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Faceted‑rough surface 
with disassembling of macrosteps 
in nucleation‑limited crystal 
growth
Noriko Akutsu

To clarify whether a surface can be rough with faceted macrosteps that maintain their shape on 
the surface, crystal surface roughness is studied by a Monte Carlo method for a nucleation-limited 
crystal-growth process. As a surface model, the restricted solid-on-solid (RSOS) model with point-
contact-type step–step attraction (p-RSOS model) is adopted. At equilibrium and at sufficiently 
low temperatures, the vicinal surface of the p-RSOS model consists of faceted macrosteps with 
(111) side surfaces and smooth terraces with (001) surfaces (the step-faceting zone). We found that 
a surface with faceted macrosteps has an approximately self-affine-rough structure on a ‘faceted-
rough surface’; the surface width is strongly divergent at the step-disassembling point, which is 
a characteristic driving force for crystal growth. A ‘faceted-rough surface’ is realized in the region 
between the step-disassembling point and a crossover point where the single nucleation growth 
changes to poly-nucleation growth.

Determining surface roughness is crucial for understanding many phenomena associated with crystal surfaces1–13. 
However, developing methods to measure surface roughness has proven to be not as straightforward as had been 
expected14,15. The roughness of a surface is defined by the variance of the surface height associated with the 
roughening transition on low Miller-index surfaces such as the (001) surface at equilibrium14,15. The roughening 
transition belongs to the Berezinskii–Kosterlitz–Thouless (BKT)16–22 universality class. Denoting the roughening 
transition temperature of the (001) surface as TR

(001) , the (001) surface is rough for temperatures T ≥ TR
(001) , 

where the square of the surface width W2(L) is logarithmically divergent with respect to the linear system-size 
L. For T < TR

(001) , the (001) surface is smooth and the surface width is constant and does not depend on the 
system size.

It has been believed that a faceted surface is necessarily smooth. The roughening transition is connected 
to the faceting transition at equilibrium23–28. For a small crystal droplet, the shape of the droplet with the least 
surface free energy is the equilibrium crystal shape (ECS), which is obtained by the Wulff construction29,30 or 
by the Andreev method31–33. On the ECS, the faceting transition occurs at the roughening transition tempera-
ture. The Gaussian curvature on the ECS is proportional to W2(L)/ ln L and the inverse of the determinant of 
the surface stiffness tensor25. Hence, for T < TR

(001) , the Gaussian curvature of the (001) surface is zero, and 
the (001) surface then appears on the ECS as a facet. The ECS consists of facets of smooth surfaces and curved 
rough vicinal surfaces.

For “sharp” but rough surfaces at non-equilibrium, the self-affinity on a surface obtained by a symmetry prin-
ciple argument can explain a wide range of surfaces or interface phenomena34–39. Here, a “sharp” surface means 
an atomically smooth surface locally. Hence, the surface height is well defined as h(x, y) at a site (x, y) on a 2D 
square lattice. Self-affinity is invariance under anisotropic scale transformations, in contrast to self-similarity, 
which is invariance under isotropic scale transformations. Using the surface height h(x, y), the surface width 
W(L, t) is defined by

where t is time and �·� is an ensemble average. The surface width W(L, t) for a kinetically roughened surface is 
known to satisfy a Family–Vicsek scaling relation35,36:

(1)W(L, t) =
√

�[h(x, y)− �h(x, y)�]2�,
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where the α , β , and z exponents are referred to as the roughness, growth, and dynamic exponents, respectively. In 
the non-equilibrium steady-state (in the limit t → ∞ ), the surface width W becomes W(L) ∼ Lα . The theoreti-
cal values of α for a 2D surface in 3D are 0 and 0.386 for the BKT-rough and the Kardar–Parisi–Zhang (KPZ)-
rough40,41 surfaces, respectively.

Although the Family–Vicsek scaling relation can explain many cases of algebraic divergence of surface or 
interface width, the KPZ exponent is rarely observed in crystal growth36,41,42. For example, a recent experiment 
on thin film growth of CdS43 showed a roughness exponent α of 0.78± 0.07.

Faceted-like rocky and “rough” crystal shapes such as SiC7, Si3–5, or faceted-like dendritic shapes such as 
snowflakes1, are commonly observed crystal formations. The branching dendrites seen in snowflakes are caused 
by the Mullins–Sekerka (MS) instability44 in the thermodynamic scale. The tip velocity of a dendrite obeys a 
universal behaviour based on MS-instability1,45. Interestingly, the branching of the tip of a dendrite for a faceted 
surface also seems to obey a universal behaviour. However, the reason for the similarity between tip branching 
for a faceted shape and a rough surface has not been studied sufficiently.

