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Abstract

Ascaris lumbricoides remains the most common endoparasite in humans, yet there is still very little information available
about the immunological principles of protection, especially those directed against larval stages. Due to the natural host-
parasite relationship, pigs infected with A. suum make an excellent model to study the mechanisms of protection against
this nematode. In pigs, a self-cure reaction eliminates most larvae from the small intestine between 14 and 21 days post
infection. In this study, we investigated the mucosal immune response leading to the expulsion of A. suum and the
contribution of the hepato-tracheal migration. Self-cure was independent of previous passage through the liver or lungs, as
infection with lung stage larvae did not impair self-cure. When animals were infected with 14-day-old intestinal larvae, the
larvae were being driven distally in the small intestine around 7 days post infection but by 18 days post infection they re-
inhabited the proximal part of the small intestine, indicating that more developed larvae can counter the expulsion
mechanism. Self-cure was consistently associated with eosinophilia and intra-epithelial T cells in the jejunum. Furthermore,
we identified increased gut movement as a possible mechanism of self-cure as the small intestinal transit time was markedly
decreased at the time of expulsion of the worms. Taken together, these results shed new light on the mechanisms of self-
cure that occur during A. suum infections.
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Introduction

In (sub)tropical countries, Ascaris lumbricoides is an important soil

transmitted helminth, infecting around 1 billion people worldwide.

Although most cases are sub-clinical, Ascaris infections lead to

malabsorption and malnutrition and in rare cases obstruction or

puncture of the intestinal wall and penetration of the bile and

pancreatic ducts occur [1]. The closely related roundworm A. suum

is one of the most common parasites in pigs causing economic

losses in agriculture due to increased feed conversion rate and liver

condemnation [2]. Because of the identical life cycle, the high

genetic similarity between these parasites [3], and because A. suum

is a zoonosis [4,5], A. suum infections in pigs make an ideal model

for A. lumbricoides infections in humans. Cross infections and gene

flow between the 2 species also occurs [6,7], which led to the

debate whether or not they belong to the same species [8,9].

After ingestion, the A. suum eggs hatch and release third stage

larvae (L3) in the intestine. The larvae will penetrate the caecal or

colonic wall, reach the lungs via the liver, after which they will be

coughed up and swallowed back in. Once back in the small

intestine, they will develop first into L4 and L5 stage larvae and

eventually into adults, preferentially inhabiting the proximal half

of the small intestine [10]. Immunity against invading third stage

larvae takes several weeks of exposure to infective eggs to develop

[11,12]. In contrast, even in primary infections an expulsion

mechanism, termed self-cure, causes the elimination of most of the

fourth stage larvae (L4) from the small intestine between 14 and 21

DPI, and this self-cure is independent of the inoculation dose [10].

The effector mechanisms driving this elimination are largely

unknown.

To date, it is not known if humans infected with A. lumbricoides

also undergo spontaneous cure. However, in pigs, before self-cure

the number of larvae in the small intestine is roughly 30–50% of

the infection dose. After 21 DPI, however, the number of larvae is

greatly aggregated, with the majority harboring low numbers of

worms and a small proportion having the majority of worms [10].

This overdispersion is also seen in humans infected with A.

lumbricoides [13] and is likely caused by a similar reaction. Although

predisposition is a multifactorial phenomenon that includes

external factors such as exposure, understanding the mechanism

of aggregation might also help to explain the predisposition to high

or low worm burdens observed in humans [13].

The aim of this study was to investigate in more detail the

gastro-intestinal immune response leading to the elimination of L4
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A. suum larvae from the small intestine and the contribution of the

hepato-tracheal migration to the expulsion of the parasite.

Materials and Methods

Ethics statement
All animal experiments were conducted in accordance with the

E.U. Animal Welfare Directives and VICH Guidelines for Good

Clinical Practice, and ethical approval to conduct the studies were

obtained from the Ethical Committee of the Faculty of Veterinary

Medicine, Ghent University (EC2011/086, EC2009/145 and EC

2013/51) who have also approved the document.

Animals and parasites
Helminth naive Rattlerow Seghers hybrid piglets of 10 weeks

old were used. The animals were routinely checked for A. suum by

coprological examination and at the start of the experiment 2

sentinel animals from the same pen were euthanized to confirm

absence of larval stages. The animals had access to feed and water

ad libitum.

A. suum eggs were obtained from gravid females collected at the

local abattoir from pigs that were being processed as part of the

normal work of the abattoir. After incubation in 0,1% KCr2 for 2

months, embryonation was confirmed by way of light microscopy.

