in MG
In this section, we first present the existence theorem of robust weighted Nash equilibria in
MG with compact and convex weight sets by using Kakutani’s fixed point theorem proposed
by Kakutani in [30] which has been extensively used to prove the existence of the quilibrium
([17, 18]). We show that the robust-weighted Nash equilibria of a worst-case weighted multi-
objective game are guaranteed to exist even when the weighted set is unbounded. Second, we
discuss the conditions for ensuring the existence of robust weighted Nash equilibria. Before
continuing to the existence theorem, we first give Kahutani’s fixed point theorem and a rele-
vant definition–upper-semi continuity.

Definition 3.1 A point-to-set mapping ψ: S! 2S is said to be upper semi-continuous if yn 2
ψ(xn), n = 1, 2, 3, � � �, lim

n!1 xn ¼ x, lim
n!1 yn ¼ y imply that y 2 ψ(x).
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Theorem 3.2 (KAKUTANI’S FIXED POINT THEOREM). Suppose that S is a closed, bounded, and
convex set in a Euclidean space, and ψ is an upper semi-continuous point-to-set mapping from
S to the family of closed, convex subsets of S, then 9x 2 S such that x 2 ψ(x).

To utilize the above theorem, we first define a suitably constructed correspondence which
fixed point is an equilibrium. For this purpose, for any given x = (x1, � � �, xn)2S, y = (y1, � � �,
yn)2S, and weight sets combinationW ¼ ðW1; � � � ;WnÞ 	 Wr ¼ ðW1

r ; � � � ;Wn
r Þ, we define

�WðxÞ :¼ z 2 Sj z 2 arg min
y2S

rWðx; yÞ
	 


;

where for any i 2 N, the function ρW: S × S! R is given as follows,

rWðx; yÞ :¼
Xn
i¼1

max
wi2Wi

ðwiÞTFiðx�i; yiÞ:

Similar with the proof of Lemma 2.3 given by [2], it is easy to see from the following lemma
that the equivalence of the robust weighted Nash equilibrium with the fixed point of the corre-
spondence ϕW.

Lemma 3.3 A given strategy combination �x 2 S is a robust weighted Nash equilibrium of MG
with W ¼ ðW1; � � � ;WnÞ 	 Wr ¼ ðW1

r ; � � � ;Wn
r Þ if and only if �x is a fixed point of the mapping

ϕW.

Proof. If �x 2 S is a robust weighted Nash equilibrium of MG with givenW 	 fW , from Def-
inition 2.5,

max
wi2Wi

ðwiÞTFið�x�i; �xiÞ � max
wi2Wi

ðwiÞTFið�x�i; yiÞ; 8yi 2 Si; i ¼ 1; � � � ;m:

The above inequality implies that

Xm
i¼1

max
wi2Wi

ðwiÞTFið�x�i; �xiÞ �
Xm
i¼1

max
wi2Wi

ðwiÞTFið�x�i; yiÞ; 8yi 2 Si; i ¼ 1; � � � ;m:

So from the definition of ρW, rWð�x; �xÞ � rWð�x; yÞ, 8y 2 S. Therefore �x 2 �Wð�xÞ, i.e., �x is a
fixed point of the mapping ϕW.

Similarly, for any givenW ¼ ðW1; � � � ;WmÞ 	 fW ¼ ðfW 1; � � � ;fWmÞ, if �x is a fixed point of
the mapping ϕW, we can prove that �x 2 S is also a robust weighted Nash equilibrium of MG
with the weight set combinationW.

The above lemma shows that the existence of the robust weighted Nash equilibria is equiva-
lent to the existence of the fixed points of the mapping ϕW. So we need to show that the corre-
spondence ϕW satisfies the assumptions of Kakutani’s theorem that is to show that for weight
sets combinationW, under some given assumptions about the functions f ij ðx�i; xiÞ, 8j = 1, � � �,
bi, i 2 N, ϕW is an upper semi-continuous point-to-set mapping from S to the family of closed,
convex subsets of S. To reveal that the correspondence ϕW meets the assumptions of Kakutani’s
theorem, we first need several technical results.