To reproduce a faceted-like shape of a crystal for “diffuse” and rough surfaces, many phase-field models 
have been applied46–49. The most recent phase-field model and calculations on ice49 reproduced the 3D faceted 
shapes, including snowflakes. Here, a “diffuse” surface means an “atomically rough” surface, originating from a 
liquid–gas interface21,50,51. An example of a diffuse (atomically rough) but smooth surface is the (0001) surface of 
4 He crystals in superfluid helium52. The (110) surfaces of Ag2 Se and Ag2S53,54 and the (100) and (111) surfaces of 
tetrabrommethane55 are considered to be examples of diffuse but globally smooth surfaces at lower temperatures 
than the roughening transition temperatures. Since the phase-field model applies for the mesoscopic scale, it 
reproduces the MS instability automatically under appropriate boundary conditions.

However, the problem with phase-field modelling is the connection between the phenomenological param-
eters in the basic equations of the phase-field model and the physical quantities based on the atomic surface 
structure46–49.

The aim of this article is to clarify whether a vicinal surface with faceted macrosteps can have a self-affine-
rough structure in nucleation-limited crystal growth. We will show how sharp and faceted surfaces at equilib-
rium can roughen while keeping a faceted structure. The squared surface width is calculated using the Monte 
Carlo method on the vicinal surface tilted from the (001) surface to the (111) surface. To set up faceted mac-
rosteps at equilibrium, the restricted solid-on-solid model with point-contact-type step–step attraction (p-RSOS 
model)33,56–64 is adopted (refer to the section “Methods”). The temperature is set in the step-faceting zone59, 
where the surface tension is discontinuous, and only the (001) surface and (111) surface are thermodynamically 
stable at equilibrium.

Results
Faceted‑rough surface.  Figure 1a shows the �µ dependence of gW2 (Eq. (15)). gW2 has a maximum 
at �µ = �µR(L) (Table 1)63. The maximum value increases as the system size increases. gW2 increases as L 
increases for �µ

(poly)
co (L) < �µ < �µR(L) , contrary to the expectation that gW2 is independent of system size 

for �µ < �µR(L) . Here, �µR(L) is the crossover point from a vicinal surface with (111) faceted macrosteps to 
a tilted surface with locally merged steps, and �µ

(poly)
co (L) is the crossover point from single nucleation growth to 

poly-nucleation growth at the lower edge of a faceted macrostep63. In the region �µ
(poly)
co (L) < �µ < �µR(L) , 

the vicinal surface of the p-RSOS model grows in a step-detachment process in the manner of 2D poly-nuclea-
tion at the lower edge of a faceted macrostep63,64.

Figure 2 shows a typical morphology of a vicinal surface in the region �µ
(poly)
co (L) < �µ < �µR(L) (see also 

Figs. S1b, and S2a,b). From the side view of the surface, we can see that the surface is covered with (111) side-
surfaces and (001) terrace-surfaces. From the top view of the surface, islands with rounded triangle shapes are 
seen at the lower edge of the faceted macrosteps. Though the vicinal surface seems to be covered with smooth 
(001) and (111) surfaces, we can confirm that the surface grows continuously under the non-equilibrium steady 
state63,64. Hence, we call this surface structure for �µ

(poly)
co (L) < �µ < �µR(L) the faceted-rough surface.

Nucleation‑limited continuous growth.  Figure 3 shows the driving force dependences of the surface 
velocity V and kinetic coefficient k, where k = Vτǫ/(�µa ), τ = 1 is the time for an MCS/site, and a = 1 . In con-
trast to the surface width, V and k do not depend on the system size except at the region near equilibrium. V and 

(2)W(L, t) ∼ Lα f (L−z t), z = α/β ,

Table 1.   Characteristic driving forces. ǫint/ǫ = −0.9.  Surface slope p̄ = 3
√
2/8 ≈ 0.530 . L = 400

√
2a ( a = 1 ) 

for �µy(L) , �µ
(poly)
co (L) , and �µR(L).

Value/ǫ Description

�µy(L) 0.016 Yielding point of the self-detachment of steps from a macrostep63

�µ
(poly)
co (L) 0.049 Crossover point from single 2D nucleation mode to 2D poly-nucleation mode63

�µR(L)  0.124 Transition point between the step-assembled phase and the step-disassembled phase62,63

�µ
(B−K)
co 0.3 Crossover point between BKT-rough surface and KPZ-rough surface ( ǫint = 0 , RSOS)65

�µ
(001)
kr

1.15 Kinetic roughening point for the (001) surface65
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k are similar to the original RSOS model for �µ/ǫ > 1 in the previous work65. This means that for �µ/ǫ > 1 , 
steps are well separated in most cases (Figs. S1 and S2e,f). It should be noted that the critical nucleus sizes with 
a square shape are 2 and 1 for �µ/ǫ of 1 and 2, respectively. For 0.3 < �µ/ǫ < 1.0 , k increases approximately 
linearly with respect to �µ , which gives V ∝ �µ2 . For �µR(L) < �µ/ǫ < 0.3 where the surface is rough with 
locally faceted macrosteps (Figs. S1 and S2c,d), k decreases rapidly as �µ decreases.