Experimental design
Experimental infection with A. suum eggs. Four groups

of 5 pigs were used. The animals of 3 groups were infected via oral

intubation with 2000 embryonated A. suum eggs each and

euthanized 10, 17 and 28 days post infection (DPI), respectively.

One group was left uninfected and served as the negative control

group.

Lung stage larvae transfer experiment. Three donor

animals were infected with 200.000 embryonated A. suum eggs

and euthanized with a captive bolt pistol 9 days post infection.

This time was chosen to avoid the chance that larvae would not

have developed enough to be ready for the change in environ-

ment. The lungs of the animals were collected, minced and the

homogenate put on a Baermann funnel incubated at 37uC to

collect the lung stage larvae. Preliminary experiments showed that

the transfer of larvae resulted in an establishment rate of around

50% 2 days after transfer. Within 2 hours after necropsy of the

donor animals, 15 naive pigs were orally infected with 1000 lung

stage larvae each, in order to have a similar number of larvae in

the small intestine as in the A. suum egg infected animals. Five

animals were killed each at day 2, 7 and 18 post transfer (DPT)

respectively.

L4 intestinal stage larvae transfer experiment. Three

donor animals were infected with 25.000 embryonated A. suum

eggs and euthanized 14 days post infection with a captive bolt

pistol. The content of the small intestines of the animals were

collected and the small intestine was washed with 37uC PBS to

collect any remaining larvae. The content of the small intestine

and the washing was sieved with a 122 mm sieve and put on a

Baermann funnel with PBS at 37uC to collect the intestinal L4

larvae. Within 2 hours after necropsy of the donor animals, the L4

larvae were collected from the Baermann funnel and 15 naive pigs

were orally infected with 1000 L4 larvae each. Five animals were

killed each at day 2, 7 and 18 DPT respectively.

Post mortem procedure
All animals were fasted before necropsy and then killed with a

captive bolt pistol, exsanguinated and the intestines were removed.

Samples for RNA extraction and histological analysis of the

jejunum were taken 3 meter caudal of the pylorus. The small

intestine was further divided in duodenum, jejunum and ileum.

The contents of the 3 parts of the small intestine were collected

separately and the intestines were rinsed twice with tap water to

collect any remaining larvae. The washing was added to the

corresponding content and sieved with a 122 mm sieve. A. suum

larvae were subsequently counted under a microscope.

RNA extraction, cDNA synthesis and real time PCR assays
Jejunal tissue was immediately snap frozen in liquid nitrogen

and stored at 280 until RNA extraction. RNA extraction was

performed using Trizol reagent (Invitrogen), combined with an

RNeasy mini kit (Qiagen). A DNase treatment was included to

prevent genomic contamination. RNA integrity was assessed using

a Biorad Experion with a standard sensitivity chip. cDNA was

synthesized with a Biorad cDNA synthesis kit, starting from 1 mg

of RNA.

Primers for the real time PCR reactions were designed with the

Primer3 software [14] and are listed in Table S1. PCRs were run

using Fast SYBR Green Master Mix (Applied Biosystems) on an

AB StepOnePlus Real-Time PCR System. Primer specificity was

confirmed by observing the melting curve and by sequencing PCR

products. Gene expression levels were normalized based on

housekeeping genes selected using Genorm [15]. Housekeeping

genes tested were: b2m, gapdh, hmbs, rpl4, tbp1 and ywhaz. The genes

selected for normalization were hmbs and tbp1. Gene transcription

levels are expressed as fold change compared to uninfected

controls.

Histological analysis
Tissue samples were washed in PBS, processed with the Swiss

roll technique in order to obtain a large surface for histological

examination [16] and fixed in either 10% formaldehyde or

Carnoy’s fixative for 24 h at room temperature. After fixation, the

tissues were dehydrated by passage through a series of graded

alcohol dilutions, followed by embedment in paraffin. Tissue

samples were cut in 4 mm sections. To assess general histopath-

ological damage and the accumulation of eosinophils, formalde-

hyde fixed samples were routinely stained with haematoxylin-

eosin. The length of the villi and depth of the crypts in the jejunum

were measured for 20 villi and their corresponding crypts under a

microscope using a calibrated micrometer at 1006magnification.

Mucosal eosinophils were counted at 4006 magnification on 10

fields corresponding to 0,162 mm2. Mast cells were counted on

Author Summary

Ascaris lumbricoides is the most common intestinal parasite
in humans. A. suum is closely related to A. lumbricoides but
infects pigs and can be used to study the immune
response against larval stages. Most larvae are eliminated
from the small intestine between 14 and 21 days after
infection in what is called a self-cure reaction. The
remaining larvae after this point will be able to grow into
adults and reproduce. We show here that the intestinal
self-cure of A. suum is locally triggered as part of an innate
immune defense mechanism. When pigs received lung
stage larvae, they were still able to eliminate the parasite,
indicating that passage through the liver or lungs is not
essential to eliminate the larvae upon their return in the
small intestine. We could identify a decrease in the
intestinal transit time at 17 days post infection, indicating
an increase in gut movement, which could explain why the
worms were being driven out at this time.