Lemma 3.4 Given weight sets combination W	Wr. If f ij ð�Þ is continuous on S and for any

fixed x−i, f ij ðx�i; �Þ is convex on Si, 8j = 1, � � �, bi, i 2 N, then we have that

1. ρW(�, �) is continuous on S × S;

2. for any fixed x 2 S, ρW(x, �) is convex on S.
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Proof. 1. We need to show that for any given � > 0, there is a positive constant δ such that
for any (x, y)2S × S and ð�x; �yÞ 2 S� S if k ðx; yÞ � ð�x; �yÞ k� d then

jrWðx; yÞ � rWð�x; �yÞj � �: ð6Þ

It follows from the continuity of f ij ð�Þ that for any given �i> 0, there is a positive constant δi
such that for any (x, y)2S × S and ð�x; �yÞ 2 S� S if k ðx�i; yiÞ � ð�x�i; �yiÞ k� di then

k Fiðx�i; yiÞ � Fið�x�i; �yiÞ k� �i; 8i 2 N:

The above inequality means that

jmax
wi2Wi

ðwiÞTFiðx�i; yiÞ � max
wi2Wi

ðwiÞTFið�x�i; �yiÞj

� max
wi2Wi

k wi kk Fiðx�i; yiÞ � Fið�x�i; �yiÞ k
¼k Fiðx�i; yiÞ � Fið�x�i; �yiÞ k� �i; 8i 2 N:

ð7Þ

Therefore it follows from Eq (7) and

k ðx; yÞ � ð�x; �yÞ k�
X
i2N

k ðx�i; yiÞ � ð�x�i; �yiÞ k

that given � :¼P
i2N

�i, there is d :¼P
i2N

di such that k ðx; yÞ � ð�x; �yÞ k� d and Eq (6) holds.

2. For any fixed x 2 S, given λ 2 [0, 1] and y; �y 2 S, we have that

rWðx; ly þ ð1� lÞ�yÞ ¼
Xn
i¼1

max
wi2Wi

ðwiÞTFiðx�i; lyi þ ð1� lÞ�yiÞ

�
Xn
i¼1

max
wi2Wi

ðwiÞT lFiðx�i; yiÞ þ ð1� lÞFiðx�i; �yiÞð Þ

� l
Xn
i¼1

max
wi2Wi

ðwiÞTFiðx�i; yiÞ þ ð1� lÞ
Xn
i¼1

max
wi2Wi

ðwiÞTFiðx�i; �yiÞ

¼ lrWðx; yÞ þ ð1� lÞrWðx; �yÞ;

where the first inequality comes from the convexity of f ij ðx�i; �Þ.
The above lemma gives the continuity and convexity for function ρW which are two key

results for proving the main existence theorem below. The two results are used to prove the
upper semi-continuity and convexity of the mapping ϕW respectively. We are now going to
propose the main result of this section.

Theorem 3.5 Suppose that each strategy set Si is a nonempty compact and convex subset of
Rai , 8i 2 N. Then under the conditions of Lemma 3.4, the multi-objective game MG = (N, {Si}i 2
N, {F

i}i 2 N) has at least one robust weighted Nash equilibrium with W	Wr.
Proof.From Lemma 3.3, for the proof of this theorem, it is sufficient to show that the corre-

spondence ϕW meets the assumptions of Kakutani’s theorem. To this end, we need to show
that ϕW is an upper semi-continuous point-to-set mapping from S to the family of closed, con-
vex subsets of S. We first show that for any given x 2 S, ϕW(x) is a closed, convex subsets of S.

From the continuity of ρW(�, �) and the existence of minimum of the continuous function on
a compact set, we have that argminy2Sr

Wðx; yÞ 6¼ ;. Therefore ϕW(x) 6¼;, for any x 2 S. Note

that by definition, ϕW(x)2S, 8x 2 S. Next we will show that ϕW(�) is convex for any x 2 S. Sup-
pose that z: = (z1, � � �, zn), v: = (v1, � � �, vn)2ϕ(x). Then for any λ 2 [0, 1], we have

rWðx; lz þ ð1� lÞvÞ � lrWðx; zÞ þ ð1� lÞrWðx; vÞ � rWðx; yÞ; 8y 2 S; ð8Þ
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where the first inequality comes from the convexity of ρW(x, �) and the second inequality
comes from the definition for z and v. The above inequality and the convexity of Smean that
λz + (1 − λ)v 2 ϕW(x) which implies that ϕW(�) is convex for any x 2 S.

Finally, we must show that ϕW(�) is upper semi-continuous correspondence. Suppose that
xn ! x, zn ! z, and zn 2 ϕW(xn). Then we have that

rWðxn; znÞ � rWðxn; yÞ; 8y 2 S:

Take limit in the above inequality and note that the continuity of ρW(�, �), then we have that

rWðx; zÞ � rWðx; yÞ; 8y 2 S:

The above inequality and the compactness of set S imply that z 2 ϕW(x). Therefore, we com-
plete the proof that ϕW is an upper semi-continuous correspondence and the closedness of the
set ϕW for any x 2 S follows from the upper-semi-continuity of ϕ. Therefore, ϕW meets the
assumptions of Kakutani’s fixed point theorem.