In the region with a faceted-rough surface and for a rough surface with locally faceted macrosteps 
( �µ/ǫ < 0.3 ), the vicinal surface grows in the 2D nucleation process at the lower edge of a faceted macrostep63,64. 
The mean height of a faceted macrostep 〈n〉 obeys the equation

where n+ = vnp/a is the attachment rate of elementary steps to the faceted macrostep, vn is the growth velocity 
of an elementary step, p is the surface slope on a “terrace”, a is the lattice constant, and n− is the detachment rate 
of an elementary step from the faceted macrostep. n− is determined by the 2D poly-nucleation rate at the lower 

(3)∂�n�/∂t = n+ − n−,

Figure 1.   �µ dependence of the square of the surface width gW2 , where �µ is the driving force for crystal 
growth. g is 1+ p̄2 , where p̄ = 3

√
2/8 ≈ 0.530 is the mean surface slope. ǫint/ǫ = −0.9 . kBT/ǫ = 0.4 . a = 1 . (a) 

gW2 , with a maximum value at �µR(L) . The lines represent different sizes and are generated from Eqs. (6)–(12). 
(b) 

√

gW2 scaled by Lα with α = 0.385 , which is the 2D KPZ roughness exponent in 3D. (c) Y(x, L) (Eq. (6)) 
scaled by Lα′ with α′ = 0.25.

Figure 2.   Typical morphology of a faceted-rough surface: snapshot generated by the Monte Carlo method 
at 4× 108 MCS/site. kBT/ǫ = 0.4 . �µ/ǫ = 0.08 . ǫint/ǫ = −0.9 . Size: 400

√
2a× 400

√
2a . Nstep = 300 . 

p̄ = Nstepa/L = 3
√
2/8 ≈ 0.530 . ld (mean equal distance between 2D nuclei 63), lc , and td are 28a, 13a, and 

1.44× 103MCS/site (Eq. (4)). Inset: Illustration of a step-detachment mode in a poly-nucleation process at the 
edge of a faceted macrostep.
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edge of the faceted macrostep63,64. At steady state, ∂�n�/∂t = 0 , and n+ = n− . The surface slope on a “terrace” is 
determined by n− , so that the step-attachment rate balances the step-detachment rate.

To understand the poly nucleation rate near equilibrium, a characteristic length ld is introduced, represent-
ing the mean equal distance at which critical nuclei arise at the edge of a macrostep (inset in Fig. 2). The nuclei 
grow to merge with neighbouring nuclei after a time td , at which point a step detaches from the macrostep. The 
mean step-detachment time td , which is a characteristic time, is then expressed as63,66 td = ld/(2vt) = 1/(Inld), 
where vt ∝ �µ is the step zipping velocity and In is the 2D nucleation rate at the step edge. Then, we obtain for 
0.05 < �µ/ǫ < 0.1563

where g∗/�µ = G(lc)/kBT , G(lc) is the total step free energy of a critical nucleus at the macrostep-edge with 
critical size lc , Z is the Zeldovich factor, C is a coefficient, kstep(�µ) is the kinetic coefficient for an elementary 
step, V is the surface growth velocity, and a (=1) is the height of an elementary step. Here, �µy(L) is a correc-
tion term introduced in our previous work63 to ensure that the surface velocity agrees with that obtained by the 
classical 2D nucleation theory. The Monte Carlo results are well reproduced by Eq. (4) for 0.05 < �µ/ǫ < 0.15
63. When �µ decreases and approaches �µy(L) , the surface growth velocity V decreases, whereas td and ld 
increase, based on Eq. (4).

For L > ld and t > td , the vicinal surface grows continuously. While for L < ld , the surface grows inter-
mittently in the manner of a 2D single nucleation process at the macrostep edges due to the finite size effect 
(Fig. S1a). �µ

(poly)
co  is approximately estimated by

Roughness exponents.  Figure 1b shows the ratio of √gW to L0.385 . The obtained results do not depend on 
the initial configuration. This is in contrast to the mean-height of a faceted macrostep 〈n〉 , which is known to be 
sensitive to the history of the surface configuration63,64. As seen from Fig. 1b, the lines for �µ/ǫ > 1.8 for differ-
ent system sizes coincide. The power 0.385 is a universal value for the roughness exponent α for 2D KPZ-rough 
surfaces in 3D. Therefore, a vicinal surface for �µ/ǫ > 1.8 is KPZ-rough.