Intestinal Expulsion of Ascaris suum
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toluidine blue stained slides at 2006magnification using a weibel2

graticule [17]. For immunohistochemistry: formaldehyde fixed,

paraffin embedded sections were rehydrated and an antigen

retrieval step with citrate buffer was included. Endogenous

peroxidase activity was blocked using 1% hydrogen peroxide.

Sections were stained with rabbit anti-human CD3 (Dakocytoma-

tion A/S) to detect intra-epithelial lymphocytes (IELs) or mouse

anti-human MAC387 (Serotec) to stain macrophages. Biotinylated

secondary antibodies (Dakocytomation A/S) were added and

staining was performed using the peroxidase streptavidine

complex (Dakocytomation A/S), diaminobenzidine tetrahy-

drochloride (DAB, Sigma–Aldrich) and H2O2. Sections were

counterstained with haematoxylin. Macrophages were counted at

2006magnification using a weibel2 graticule [17] while IELs were

counted for 5 villi randomly and expressed as number of IELs per

100 mm villus epithelium.

ELISA
The Ascaris-specific IgA, IgG, IgE and IgM levels in the serum

against the L4 larvae were determined using an indirect in-house

ELISA. L4 larvae were collected from the small intestines of

animals at 14 DPI. The larvae were ground using a mortar and

pestle in liquid nitrogen to a fine powder and subsequently

dissolved in PBS to which a 1:1000 dilution of protease inhibitor

cocktail (Sigma-Aldrich) was added. After incubating for 2 hours

at 4uC, the extract was centrifuged at 10.000 g for 10 minutes.

The supernatant was passed through a 0,22 mm filter and stored at

270uC until use. This extract is being referred to as AsL4.

Plates were coated overnight at 4uC with 100 ml of 5 mg/ml

AsL4 in 0,05M sodium bicarbonate buffer (pH 9,6). Serum was

added at a concentration of 1/100 and HRP-conjugated goat anti-

pig IgM (Thermo Scientific), IgG and IgA (Bethyl laboratories)

were used as conjugate at a dilution of 1:50000, 1:10000 and

1:5000, respectively. For the detection of pig IgE antibodies, a pig

IgE cross-reacting mouse anti-human IgE antibody (Sigma-

Aldrich) at 1:5000 was used in combination with a HRP-

conjugated rabbit anti-mouse IgG at 1: 10000. Finally, O-

phenylenediamine 0.1% in citrate buffer (pH 5.0) served as

substrate and optical density (OD) was measured at 492 nm. All

measurements were performed in duplicate.

Eosinophil degranulation assay
The purification of circulating eosinophils and the degranula-

tion assay were performed as previously described [18]. Reactive

oxygen species production was measured using a chemilumines-

cence assay with PMA 5 mg/ml as positive control, HBSS with

Ca2+/Mg+ as negative control or 1 mM SIN-1 as a ROS donor.

Eosinophils from 1 pig were seeded in a 96-well plate at 26105

cells/well in 100 ml luminol (1 mM) in HBSS with Ca2+/Mg+.

After 5 min of background measurement at 37uC, 10,20 or 50 A.

suum L4 larvae collected from infected pigs at 14 DPI were added

in 100 ml HBSS, as well as the control agents. To test if there was

antibody or complement dependent degranulation, serum from 5

uninfected and 5 animals at 17 DPI was pooled and added at 1/

100 dilution. Heat inactivation of serum was done at 58uC for

30 minutes. ROS-production was measured during 120 min in

the integration mode. Each condition was performed in triplicate

and ROS-production was expressed as the fold change in relative

light units (RLU) compared to negative controls (HBSS). The

experiment was performed 3 times independent from each other.

Small intestinal transit time
Eleven pigs were infected with 3000 A. suum eggs. Ten days after

infection, 2 animals were euthanized to confirm batch infectivity.

The small intestinal worm counts in these two pigs were 2019 and

2315. Small intestinal transit time was measured in the remaining

9 pigs at 5 days before infection and at 9, 17 and 35 days after A.

suum infection. The pigs were starved for 12 hours before barium

sulfate was given through gastric intubation at a dosis of 4 ml/kg

bodyweight. Lateral and dorso-ventral radiographs were taken

every half hour until barium sulfate was located in the colon. If a

radiograph was inconclusive about the presence of contrast

material in the colon, it was repeated after 10 minutes. The time

it took for the barium to reach the colon was recorded as the small

intestinal transit time. After the last transit time measurement, the

animals were euthanized and worms were collected.