The above theorem presents the existence result for robust weighted Nash equilibrium with
compact weight setW	Wr. However, in the following corollary we show that even with non-
compact weight set there is also at least one robust weighted Nash equilibrium.

Corollary 3.6 Under the condition of Theorem 3.5, the multi-objective game MG = (N, {Si}i 2

N, {F
i}i 2 N) has at least one robust weighted Nash equilibrium with W :¼ ðW1; � � � ;WnÞ 	

Rb1þ � � � � � Rbnþ with 0 =2Wi, 8i 2 N.
Proof. The proof for this corollary directly follows from Theorem 3.5 and Lemma 2.4 by

normalizing the weight setW as follows

�W :¼ �w :¼ ð�w1; � � � ; �wnÞ �wi :¼ wi

k wi k ; wi 2 Wi; 8i 2 N

���� 

:

	

4 The computation for robust weighted Nash equilibrium point
Now that the existence of the robust weighted Nash equilibrium point of MG has been pre-
sented, our next step is to discuss how to realize such a point. We will show that when the
weight setsWi, 8i 2 N, are given as polyhedral region, the function f ij satisfies the assumptions

in Lemma 3.4 and furthermore for any fixed x−i, f ij ðx�i; �Þ is continuously differentiable on the

compact convex set Si, 8j = 1, � � �, bi, i 2 N, the problem of computing a robust weighted Nash
equilibrium point could be cast as the mathematical programming with equilibrium con-
straints (MPEC) which has been extensively studied and can be solved by the sequential qua-
dratic programming (SQP) method (see [8, 9]).

To this end, we suppose that the uncertain weights can be described by a fixed reference
point and a perturbation region around the point, that is the weight setWi can be given as fol-
lows: for any player i 2 N, let �wi 2 Rbi be the reference point of wi and Ci 2 Rmi�bi be a coeffi-
cient matrix used to construct a perturbation region around �wi, then define the perturbation
region around �wi,

Wi ¼ wi 2 Rbi j wi ¼ �wi þ ðCiÞTvi; vi 2 Ui 	 Rmi
� �

; 8i 2 N ð9Þ

where Ui is the uncertain set which belongs toeU i ¼ fvi 2 Rmi j �wi þ ðCiÞTvi � 0; eTi ð�wi þ ðCiÞTviÞ ¼ 1g; 8i 2 N; ð10Þ

here ei 2 Rbi is the unit vector. Note that the above method for defining uncertain parameters
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has been widely utilized in robust optimization literature [10, 11]. Define

Ui :¼ fvi 2 eU ij Aivi ¼ gi; Bivi≽cig; 8i 2 N ð11Þ

where Ai 2 Rli�mi , gi 2 Rli , ci 2 Rki and Bi 2 Rki�mi . We now present a reformulation for RoP
(Wi) in Definition 2.5 withWi as Eqs (9)–(11) and then we show that the computation for a
robust weighted Nash equilibrium point of MG is equivalent to solve a mathematical program-
ming problem with equilibrium constraints (MPEC). We note that for designing the computa-
tion method, the set Si is supposed to be nonempty and can be defined as

Si ¼ fxi 2 Rai j xi � 0;
Xai
ji¼1

xiji ¼ 1g; 8i 2 N: ð12Þ

Lemma 4.1 For any player i, suppose that the weight set Wi is defined by Eqs (9)–(11). Then
RoP(Wi) is equivalent to the following convex optimization problem,

min
ui ;zi1 ;zi2 ;zi3 ;zi4

ð�wiÞTzi3 þ zi4 � ðgiÞTzi1 � ðciÞTzi2

s:t: Cizi3 þ ðAiÞTzi1 þ ðBiÞTzi2 ¼ 0

Fiðx�i; uiÞ � zi3 � zi4e � 0

zi1 2 Rli ; zi2 2 Rkiþ; zi3 2 Rbi ; zi4 2 R

ui 2 Si:

ð13Þ

Proof. For any player i, it is easy to show that RoP(Wi) can be rewritten as

min
ui;t

t

s:t: max
wi2Wi

ðwiÞTFiðxi; uiÞ � t;

ui 2 Si:

ð14Þ

For any given x = (x−i, ui), the left hand-side in the first inequality constraint in the above prob-
lem is equivalent to

max
vi

ðCiFiðx�i; uiÞÞTvi þ ð�wiÞTFiðx�i; uiÞ;

s:t: �wi þ ðCiÞTvi � 0; eTi ð�wi þ ðCiÞTviÞ ¼ 1;

Aivi ¼ gi; Bivi � ci:

ð15Þ

The corresponding dual problem is

min
zi1 ;zi2 ;zi3 ;zi4

ð�wiÞTzi3 þ zi4 � ðgiÞTzi1 � ðciÞTzi2;

s:t: Cizi3 þ ðAiÞTzi1 þ ðBiÞTzi2 ¼ 0

Fiðx�i; uiÞ � zi3 � zi4e � 0

zi1 2 Rli ; zi2 2 Rkiþ; zi3 2 Rbi ; zi4 2 R;

ð16Þ

where “0” and “e” are the zero and unit vectors with appropriate dimension respectively.
Therefore it follows from Eqs (14)–(16) and the strong duality theorem that the assertion of

this theorem is true.
Theorem 4.2 Suppose that the function f ij satisfies the assumptions in Lemma 3.4 and fur-

thermore for any fixed x−i, f ij ðx�i; �Þ is continuously differentiable on the compact convex set Si
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given by Eq (12), 8j = 1, � � �, bi, i 2 N, then the computation for a robust weighted Nash equilib-
rium point of MG with the weight sets combination W = (W1, � � �,Wn) is equivalent to solve a
MPEC, here Wi is given as Eqs (9)–(11), for any i 2 N.

Proof. For any given x−i, define the Lagrangian of Eq (13) as

Liððx�i; uiÞ; ðzi1; zi2; zi3; zi4Þ; ðli1; li2; li3; li4; li5ÞÞ
:¼ ð�wiÞTzi3 þ zi4 � ðgiÞTzi1 � ðciÞTzi2
þ ðli1ÞTðCizi3 þ ðAiÞTzi1 þ ðBiÞTzi2Þ
þ ðli2ÞTðFiðx�j; u

iÞ � zi3 � zi4ebiÞ
� ðli3ÞTzi2 � ðli4ÞTui

þ li5ð
Xai
ji¼1

ui
ji
� 1Þ;

ð17Þ

where (λi1, λi2, λi3, λi4, λi5) are the Lagrangian multipliers to Eq (13) and ebi is the bi dimension
unit vector. It follows from the assumption in this theorem we have that the solution to Eq (13)
can be obtained by solving its Karush-Kuhn-Tucker (KKT) system,

ruiL
i ¼ ruiF

iðx�i; uiÞli2 � li4 þ li5eai ¼ 0;

rzi1L
i ¼ �gi þ Aili1 ¼ 0;

rzi2L
i ¼ �ci þ Bili1 � li3 ¼ 0;

rzi3L
i ¼ �wi þ ðCjÞTli1 � li2 ¼ 0;

rzi4L
i ¼ 1� eTbil

i2 ¼ 0;Xai
ji¼1

ui
ji
� 1 ¼ 0;

ð18Þ

Fiðx�i; uiÞ � zi3 � zi4e � 0; li2 � 0;

ðli2ÞTðFiðx�i; uiÞ � zi3 � zi4ebiÞ ¼ 0;

zi2 � 0; ui � 0; li3 � 0; li4 � 0;

ðli3ÞTzi2 ¼ 0; ðli4ÞTui ¼ 0;

ð19Þ

here for simplicity we omit the variables in the function Li and eai is the ai dimension unit vec-
tor. Therefore the computation for the robust weighted retailer equilibrium can be obtained by
solving the following MPEC,

min
x;z;l

Xn
i¼1

k rxiL
ik2 þ

X4
j¼1

k rzijL
ik2 þ ð

Xai
ji¼1

xiji � 1Þ2
 !

s:t: FðxÞ � z3 � z4e � 0; l2 � 0;

ðl2ÞTðFðxÞ � z3 � z4eÞ ¼ 0;

z2 � 0; x � 0; l3 � 0; l4 � 0;

ðl3ÞTz2 ¼ 0; ðl4ÞTx ¼ 0; 8i 2 N;

ð20Þ

where F(x) = (F1(x−1, x1), � � �, Fn(x−n, xn)), e = (eb1, � � �, ebn) z: = (z1, � � �, z4), zj: = (z1j, � � �, znj),
8j = 1, 2, 3, 4, λ: = (λ1, � � �, λ5) and λt: = (λ1t, � � �, λnt), 8t = 1, � � �, 5.
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5 An application
Game theory has been extensively studied [31–33] and has been one of the most important
tools for analyzing supply chain competition [34–36]. The most of these studies mainly con-
sider the competition there is one objective to be optimized for each player (manufacturer,
retailer or consumer) in the supply chain. However in the real-world supply chain, each player
often has more than one conflicting objectives to be optimized simultaneously. For example in
a supply chain with multiple suppliers who compete in quantities to supply a set of products to
satisfy the uncertain consumer demand. Every manufacturer often chooses its supply quantity
for each of the products in order to maximize its profit and minimize its cost at the same time
by anticipating the order quantities of the retailers and the wholesale prices resulting from the
market clearing conditions.