In our previous work on the original RSOS model65, where ǫint = 0 , the vicinal surface for �µ/ǫ > 1.8 is 
shown to be KPZ-rough. Around �µ/ǫ ∼ 1 , a broad peak is observed corresponding to the kinetic roughening 

(4)
td =

√

C√
2vtZ

exp{(g∗/2)/[�µ−�µy(L)]},
√
2Z

C
= c2kkstep(�µ), ck = 0.604,

kstep(�µ) = vtǫ/�µ = 0.094+ exp[−5.8+ 0.18ǫ/�µ],
V =a/td , ld = 2vt td ,

(5)ld(�µ
(poly)
co ) ≈ L.

Figure 3.   (a,b) Driving force dependence of the surface growth velocity. (c,d) Driving force dependence of the 
kinetic coefficient. kBT/ǫ = 0.4 . ǫint/ǫ = −0.9 . p = Nstepa/L = 3

√
2/8 ≈ 0.530 . θ = 27.9 °.
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point �µ
(001)
kr /ǫ for the (001) surface. However, such a peak is not observed for p-RSOS. Instead, there is a sharp 

peak at �µR(L) , which is less than (1/5)�µ
(001)
kr  of the RSOS model.

For �µR(L) < |�µ| < 0.4ǫ , gW2 shows algebraic growth for lengths less than 200a. A typical case is shown 
in Fig. 4 for �µ/ǫ = 0.2 . At a small scale, gW2 increases as L0.95 . The value of the exponent agrees with that for 
a zigzag structure of a 1D single step on a surface. Since relatively large locally merged steps remain, the value 
of the exponent indicates that the merged steps shift location in a “wiggly” manner, as if they were single steps.

At a scale larger than 200a, the slope changes. We will return to this point in the following subsection.
For the faceted-rough region �µ

(poly)
co < �µ < �µR(L) , gW2 shows an approximate algebraic increase as the 

system size L increases for large L (Fig. 4). For large lengths 5.5 < ln L < 7 , the Monte Carlo results were fitted to 
ln gW2 = 2 lnw0 + 2αp ln L by the least square method. The obtained values are listed in Table 2. Irrespective of 
temperature, αp has values between 0.58 and 0.79. These values are about twice the KPZ-universal value of 0.386. 
Hence, the roughness of a faceted-rough surface is larger than the roughness of the original RSOS model. For 
large L, the vicinal surface is approximately self-affine. It is interesting that many observed values on the vicinal 
surface at nanometer scale are similar to those of the roughness exponent36,41. In a real system, a length 400

√
2a 

with a ∼ 4Å corresponds to about 230 nm.
As shown in Fig.  4, the roughness depends on the length scale (refer to the following subsection). For 

relatively small �µ , this change of roughness can be seen clearly. For �µ/ǫ = 0.06 , where ld = 125a and 
td = 6.7× 103 [MCS/site], the vicinal surface is smooth for lengths less than ld/2 (Fig. S1a). While L increases 
to over ld , gW2 increases algebraically. The slope of the lines becomes slightly steeper as L increases. Therefore, 
we conclude that faceted-rough surfaces consist of faceted structures at lengths less than ld/2 , whereas faceted-
rough surfaces have approximately self-affine structures larger than ld.

Scaling function for step‑disassembly.  To explain why the provisional roughness exponent αp gradu-
ally changes, we further analyse the driving force dependence of the surface width.

We assume that gW2 is expressed by the following equation:

where gW2(p1) represents the contribution from the “terrace” between the faceted macrosteps with slope p1 , 
Y2(x, L) represents the contribution from step-disassembling/assembling of the macrosteps, and x is an inverse-
driving-force distance derived from the maximum value of gW2 as x = ǫ/�µ− ǫ/�µR(L).

(6)gW2 = gW2(p1)+ Y2(x, L),

Figure 4.   Size dependence of gW2 . kBT/ǫ = 0.4 . ǫint/ǫ = −0.9 . p̄ = 3
√
2/8 ≈ 0.530. a = 1.

Table 2.   Roughness exponent α and provisional roughness exponent αp. 240
√
2a ≤ L ≤ 400

√
2a . 