Statistical analysis
For statistical analysis, GraphPad Prism software (v5.0c) was

used. Since a non-Gaussion distribution could be expected,

differences between the infected groups and uninfected animals

were tested using a nonparametric Kruskal-Wallis test with Dunn’s

multiple comparison post hoc tests. Finally, a repeated measures

Friedman test with Dunn’s multiple comparisons post hoc test to

find differences in transit time between the different time points.

Results

Bypassing the hepato-tracheal migration does not impair
the self-cure reaction

Animals were either orally infected with 2000 A. suum eggs or

with 1000 9-day-old L3 that were collected from the lungs of

donor animals. The worm counts are summarized in Table 1. For

egg infected pigs, the average total worm count at 10 DPI was 312,

with 19% of larvae present in the duodenum, 73% in the jejunum

and 9% in the ileum. At 17 DPI, the average total number of

larvae present was reduced to 19, most of which were present in

the ileum. By 28 DPI, all animals were negative for A. suum.

When animals were orally infected with lung L3’s obtained from

donor animals, they were still able to eliminate the larvae. At 2

DPT, 38% of transferred larvae were recovered, almost exclusively

from the jejunum, indicating a successful transfer. At 7 DPT,

although the total number of worms was similar to that of 2 DPT,

50 % of the larvae were now present in the ileum. At 18 DPT, no

larvae could be recovered from the animals.

A. suum specific antibodies are not essential in the self-
cure response

Ascaris L4 specific IgA, IgE, IgG and IgM antibody levels in

serum of A. suum egg or lungs stage infected animals were

Table 1. Worm counts in the small intestine during an
infection with 2000 A. suum eggs or 1000 lung stage larvae.

Duodenum Jejunum Ileum Total

Egg
infection

10 DPI 58 (64) 227 (82) 27 (48) 312 (90)

17 DPI 0 (0) 5 (6) 14 (20) 19 (26)

28 DPI 0 (0) 0 (0) 0 (0) 0 (0)

L3
transfer

2 DPT 1 (1) 384 (35) 26 (23) 411 (35)

7 DPT 0 (0) 220 (374) 267 (337) 487 (376)

18 DPT 0 (0) 0 (0) 0 (0) 0 (0)

Numbers shown are the average (SD) of 5 animals.

Intestinal Expulsion of Ascaris suum
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measured using an indirect ELISA (Figure 1). During infections

with eggs, AsL4 specific IgA, IgM and IgG levels were increased

from 10 DPI onwards, whereas AsL4 specific IgE levels were only

detectable in serum at 17 DPI. Although the self-cure reaction

occurs 7 days after lung L3’s are transferred, no statistically

significantly increases of AsL4 specific IgA, IgM, IgG and IgE

antibodies could be detected at this time. IgM, IgG and IgE levels

were significantly increased only at 18 DPT whereas no change in

serum IgA levels was observed.

L4 transferred larvae are driven distally in the small
intestine, but counteract this effect by 18 DPT

We examined whether the release of antigens during the molt

from L3 to L4 that occurs around D12 is necessary to trigger the

expulsion of the larvae. Therefor we collected 14-day-old L4

intestinal larvae from donor animals and transferred 1000 larvae

orally into naı̈ve animals. The number of larvae in each section of

the small intestine was counted at 2, 7 and 18 days post transfer.

The larvae counts are summarized in Table 2. At 2 DPT around

60% of the transferred larvae could be recovered and 87% of the

recovered larvae are present in the jejunum. Five days later the

total number of larvae in the small intestine is similar to that at 2

DPT, but most larvae are present in the terminal part of the small

intestine. At 18 DPT the total number of larvae has not decreased

compared to 7 DPT, but 90% of larvae are now present again in

the jejunum, indicating that they could counteract the peristaltic

movement to inhabit the proximal region of the small intestine.

Self-cure is associated with eosinophilia and intra-
epithelial T cells

The results of the histological parameters investigated are shown

in Figure 2. To assess general histopathological changes, villus

length and crypt depth were measured. Villus/crypt ratios

decreased shortly after contact with A. suum larvae, due to a

blunting of the villi. Although this effect was observed in both

Figure 1. Serum antibodies are present during expulsion in infections with A. suum eggs, but not when larvae are transferred. Values
represent the mean + SD of 5 animals. * p,0,05 compared to uninfected controls.
doi:10.1371/journal.pntd.0002588.g001

Table 2. Worm counts in the small intestine after transfer of
1000 A. suum L4 larvae.