The multiple tiers supply chain has been extensively studied by utilizing game theory. For
example, Lau and Lau [35] consider a two-echelon supply chain with one manufacturer and
one retailer by game theory. They suppose that a manufacturer wholesales a product to a
retailer, who in turn retails it to the consumer under the stochastic demand. Corbett and Kar-
markar [36] first consider simultaneous quantity competition at multiple tiers in the supply
chain, then Adida and DeMiguel [34] generalize this idea by presenting game models to study
a two-echelon supply chain competition where multiple manufacturers who compete in quan-
tities to supply a set of products to multiple risk-averse retailers who compete in quantities to
satisfy the uncertain consumer demand.

In this paper, we study the retailers multi-objective competition by applying the worst-case
weighted multi-objective game. We consider a supply chain which contains multiple risk-
averse retailers who compete in quantities of a set of products to satisfy the uncertain consumer
demand. In our model, considering the wholesale price each retailer chooses its wholesale mar-
ket order quantity for each of the products in order to maximize the mean of its profit and min-
imize the standard deviation of its profit. Each retailer has more than one objectives to be
optimized and the corresponding robust weighted Nash equilibrium can be obtained by utiliz-
ing the method provided in the last section.

The rest of this section is organized into the following subsections. Subsection 5.1 introduces
the multi-objective game models for describing the retailers’ competition. In the decentralized
supply chain, section 5.2 discusses the solution of the robust weighted retailer equilibrium
under the finite weights and general polyhedral weight sets assumptions respectively. Section
5.3 describes the reformulation for the solution of the robust weighted retailer equilibrium to a
linear complementarity problem (LCP) and MPEC under the finite weights and general poly-
hedral weight sets assumptions respectively. Section 5.4 details several numerical tests for the
above models.

5.1 Model description
In this section, we consider to model the retailers’multi-objective competition in a supply
chain which contains N risk-averse retailers who compete in quantities of P products to satisfy
the uncertain consumer demand. In this model, each retailer has two objectives (i.e., one is to
maximize its expected utility from retail sales and the other is to minimize its risk expressed as
the standard deviation of its profit) by deciding its wholesale market order quantity for each of
the P products with the given wholesale price.

5.1.1 The retail market demand. Suppose that the retail demand satisfies the following
stochastic linear inverse demand function:

p̂ ¼ ðâ � B̂x̂Þx;
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where p̂ ¼ ðp1; � � � ; pNÞT 2 RNP is the aggregate price vector, pj is the vector of the jth retailer
prices with pj = (pj1, � � �, pjP), pjk is the price of the jth retailer for the kth product, and ξ is a pos-

itive scalar random variable. The vector â ¼ ða1; � � � ; aNÞT 2 RNP with aj = (aj1, � � �, ajP) gives
the prices that the consumers would be willing to pay if the retail market supply was 0 and ξ is

a deterministic number. The matrix B̂ 2 RNP�NP is the positive semidefinite matrix of inverse
demand sensitivities which can be expressed as

H1 G12 � � � G1N

G21 H2 � � � G2N

..

. ..
. . .

. ..
.

GN1 GN2 � � � HN

0BBBBBBBB@

1CCCCCCCCA
;

here Hj 2 RP×P, j = 1, � � �, N, Gjk 2 RP×P, j, k = 1, � � �, N. The vector x̂ ¼ ðx1; � � � ; xNÞT 2 RNP is
the aggregate retailer order vector, here xj is the vector of the jth retailer order vector xj = (xj1,
� � �, xjP).

5.1.2 The retailers’ decision model. The jth retailer making his decision by choosing its
order quantity by considering two competing objectives one is to maximize its profit and the
other is to minimize its risk function rjðxj; p̂Þ, defined as the standard deviation of its profit,

max � xTj v þ xTj ðaj � B̂j�x̂ÞE½x�;
min rjðxj; p̂Þ;
s:t: xj � 0;

ð21Þ

where v = (v1, � � �, vP) is the vector of wholesale prices and B̂j� ¼ ðGj1; � � � ;Hj; � � � ;GjNÞ, for jth
retailer whose first objective is to maximize his mean profit and second objective is to minimize
his risk function. One of possible choice for the risk function is standard deviation for the sto-

chastic demand, which can be defined as follows, rjðxj; p̂Þ :¼ xTj ðaj � B̂j�x̂ÞsðxÞ. In the rest of

this paper, we assume that the risk function is defined as the standard deviation of the stochas-
tic demand.

5.2 The reformulation for the robust weighted equilibrium
In this section we consider the computation for the robust weighted equilibrium. To this end, we
suppose that the central decision-maker has an ambiguous idea about the weights for the objec-
tives in model (21) but he knows that the weights should belong to a set of weights. To cope with
this setting, we utilize the robust weighted Nash equilibrium concept introduced in section 2.