ǫint/ǫ = −0.9. p̄ = 3
√
2/8 ≈ 0.530.

kBT/ǫ = 0.4 kBT/ǫ = 0.2

�µ/ǫ αp w0/a �µ/ǫ αp  w0/a

0.06 0.58  0.016  0.2 0.71  0.022

0.08 0.78  0.010  0.25 0.72  0.041

0.1 0.77  0.017  0.275 0.68  0.059

0.12 0.67  0.036  0.3 0.59  0.11

�µ∗
R/ǫ α − �µ∗

R/ǫ α −

0.090 0.60 − 0.27 0.59 −
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At equilibrium, p1 = 0 ; whereas p1 increases as �µ increases when �µ exceeds a characteristic value �µy(L) . 
This is because an elementary step detaches from the lower edge of a faceted macrostep periodically on average 
(Eq. (4)). The slope dependence of gW2(p1) at kBT/ǫ = 0.4 is expressed by65:

It should be noted that A and B for kBT/ǫ = 0.2 , 0.4, and 1.7 at equilibrium are the same within errors, as 
stated in Ref.65.

The �µ dependence of the surface slope p1 is obtained by the following equation63:

where cp , g∗p  , and �µyp(L) are fitting parameters. It should be noted that the set of values {g∗,�µy(L)} 
in Eq. (4) and Table  1 were obtained by fitting Monte Carlo data to Eq. (8) in the fitting region 
0.05 < �µ/ǫ < �µR(L)/ǫ ≈ 0.1463. To describe the �µ dependence of p1 in the range 0.055 ≤ �µ/ǫ ≤ 0.4 , 
the Monte Carlo data is re-fitted to Eq. (8), giving cp = 0.357 , g∗p = 0.294 , and �µyp(400

√
2) = 0.026ǫ.

We found that Y2(x, L) has a maximum at �µR(L) , and Y(x, L) is approximated by a Gaussian function for 
�µ

(poly)
co < �µ/ǫ < 0.4 (Fig. 5), as follows:

We introduce a scaling function Y (x) such that:

The values of A′ , A′′ , B′ , �µ∗
R , ζ , and χ are listed in Table 3.

The shape of Y (x) is shown in Fig. 5a by a black line. The Monte Carlo data and Y (x) agree well around 
|x| = ǫ|1/�µ− 1/�µR(L)| < 5 . For x > 5 , the surface grows in the single nucleation mode. Hence, the data 

(7)gW2(p1) = [ln(L/a)](A+ B ln p1)
2, A = 0.319, B = 0.0650.

(8)p1 =
cp√

|�µ/ǫ|
exp

[ −g∗p /2

|�µ/ǫ| −�µyp(L)/ǫ

]

,

(9)Y(x, L) = Ymax(L) exp[−B′x2].

(10)Y (x) =A′′ exp(−B′x2),

(11)Ymax(L) =A′′(L/a)ζ ,

(12)�µR(L)/ǫ =(�µ∗
R + A′(L/a)−χ )/ǫ.

Figure 5.   kBT/ǫ = 0.4 . ǫint/ǫ = −0.9 . p̄ = 3
√
2/8 ≈ 0.530. a = 1 . (a) Scaling function for step-disassembly. 

Y(x, L) follows Eq. (6) with Eqs. (7) and (8). The line follows Eq. (10). (b) Log–log plot of the linear system 
size L and the difference between �µR and �µ∗

R , where �µ∗
R is �µR in the limit L → ∞ . Inset: log–log plot of 

Ymax and L, where Ymax is the value Y(0, L) (Eqs. (11) and (12)). Blue triangles and pink line: kBT/ǫ = 0.2 . Red 
squares and light blue line: kBT/ǫ = 0.4.

Table 3.   Scaling parameters. ǫint/ǫ = −0.9 . p̄ = 3
√
2/8 ≈ 0.530. Eqs. (9)–(12).

kBT/ǫ = 0.4 kBT/ǫ = 0.2

ζ  ( = α) 0.60 0.59

χ 0.69 0.67

A′ 2.7 2.0

A′′ 0.051 0.065

B′ 0.025 1.26
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strays from the line of Y (x) . Since the change to the single nucleation mode is a finite size effect, the data for 
the smaller size begins to deviate for smaller x from the scaling function. For x < −5 , faceted macrosteps disas-
semble to become locally merged steps.

The power law behaviours of �µR(L) (Eq. (12)) and Ymax (Eq. (11)) are shown in Fig. 5b. The data agree well 
with the lines. From the slope of the lines, we obtained ζ and χ . The powers ζ and χ at different temperatures 
agree well.