Duodenum Jejunum Ileum Total

2 DPT 1 (1) 521 (208) 73 (54) 595 (201)

7 DPT 0,2 (0,4) 102 (148) 317 (262) 419 (369)

18 DPT 24 (53) 409 (175) 19 (43) 452 (199)

Numbers shown are the average (SD) of 5 animals.
doi:10.1371/journal.pntd.0002588.t002

Intestinal Expulsion of Ascaris suum
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infections with eggs and L3 and L4, it was only temporary, as the

villi recovered by 17 DPI/7 DPT. At 17 DPI, coinciding with the

expulsion of the parasite, there was a significant increase in mucosal

eosinophils. After elimination of the larvae, i.e. 28 DPI, the number

of eosinophils decreased to a level similar to that before the

infection. A similar pattern was observed following transfer of L3’s,

with a peak in eosinophil counts at 7 DPT. The transfer of L4 larvae

resulted in high eosinophil numbers at 7 DPT and 18 DPT.

Mucosal macrophages followed a similar pattern as eosinophils

in A. suum egg infected pigs, with a 9-fold increase in the number of

macrophages per mm2 mucosa at 17 DPI that returned to baseline

level at 28 DPI. In contrast to normal infections, in both L3 and

L4 transfer infections, no increase in the number of macrophages

was observed at any of the time points investigated. No statistically

significant changes were observed in the number of intestinal mast

cells in any of the infection experiments. Finally, intra-epithelial T

cells were significantly elevated in all infection experiments at the

time when larvae were being driven towards the distal end of the

small intestine, i.e. at 17 DPI/7DPT. In the A. suum egg infections

and in the L3 transfer experiment, IELs were still elevated even

after the worms were eliminated, while in the L4 transfer

experiment the IELs returned to normal levels at 18 DPT.

The results of the quantitative PCR analysis on a set of 25 genes

for egg infected, L3 and L4 transferred animals are summarized in

Table 3. With egg infections, the gene expression pattern was

polarized towards a Th1-like response, with significant upregula-

tions observed for ifng, il12a, il12b, stat4 and nos2a. In contrast,

none of the Th2 related genes were significantly impacted during

infection with A. suum eggs. In the L3 and L4 transfer experiments,

more mixed responses were measured. In addition to some Th1

markers, an increase in the typical Th2 transcripts il4 and il13,

together with increases in regulatory transcripts, such as foxp3, and

tgfb were observed.

For all infection experiments there was an upregulation of genes

associated with cytotoxic cells, mainly granzyme A and B, perforin

1 and NKG2D. Additionally, several eosinophil-associated genes

were induced, such as those encoding for eosinophil peroxidase,

eotaxin 1, eotaxin receptor and IL-5 receptor alpha.

Eosinophils do not degranulate in response to L4 larvae
Results of the eosinophil degranulation assay are shown in

Figure 3. Measurement of the reactive oxygen species (ROS)

indicated that the eosinophils did not degranulate after incubation

with A. suum L4 larvae, even in the presence of serum from infected

animals. To exclude the possibility that L4 larvae would capture

ROS released in the medium, A. suum L4 larvae were cultured

together with SIN-1, a molecule that releases NO and ROS. A. suum

L4 larvae together with SIN-1 in medium gave no significant

differences in measured ROS compared to SIN-1 without L4 larvae

(16366704 RLU versus 9776344 RLU, respectively).

Small intestinal transit time is decreased during self-cure
The small intestinal transit time was measured by following

barium sulfate passage through the small intestine before infection

Figure 2. Histopathological findings during infections with A. suum eggs and infections with L3 or L4 transferred larvae. Values are
mean + SD of 5 animals. * p,0,05 versus control group; ** p,0,01 versus control group; *** p,0,001 versus control group.
doi:10.1371/journal.pntd.0002588.g002

Intestinal Expulsion of Ascaris suum
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and at 9, 17 and 31 days post infection with 3000 A. suum eggs (see

Figure 4). There was a small, non-significant increase in the small

intestinal transit time at 9 DPI compared to their pre-infection

transit time. At 17 DPI the small intestinal transit time was

significantly lower than before the infection. By 35 DPI, 8 out of 9

animals were A. suum negative and one pig had 29 A. suum worms.

At this time, the intestinal transit time was still somewhat lower

than before infection, but not significantly.