To this end, we suppose that the central decision-maker has a closed set of weightsWj 	
Wj

r :¼ fwj 2 R2
þj k wjk1 ¼ 1g for retailer j, j = 1, � � �N. Then each retailer j, j = 1, � � �, N aims

at solving the following robust optimization,

min
xj≽0

max
wj2Wj

ðwjÞTf jðx�j; xjÞ; ð22Þ

whereWj 	 Wj
r and

f jðx�j; xjÞ :¼ ðf j1ðx�j; xjÞ; f j2ðx�j; xjÞÞ :¼ ðxTj v � xTj ðaj � B̂j�x̂ÞE½x�; rjðxj; p̂ÞÞ:

TheWcWMoG

PLOSONE | DOI:10.1371/journal.pone.0147341 January 28, 2016 15 / 22



To guarantee the existence of the equilibrium for any retailer j, we note that the choice ofWj

should satisfies that for any wj 2Wj the following inequality holds,

wj
2sðxÞ � wj

1E½x� < 0; j ¼ 1; � � � ;N: ð23Þ

The above inequality can ensure the strict convexity of (wj)T fj(x−j, xj) and then the existence of
the robust weighted equilibria can be ensured. For any given close setWj 	 Wj

r for retailer j,
j = 1, � � �N, it is easy to show that any robust optimization solutions to Eq (22) are the Pareto
optimal solution to Eq (21).

Note that when the decision-maker can make a deterministic decision about the weights for
each retailer, that is the weight setWj, 8j contain one element. Then at this case our model
reduces the game theory model with single objective. However in this paper, we consider that
the decision-maker is ambiguous about the choice of the weights and he applies a robust opti-
mization approach to cope with the ambiguity of the weights.

We now discuss the optimal retailer supply schedule and pricing based on the above model
withWj, j = 1, � � �, N are all given by polytope sets. We consider a simplest situation where the
weight sets are taken as a convex hull of a finite number of weights.

5.2.1 The LCP reformulation with finite weights. We first give 4 assumptions which will
be used to discuss the uniqueness of the robust weighted retailer equilibrium.

Assumption 1We suppose that any retailer j, j = 1, � � �, N has r weights vector

wjk :¼ ðwjk
1 ;w

jk
2 Þ 2 R2

þþ, k = 1, � � �, r, with wjk
1 þ wjk

2 ¼ 1.
Assumption 2 Suppose that for any k = 1, � � �, r; l = 1, � � �,m; j = 1, � � �, N,

wjk
2 sðxÞ � wjk

1E½x� < 0; wjk 2 R2
þþ:

Assumption 3 The retailer weights satisfy for k = 1, � � �, r, wjk = wk, for all j, and the inverse
demand intercepts satisfy aj = a for all j, and the matrix of inverse demand sensitivities satisfies
Hj =H for all j and Gj1 j2 = G for all j1 6¼ j2.

Assumption 4 The following matrix Ĥ is positive definite,

Ĥ :¼

H1 0 � � � 0

0 H2 � � � 0

..

. ..
. . .
. ..

.

0 0 � � � HN

2666666664

3777777775
: ð24Þ

Theorem 5.1 Suppose that Assumptions 1, 2 and 4 hold. Then the following conclusions are
true:

1. the robust weighted retailer equilibrium is unique and can be obtained by solving the follow-
ing linear complementarity problem (LCP):

0 � q̂ek þ ðB̂ þ ĤÞx̂?x̂ � 0; ð25Þ

where for any vectors s and t, 0� s?t� 0means that s� 0, t� 0 and sT t = 0,

q̂ek :¼ ð�v=y1
ek � a1; � � � ;�v=yN

ek � aN Þ, yjk :¼ wjk
2

wjk
1

sðxÞ � E½x�, 8j, k and
ek :¼ arg max

k¼1;���;ry
jk;
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2. if we further have Assumption 3 holds, then the order quantity of each retailer is the unique
solution to the following LCP:

0 � �v=yek � aþ ð2H þ ðN � 1ÞGÞx?x � 0; ð26Þ

where ek :¼ arg max
k¼1;���;ry

k.