The lines calculated using Eq. (6) for �µ and L with Eqs. (9)–(12) are shown in Fig. 1. The lines repro-
duce the Monte Carlo results well for �µ

(poly)
co < �µ/ǫ < 0.4 . For kBT/ǫ = 0.2 , gW2 is similar to the case for 

kBT/ǫ = 0.4 . It is interesting that the values of χ and ζ are similar for the cases of kBT/ǫ = 0.4 and 0.2. This sug-
gests that the step-disassembling phenomenon around �µR is a universal phenomenon. In addition, the point 
�µ∗

R is a candidate for the non-equilibrium phase transition point.
Unexpectedly, as seen from Fig. 1c, Y(x, L) calculated by Eq. (6) from the Monte Carlo data shows algebraic 

divergence with respect to L with a roughness exponent α′ = 0.25 . The Y(x, L)/(L/a)0.25 line for each size 
agrees well with the others for 0.4<∼�µ/ǫ

<∼1.6 . If √gW  is simply divided by (L/a)0.25 , the gW2–�µ lines do 
not coincide with each other. The value α′ = 0.25 is the same as that for the tracer diffusion on a 1D lattice67. 
However, the physical connection between the tracer diffusion and the present case is unclear. This is left as a 
problem for a future study.

ζ agrees with the roughness exponent α in the limit L → ∞ . The maximum of Y2(x, L) diverges with expo-
nent L2ζ in the limit L → ∞ (Eq. (11), Table 2). For L → ∞ around �µR(L) , gW2 increases asymptotically 
as gW2 ∼ L2ζ . This also means that αp → ζ for L → ∞ . Therefore, ζ is the roughness exponent α in the limit 
L → ∞.

F o r  t h e  L  d e p e n d e n c e  o f  αp  a r o u n d  �µR(L)   ,  s i n c e 
dY(x, L)/Y(x, L) ≈ [ζ + 2A′B′xχ(L/a)−χ (�µR(L)/ǫ)

−2]dL/L from Eqs. (9)–(12), we obtain

The second term in the right-hand side of Eq. (13) indicates the contribution from the shift of �µR(L) . For 
�µ < �µR(L) with x > 0 , αp becomes larger than α . However, for �µR(L) < �µ with x < 0 , αp becomes 
smaller than α.

Discussion
The results for faceted-rough surfaces can explain why the giant Naica gypsum (CaSO4· 2H20)9–11 has a euhedral 
shape with a large size and high transparency. From laser confocal differential interference contrast microscopy 
(LCM-DIM) and atomic force microscopy (AFM) observations10, the gypsum surface was found to grow by a 
2D nucleation process at the microscopic scale. The giant planar {010} surfaces of the crystal faces were found 
to consist of a hillock structure at the mesoscopic scale. The side surface of a hillock is a (100) surface, which 
grows very slowly. Such a slow growth is realised close to equilibrium. The surface is near equilibrium and the 
size of the critical nucleus is large, and therefore the time between formation of individual nuclei is long. Hence, 
inhomogeneity of inclusions should occur, which would cloud the crystal.

The continuous growth for the faceted-rough region in this work is possible for �µ(poly)(L) < �µ , where 
�µ(poly)(L) is given by Eq. (5). Physically, �µ(poly)(L) can be interpreted as a smaller limit of the driving force 
for poly-nucleation at the lower edge of a faceted macrostep. When the size is larger, �µ(poly)(L) decreases. 
As pointed out by Alexander et al.10, 2D nucleation at the “valley” of the hillock, which is a concave line on 
the surface and corresponds to the lower edge of a faceted macrostep, has a lower activation energy than 2D 
nucleation on the {010} terrace surface. A similar 2D nucleation from the lower edge of a macrostep is observed 
experimentally for diamond68. These observed 2D nucleations at the lower edge of a macrostep are consistent 
with the present Monte Carlo results for a faceted-rough surface. Since the activation energy for 2D nucleation 
is significantly smaller than that on a terrace, continuous growth is possible. This contributes to keeping the 
inclusions homogeneous.

In addition, since the roughness exponent is α = 0.6 < 1 , W/L converges to zero in the limit L → ∞ . This 
means that the hillocks have an approximate self-affine structure, while the hillocks’ area converges to zero in a 
large length limit. Therefore, the giant gypsum has a euhedral shape and high transparency.

The faceted-rough surface in the present study may provide a connection between the strong anisotropic 
parameters in the phase-field modellings and the parameters for the atomic scale. The p-RSOS model has sharp 
surfaces and the height h(x, y) is well defined. However, when a surface is rough, the location of the surface 
becomes ambiguous. Hence, we consider the mean height of the surface and the variance of the height of the 
surface, which is divergent with respect to the system size L.

At equilibrium, W2/ ln L asymptotically equals the inverse of the determinant of the surface stiffness tensor25 
of the BKT rough-surface in the limit L → ∞ . For a smooth surface, since W2/ ln L converges to zero in the large 
L limit, the determinant of the stiffness tensor is divergent, and the Gaussian curvature on the ECS should be zero.