Discussion

Here we investigated the immunological basis of the self-cure

reaction during primary A. suum infections. In addition, we studied

the influence of the migration of the larvae through the body on

the self-cure reaction. By transferring lung stage A. suum larvae

from one animal to another, we have a simple model to study the

effect of tissue migration on the initiation of the self-cure response.

In animals bypassing the passage through the liver and lungs, the

self-cure reaction occurred with the same kinetics as animals

receiving infectious eggs, i.e. around 7 days after contact with the

small intestine. Furthermore, both in infections with eggs and with

lung stage larvae all larvae were expelled by 18 days of exposure to

the small intestine. A previous study by Jungersen et al. led to the

speculation that the expulsion of A. suum might be affected when

the liver is bypassed. They injected in vitro hatched L3’s

intravenously in pigs and found a higher percentage of animals

Table 3. RNA transcription profile of A. suum egg infected animals and L3 and L4 infected animals.

Gene Description Egg infection L3 transfer L4 transfer

10 DPI 17 DPI 28 DPI 2 DPT 7 DPT 18 DPT 2 DPT 7 DPT 18 DPT

Th1 associated

il12a Interleukin 12 subunit p35 2.29** 1.28 1.48 1.15 1.98 1.17 1.45 0.84 0.56

il12b Interleukin 12 subunit p40 2.28* 2.63 2.12* 2.05* 2.11** 1.98 1.26 1.09 1.26

nos2a Nitric oxide synthase 2a, inducible 2.11 5.12* 8.81** 1.19 1.24 0.97 2.41 1.35 1.43

ifng Interferon c 4.30** 2.91* 3.49* 1.31 2.27 1.02 2.65* 1.44 1.03

tbx21 T-Box 21, T-bet 2.28* 1.63 2.05 2.35* 1.59 1.83 1.37 1.04 1.06

stat4 Signal transducer and activator
of transcription 4

1.66* 0.96 1.70* 1.31 1.15 1.33 6.49* 3.84* 3.42*

Th2 associated

il4 Interleukin 4 1.59 0.76 1.16 1.24* 0.91 0.92 1.04 0.93 1.35

il5 Interleukin 5 1.06 0.92 0.84 0.79 0.91 0.80 0.78 0.59* 0.53*

il13 Interleukin 13 0.52 1.19 1.32 3.36 1.50* 1.60* 1.38 2.66 40.25**

stat6 Signal transducer and activator
of transcription 6

0.74 0.77 0.86 0.69 1.39 0.89 0.76 0.74 0.81

il25 Interleukin 25 1.36 1.20 1.95 1.27 0.83 0.89 0.41* 0.92 1.59

il33 Interleukin 33 1.24 1.07 1.05 0.73 0.50 0.54 0.69 0.71 1.11

cma1 Mast cell chymase 1 0.87 0.68 0.94 0.80 0.54* 1.04 0.89 0.68 0.68*

Treg

foxp3 Forkhead box P3 0.89 0.98 1.47 1.55 1.64* 1.95* 1.54 2.10 2.05*

tgfb transforming growth factor b 0.99 0.99 1.15 1.33 1.89* 1.32 1.76** 1.92 1.04

il10 Interleukin 10 1.13 1.74 1.33 0.84 1.25 0.59** 1.84 1.65 1.33

pparg peroxisome proliferator-activated
receptor gamma

0.42* 0.81 1.35 2.60* 0.83 1.11 0.74 0.89 1.53

Cytotoxic cell associated

nkl NK-lysin 0.52 1.57 1.16 0.54 0.71 0.92 1.97 1.90 0.97

gzma Granzyme A 1.61** 1.46 2.74** 2.03 2.05* 2.25 1.59* 1.46 0.24**

gzmb Granzyme B 4.14* 2.66 3.69 2.58** 1.32 2.34 3.74** 2.11* 1.04

prf1 Perforin 1 1.50 0.83 1.61 1.67* 1.68** 1.70* 2.61* 1.86 1.37

klrk killer cell lectin-like receptor
subfamily K, NKG2D

2.71** 1.11 2.28* 1.25 1.02 1.42 0.73 0.41 0.44*

Eosinophil associated

epx Eosinophil peroxidase 2.64* 0.33 0.41* 0.48 0.44 0.68 0.43 0.73 3.47**

ccl11 Chemokine (C-C motif) ligand 11, Eotaxin 1 1.03 0.79 0.98 1.25 2.17* 1.38 0.88 0.79 0.87

ccr3 Eotaxin receptor 2.28* 1.32 0.79 0.86 0.83 1.06 0.82 0.88 0.94

il5ra Interleukin 5 Receptor, alpha 1.21 0.59 1.09 1.72 1.19 2.67* 1.42 1.32 1.33

Results are shown as average fold change versus uninfected controls.
*p,0.05 compared to uninfected controls.
**p,0.01 compared to uninfected controls.
doi:10.1371/journal.pntd.0002588.t003
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harboring adult A. suum at 70 DPI than what is usually observed,

even though at 14 DPI there were comparable numbers of L4

larvae between intravenously and orally infected animals [19].