Proof.1. For any given wholesale prices v, the retailer j will choose his order by solving the
following strictly convex optimization problem,

min
xj

max
k¼1;���;r

yjkxTj ðaj � B̂j�x̂Þ þ xTj v;

s:t: xj � 0;
ð27Þ

where θjk, j = 1, � � �, N. From the Assumptions 1, 2 and 4, we know this conclusion holds.
2. From the above proof and the Assumptions 1, 2, 3 and 4, this assertion is true.
5.2.2 The MPEC reformulation with general polyhedral weight region. In this section,

we will discuss the MPEC reformulation for obtaining the robust weighted retailer equilibrium
when the weight setsWj are given as polytope. Similar with the discussion in section 4, the
uncertain weights are described by introducing a fixed reference point and a perturbation
region around it. That is for any given retailer j, let �wj 2 R2 be the reference point of wj and Cj

2 Rrj×2 be a coefficient matrix used to construct a perturbation region around wj, then define
the perturbation region around wj as follows,

Wj ¼ wj 2 R2j wj ¼ �wj þ ðCjÞTxj; xj 2 Sjw 	 Rrj
� �

; 8j; ð28Þ

where Sjw is the uncertain sets which belongs to

fWj ¼ fxj 2 Rrj j �wj þ ðCjÞTxj � 0; eTj ð�wj þ ðCjÞTxjÞ ¼ 1g; 8j ð29Þ

where ej is the unit vector with appropriate dimension. Define

Sjw :¼ fxj 2 fWjj Lj
wx

j ¼ bjw; Gj
wx

j � cjwg; 8j ð30Þ

where Lj
w 2 Rljw�rj , Gj

w 2 Rkjw�rj . We note that the choice of weight set should satisfy the inequal-
ity Eq (23).

We note that in this subsection, we suppose that the order quantities xj placed by retailer j
are bounded above, that is there exists some vector uj 2 RP such that xj ≼ uj. This assumption
together with the existence Theorem 3.5 guarantee that there is at least one robust weighted
retailer equilibrium. We first present the reformulations for the decision problem of retailers,
that is to give the reformulations for the following robust optimization problems, for any
j = 1, � � �, N,

min
xj ;w

j
w

wjw

s:t: max
wj2Wj

ðwjÞTf jðx�j; xjÞ � wj
w;

uj � xj � 0:

ð31Þ
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For any j = 1, � � �, N, from the definitions forWj and Lemma 4.1, Eq (31) is equivalent to the
following optimization problem,

min
xj;z

j1
w ;z

j2
w ;z

j3
w ;z

j4
w

ð�wjÞTzj3w þ zj4w � ðbjwÞTzj1w � ðcjwÞTzj2w ;

s:t: Cjzj3w þ ðLj
wÞTzj1w þ ðGj

wÞTzj2w ¼ 0

f jðx�j; xjÞ � zj3w � zj4w e � 0

zj1w 2 Rl
j
w ; zj2w 2 Rkjwþ ; zj3w 2 R2; zj4w 2 R; uj � xj � 0:

ð32Þ

The above problem is a convex optimization problem with linear objective function and convex
constraints set. If we define the Lagrangian of this problem as

Ljððx�j; xjÞ; ðzj1w ; zj2w ; zj3w ; zj4w Þ; ðlj1w ; lj2w ; lj3w ; lj4
w ; l

j5
wÞÞ :¼

ð�wjÞTzj3w þ zj4w � ðbjwÞTzj1w � ðcjwÞTzj2w
þ ðlj1wÞTðCjzj3w þ ðLj

wÞTzj1w þ ðGj
wÞTzj2w Þ

þ ðlj2wÞTðf jðx�j; xjÞ � zj3w � zj4w eÞ
� ðlj3

wÞTzj2w � ðlj4wÞTxj þ ðlj5wÞTðxj � ujÞ;

ð33Þ

then we have that the solution to Eq (28) can be obtained by solving its Karush-Kuhn-Tucker

(KKT) system, omitting arguments ððx�j; xjÞ; ðzj1w ; zj2w ; zj3w ; zj4w Þ; ðlj1w ; lj2w ; lj3w ; lj4w ; lj5
wÞÞ in the

Lagrangian function,

rxj
Lj ¼ rxj

f jðx�j; xjÞlj2w � lj4
w þ lj5

w ¼ 0;

rzj1w
Lj ¼ �bjw þ Lj

wl
j1
w ¼ 0;

rz
j2
w
Lj ¼ �cjw þ Gj

wl
j1
w � lj3

w ¼ 0;

rzj3w
Lj ¼ �wj þ ðCjÞTlj1w � lj2w ¼ 0;

rz
j4
w
Lj ¼ 1� eTlj2w ¼ 0;

f jðx�j; xjÞ � zj3w � zj4w e � 0; lj2
w � 0;

ðlj2
wÞTðf jðx�j; xjÞ � zj3w � zj4w eÞ ¼ 0;

zj2w � 0; xj � 0; lj3w � 0; lj4w � 0;