At non-equilibrium in the faceted-rough region, if we regard the amplitude w0 = (W/Lαp ) as a local degree 
of roughness, we can explain the anisotropy of the local roughness of the faceted-rough surface. In the faceted-
rough region, w0 is 0.01–0.03, as seen from Table 2, whereas w0 for a non-faceted vicinal surface is 0.0865,69. This 
anisotropy in w0 is consistent with the anisotropies which were phenomenologically assumed47–49.

The results in the present study are consistent with the phenomena observed for Si melt–solid interfaces. In 
the case of Si melt growth, faceted dendrites5 similar to a rough surface or a faceted saw-like shape larger than 10 
μm in length are known to appear on a vicinal interface during fast crystal growth, whereas the vicinal interface 
is planar for slow crystal growth3. Studies on Si melt growth have shown that the faceted plane is close to the 
(111) surface. Hence, the faceted surface was considered to be smooth and the surface grows in the 2D nucleation 

(13)αp ≈ α + x[2A′B′χ(L/a)−χ ](�µ∗
R/ǫ)

−2 + O ((L/a)−2χ ).
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process. Nevertheless, the faceted saw-like shape was shown to be formed by MS instability44,45 by the observation 
of a negative temperature gradient before the solid–liquid interface4. The MS instability should be applicable to a 
rough surface45. This observed conflict may be solved by the present study. In the present work, we showed that 
the interface can be rough while maintaining a self-affine faceted macrostep structure near equilibrium with a 
2D poly-nucleation process at the macrostep edges. Further experimental studies are expected.

Conclusions

•	 In the faceted-rough region, a surface is smooth and faceted on the small scale, whereas at large scales, sur-
faces are rough and statistically self-affine with a roughness exponent of α = 0.60.

•	 The surface width W has a maximum at �µR(L) , where �µR(L) is the step disassembling point and L is the 
linear size of the system. The maximum value of W diverges as Lζ with ζ = 0.60± 0.02 . ζ agrees with α in the 
limit L → ∞ . �µR(L) is much closer to the equilibrium than the kinetic roughening point of the terraces.

•	 �µR(L) converges to �µ∗
R in the limit L → ∞ . �µ∗

R is a candidate for the non-equilibrium phase transition 
point.

•	 A faceted-rough vicinal surface is realized for �µ
(poly)
co (L) < �µ < �µR(L) , where �µ

(poly)
co (L) is the crosso-

ver point between the 2D single nucleation mode and the successive poly-nucleation mode at the lower edge 
of a faceted macrostep. In this region, the provisional roughness exponent is 0.58<∼αp

<∼0.79.

Methods
 p‑RSOS model.  The surface energy of a vicinal surface around the (001) surface is expressed by the follow-
ing discrete Hamiltonian:

where h(n, m) is the surface height at site (n, m), N is the total number of lattice points, ǫsurf is the surface energy 
per unit cell on the planar (001) surface, and ǫ is the microscopic ledge energy. The summation with respect to 
(n, m) is taken over all sites on the square lattice. The RSOS condition, in which the height difference between 
the nearest neighbouring sites is restricted to {0,±1} , is required implicitly.

The third and fourth terms in the right-hand side of Eq. (14) represent the point-contact-type step–step 
attraction. Here, δ(a, b) is the Kronecker delta and ǫint is the microscopic point-contact-type step–step interaction 
energy. ǫint contributes to the surface energy only at the collision point of neighbouring steps where the height 
difference can be ±2 . When ǫint is negative, the step–step interaction becomes attractive (sticky steps). Quantum 
mechanically, ǫint is regarded as the energy gain by forming a bonding state between the dangling bonds at step 
edges at the collision point of neighbouring steps.

The fifth term in the right-hand side of Eq. (14) represents the driving force for crystal growth. Here, �µ is 
µambient − µcrystal , where µambient and µcrystal are the bulk chemical potentials in the ambient phase and the crys-
tal, respectively. At equilibrium, �µ = 0 ; for �µ > 0 , the crystal grows, while for �µ < 0 , the crystal shrinks. 
Explicitly, �µ is expressed by kBT ln P/Peq for an ideal gas and by kBT lnC/Ceq for an ideal solution, where kB 
is the Boltzmann constant, T is temperature, P is vapour pressure, Peq is the vapour pressure at equilibrium, C 
is the solute-concentration, and Ceq is the solute-concentration at equilibrium. If P/Peq or C/Ceq is expressed by 
1+ σsat , where σsat is the super saturation, �µ ≈ kBTσsat for σsat << 1.