Unfortunately, not enough time points and control groups were

included to confirm if previous priming in the liver was indeed

required to eliminate the larvae from the small intestine. The

results presented here now unequivocally show that the self-cure

mechanism is a locally triggered phenomenon, independent of

previous passage through the liver or lungs.

Additionally we sought to determine whether antibodies play

and important role during self-cure. Since in normal infections

there are already A. suum specific antibodies present at 10 DPI, it

was previously suggested that antibodies played an important role

in the expulsion of the parasite [20]. Although we confirm the

presence of antibodies during self-cure in egg infected pigs, the

absence of A. suum specific antibodies when larvae were being

expelled in animals that received lung stage larvae would indicate

that A. suum specific antibodies do not have a major role in the

early self-cure against A. suum. This is further supported by the

observation that when L4 larvae are transferred, most larvae were

being driven to the distal end of the small intestine around 7 DPT.

However, it still remains possible that both specific and non-

specific antibodies present in the mucosa itself could contribute to

the A. suum expulsion [21]. In addition, although it is not clear to

Figure 3. No ROS release by eosinophils in response to A. suum L4 larvae. Data are shown as the mean RLU 6 SEM of three independent
experiments. PMA (5 mg/ml) and HBSS were used as a positive and negative control, respectively. 0: no serum added to the wells; -: serum from
uninfected animals added to the wells; +: serum from 17 DPI animals added to the wells. ROS: Reactive oxygen species.
doi:10.1371/journal.pntd.0002588.g003

Figure 4. The small intestinal transit time decreases during self-cure. The time for the barium solution to reach the caecum or colon after
gastric intubation was recorded in 9 animals before and during A. suum infection.
doi:10.1371/journal.pntd.0002588.g004
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what extent maternal antibodies would still be present in pigs of 12

weeks age, the passive transfer of antibodies has also been shown

to contribute to parasite expulsion [22]. Therefore, it would be

interesting in future studies to also analyse the mucosal antibody

responses.

Remarkably, and in contrast to the transfer of lung stage larvae,

the L4 transferred larvae were able to return to the jejunum by 18

DPT. By this time, the larvae are already 32 days old, i.e. an age at

which in natural infections they are also not affected by the self-

cure response anymore. It appears that these larvae, once they

have developed to a certain stage, are able to counteract the self-

cure response. This is in agreement with a microarray study on

larvae in the jejunum and ileum during self-cure, where they found

that only the more metabolically active larvae could remain in the

jejunum [23]. However, from our results it is clear that the larvae

present in the ileum are still alive and can return to the jejunum if

they are active enough. This also contradicts the suggestion that

self-cure is a parasite-driven suicide phenomenon based on the

density of the parasites [24]. It indicates that there is a fine balance

between the host that is trying to drive the parasite out and the

parasite’s ability to counteract this effort. This also explains why

adults can remain in the small intestine for months or years

without being driven out.

The histological and RNA transcription analysis showed some

common characteristics associated with the expulsion of larvae in all

the experiments performed here. The peak of expulsion coincided

with a peak in mucosal eosinophils and IELs, suggesting an

important role for these cells in the innate defense against A. suum.

Eosinophils can directly respond to a broad spectrum of pathogens

through signaling via Toll like receptors, complement receptors and

immunoglobulin receptors. In order to investigate whether eosin-

ophils responded directly to A. suum L4 larvae, we monitored the

release of reactive oxygen species from the eosinophilic granules

after co-incubating the cells with the larvae. In contrast to results

obtained with freshly hatched L3’s, where eosinophil degranulation

occurred quickly after contact with L3’s in the presence of serum of

either infected or uninfected animals [18], eosinophils did not

respond directly to L4 Ascaris, even in the presence of serum. In

addition, the larvae in the L4 transferred animals at 18 DPT were

seemingly unharmed, even though eosinophil numbers remained

high. These results may indicate that the L4 larvae are expressing

inhibitory factors that prevent eosinophil degranulation and that

eosinophils are better equipped to deal with tissue-residing larvae,

rather than lumen dwelling ones. This seems indeed the case for

many helminth infections [25]. The function of eosinophils in the

defense against L4 larvae might also be of an indirect nature. Since

the eosinophils were located deep in the mucosa, this assumption

seems indeed likely. Through the release of preformed cytokines,

chemokines, lipid mediators and cytotoxic molecules, eosinophils

could quickly initiate a potent immune response after recognition of

pathogen-associated molecular patterns, which in turn may lead to

the initiation of the expulsion of A. suum.