ðlj3
wÞTzj2w ¼ 0; ðlj4wÞTxj ¼ 0;

lj5
w � 0; xj � uj � 0; ðlj5wÞTðxj � ujÞ ¼ 0:

ð34Þ

Therefore from Theorem 4.2 the computation for the robust weighted retailer equilibrium can
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be obtained by solving the following MPEC,

min
x̂ ;zw ;lw

XN
j¼1

k rxj
Ljk2 þ

X4

i¼1

k rzjiw
Ljk2

 !
s:t: f ðx̂Þ � z3w � z4we � 0; l2w � 0;

ðl2wÞTðf ðx̂Þ � z3w � z4weÞ ¼ 0;

z2w � 0; x̂ � 0; l3

w � 0; l4w � 0;

ðl3wÞTz2w ¼ 0; ðl4wÞT x̂ ¼ 0;

l5w � 0; x̂ � û � 0; ðl5wÞTðx̂ � ûÞ ¼ 0;

ð35Þ

where zw :¼ ðz1w; � � � ; z4wÞ, ziw :¼ ðz1iw ; � � � ; zNiw Þ, i = 1, 2, 3, 4, lw :¼ ðl1w; � � � ; l5wÞ,
lkw :¼ ðl1k

w ; � � � ; lNkw Þ, k = 1, � � �, 5 and û :¼ ðu1; � � � ; uNÞ.

5.3 Numerical tests
In this section, we detail numerical tests for finding a robust weighted retailer equilibrium by
using the numerical solver PATH [37]. We present the numerical results for obtaining the
robust weighted retailer equilibrium for the models for the decentralized supply chain with
finite weights and general polyhedral weight region respectively. We utilize the data given in
[34] but with slight change for our purpose. We suppose that N = 2 and P = 2, that is there are
two retailers and two products in the supply chain. We assume that E½x� ¼ 1 and σ(ξ) = 0.5,
that is the mean and standard deviation of the stochastic variable ξ are 1 and 0.5 respectively.
We give the following assumption for the parameters in the supply chain,

aj :¼
1

1

" #
; j ¼ 1; 2; v :¼

0:5

0:5

" #
; ð36Þ

Hj ¼ Gjk :¼
1 0:5

0:5 1

" #
; j ¼ 1; 2: ð37Þ

We first use the weighted approach given by Wang [2] and suppose that the retailers allow
three possible scale indices for the two objective functions as f 11 =f

1
2 ¼ 0:7, 1 or 1.5, f 21 =f

2
2 ¼ 0:8,

1.28 or 1.69. Then, we assume that the retailer j is unsure about the relative importance of f j1
and f j2 , for any j = 1, 2. We further assume that there are finite weights to quantify the relative
importance for the two objective functions listed as above three possible scale indices. Then we
generalize the finite weights to the weight set give by polytope. The numerical results are
reported in Table 1 where the equilibria in rows 1–9 of Table 1 are the weighted Nash equilibria
depending on the corresponding weights which is given by Wang [2]. Except the equilibria in
rows 1 and 5 in Table 1, there are different equilibria for different choice of the weights. The
robust weighted equilibrium is computed by using the weight region generated as the convex
hull of the nine weight vectors. It is easy to see that the robust weighted approach presents a
unique equilibrium which mitigates the conflict with different retailer equilibria for different
choice of the weights in rows 1–4 and 6–9 of Table 1. Therefore, the robust weighted approach
is more robust than the weighted approach given by Wang [2].
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For the general polytope weight region, we suppose the reference point �wj and matrix Cj are
defined as �w1 ¼ �w2 :¼ ð1=2; 1=2Þ, and

C1 ¼ C2 :¼
1 2

1 2

" #
: ð38Þ

The perturbation subset is defined as

Sjw :¼ fxj 2 R2j eTxj � 1g; j ¼ 1; 2: ð39Þ

The upper bound û :¼ ð3; 3; 3; 3Þ 2 R4. With the above data the robust weighted retailer equi-
librium with general polytope is (0, 0, 0, 0) which is same with the robust weighted retailer
equilibrium generated in the above with finite weights. This result also shows that the worst-
case weighted approach is robust.

6 Conclusions
In this paper, we introduced a worst-case weighted approach to the multi-objective games. The
existence theorem is proved even when the weight sets are unbounded. The computation of the
robust weighted equilibrium point, with the polyhedral weight sets, can be equivalently trans-
formed into solving a MPEC. As an application, the new approach is utilized to analyze the
supply chain multi-objective competition problem. In this paper, for computation of robust
weighted equilibrium point, we consider only that the weight sets are given as polytope without
distributional information, however, in many applications, the distributional information is
available. So for further study, we will consider to inject distributional information to our
model. The further applications to other situations will also be discussed in future.
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