The p-RSOS model is a coarse-grained model relative to the model for first-principle quantum mechanical 
calculations, but it is a microscopic model relative to the phase-field model. In the p-RSOS model (Eq. (14)), the 
step–step attraction ǫint is the origin of the discontinuous surface tension. The surface energy Esurf  corresponds 
to the surface free-energy, which includes entropy originating from lattice vibrations and distortions70. ǫ and ǫint 
may soften due to lattice vibrations as the temperature increases. Hence, Esurf  , ǫ , or ǫint may slightly decrease as 
the temperature increases. However, Esurf  , ǫ , and ǫint are assumed to be constant throughout the work because 
we concentrate on studying the size and driving force dependence of the surface roughness.

Mean surface slope and discontinuous surface tension.  The mean surface slope tilted towards the 
〈111〉 direction p̄ is determined to be p̄ = Nstepa/L , where Nstep is the number of elementary steps and a is the lattice 
constant. The partition function of the vicinal surface with slope p̄ is obtained from Z =

∑

h(x,t) exp[−H/kBT] 
with fixed Nstep . The surface free energy f (p̄) is obtained from f (p̄) = −kBT lnZ , and the surface tension γ (p̄) 
is obtained from γ (p̄) = f (p̄)/

√

1+ p̄2.
Our previous studies at equilibrium showed that the p-RSOS model has a discontinuous surface 

tension33,56–59,61 at low temperatures with respect to the surface slope. The faceting diagram corresponding to 
the connectivity of the surface tension is obtained by calculating the partition function using the density-matrix 
renormalization group (DMRG) method. For T < Tf ,1 , the surface tension near the (111) surface becomes dis-
continuous. For T < Tf ,2 , which we refer to as the step-faceting zone59, only the surfaces with (001) and (111) 
are thermodynamically stable at equilibrium57. Hence, the vicinal surface with mean slope p̄ becomes covered 
in hillocks with (001) terrace-surfaces and (111) side surfaces.

(14)

Hp-RSOS = N ǫsurf +
∑

n,m

ǫ[|h(n+ 1,m)− h(n,m)| + |h(n,m+ 1)− h(n,m)|]

+
∑

n,m

ǫint[δ(|h(n+ 1,m+ 1)− h(n,m)|, 2)+ δ(|h(n+ 1,m− 1)− h(n,m)|, 2)] −
∑

n,m

�µ h(n,m),
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 Monte Carlo method.  The vicinal surface between the (001) surface and the (111) surface is considered 
using the Monte Carlo method with the Metropolis algorithm. The external parameters are temperature T, �µ , 
number of steps Nstep , and the linear size of the system L. Atoms are captured from the ambient phase to the 
crystal surface, and escape from the crystal surface to the ambient phase. The number of atoms in a crystal is not 
conserved. Details of the Monte Carlo calculations are given in Ref.69. Figure 2 shows a snapshot of the vicinal 
surface.

Mean surface height and surface width.  The square of the surface width W for a tilted surface in the 
non-equilibrium steady state is defined by69

where x̃ and ỹ represent a site on the surface along the 〈110〉 and �1̄10� directions, respectively, �·� is the time aver-
age, g is the determinant of the first fundamental quantity of a curved surface25, and θ is the tilt angle inclined 
towards the 〈111〉 direction from the 〈001〉 direction. The time average is taken over 2× 108 Monte Carlo steps 
per site (MCS/site), discarding the first 2× 108 MCS/site69.

In our previous study on the surface width for the original RSOS model65, we found that the kinetic roughen-
ing point of the (001) surface �µ

(001)
kr  is different from the crossover point between the BKT-rough surface and 

the KPZ-rough surface �µB−K
co  (Table 1) with respect to the driving force for crystal growth �µ . For high �µ , 

the vicinal surface of the RSOS model near the (111) surface is KPZ-rough; whereas the vicinal surface of the 
RSOS model near the (001) surface is BKT-rough.

Surface velocity and “terrace slope”.  Using the Monte Carlo method, the surface velocity is calculated 
by V = [h̄(t0 + τ)− h̄(t0)]/τ̃ , where h̄(t) is the mean surface height averaged over the surface area at time t, and 
t0 and τ̃ are 2× 108 MCS/site62–64.

At equilibrium, the terrace surface is exactly the (001) surface. However, at non-equilibrium, due to step-
detachments the “terrace” surface is slightly tilted. The “terrace slope” is obtained from the mean-macrostep-
height 〈n〉 , which is calculated by the Monte Carlo method, as follows62–64:

where p̄ is Nstepa/L , Nstep is the number of elementary steps, and Nm is the number of macrosteps in the simu-
lated system.
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