Another important finding was a clear increase in the number of

intra-epithelial T cells during the course of the infection. Although

the IELs were not phenotyped, RNA transcription data would

suggest that it was the cytotoxic T cell subset that was the most

impacted, as there was an overall induction of molecules

associated with cytotoxicity such as granzymes, perforin and

NKG2D, all of which have been found to be expressed by IELs

[26]. One of the functions of IELs is epithelial repair [26]. IELs

may be activated in response to damage caused by the larvae. For

example, Granzyme B has been found to be correlated with villus

damage in helminth infections [27]. Our findings support this, as

in all our experiments villous blunting and granzyme B

upregulation were observed shortly after contact with A. suum

larvae. The negative effect of A. suum on the intestinal structure

might have important consequences for humans suffering from A.

lumbricoides as well, as it might help to explain the malabsorption

often associated with these infections [28]. Whether there is a

direct effect of the IELs on the expulsion of the parasite deserves

further attention, since resistance against helminth infections in

sheep has been associated with genes involved in cytotoxicity [29].

Increased epithelial turnover and shedding caused by cytotoxic

cells might make it harder for the small L4’s to stick to the mucosa.

Interestingly, IELs were lower in the L4 transferred group at 18

DPT, which may indicate an active regulation of the immune

response by these larvae.

Mast cells and basophils have previously been associated with A.

suum infections [18,30,31]. Repeated infections induced blood

basophilia and intestinal mastocytosis, and these cells responded to

stimulation with L3 or L4 secretory antigens by releasing

histamine [30,31]. The maximum histamine release occurred

between 14 and 21 days after daily exposure, therefor it has been

suggested that these cells played an important role during self-cure

[32]. However, only basophils or mast cells that had previously

been exposed to Ascaris released histamine following contact with

L3 or L4 secretory antigens [30,31]. We also show here that in

contrast to experiments with repeated infections, mast cells were

not induced in the small intestine after primary infections,

suggesting that basophils or mast cells may only play a role in

protection against secondary infections.

Interestingly, the local cytokine response in the jejunum seemed

to be greatly impacted by the initial migration through the body.

Naturally infected animals were more biased towards a Th1 type

response with macrophages, while in both the L3 and L4 transfer

experiments there was a much more mixed Th1/Th2 response

and no recruitment of macrophages. Especially the animals

infected with L4 larvae showed high il13 transcription at 18

DPT, which may indicate that the initial Th1 bias shifts towards a

Th2 response as the infection progresses.

Together, these results suggest that the expulsion mechanism

does not target the A. suum larvae directly. One possible

mechanism by which larvae could be eliminated from the small

intestine is increased gut movement. We show here that animals

infected with A. suum indeed have decreased transit time around 17

DPI. This decrease is in agreement with a previous study showing

an increase in smooth muscle contractility from 14 to 21 DPI and

an increase in fluid secretion ex vivo [33]. Any increase in gut

movement would indeed make it more difficult for the relatively

small larvae to remain in the small intestine and may in fact be a

universal mechanism of expulsion of intestinal lumen dwelling

nematodes, as changes in intestinal smooth muscle contractility

have been identified in Cooperia oncophora infected calves and

Trichinella spiralis and N. brasiliensis infected mice [34–36]. Studies

in mice have shown that the helminth induced increase in smooth

muscle contractility is signaled through IL4 or IL-13 [36–38],

which could explain why it is a common observation with

helminth infections. Of particular interest is the contribution of

alternatively activated macrophages on the regulation of smooth

muscle contractility [36]. While we could only detect an increase

in macrophages in the A. suum egg infected animals, it remains

possible that changes in the activation state of macrophages

contribute to the change in smooth muscle contractility.

Taken together, this study indicates that the self-cure is a locally

initiated mechanism., Faster gut movement will make it harder for

the larvae to remain in the small intestine. It is also part of a weep

and sweep response that is often associated with helminth infections

and which consists of increased luminal secretion (weep) and

Intestinal Expulsion of Ascaris suum
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increased gut movement (sweep) [39]. This effect can probably be

overcome once A. suum larvae have developed to a point where they

are large and active enough to counteract the increased peristaltic

movements. Eosinophils and intra-epithelial T cells appear to play a

pivotal role since they are consistently associated with self-cure, but

further research is needed to elucidate how these cells operate in

order to induce the weep and sweep response.
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