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Abstract 
Background: The duration of immunity against severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but 
it is of key clinical and epidemiological importance. Seasonal human 
coronaviruses (HCoV) have been circulating for longer and, therefore, 
may offer insights into the long-term dynamics of reinfection for such 
viruses. 
Methods: Combining historical seroprevalence data from five studies 
covering the four circulating HCoVs with an age-structured reverse 
catalytic model, we estimated the likely duration of seropositivity 
following seroconversion. 
Results: We estimated that antibody persistence lasted between 0.9 
(95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. 
Furthermore, we found the force of infection in older children and 
adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared 
with young children in the majority of studies. 
Conclusions: These estimates of endemic HCoV dynamics could 
provide an indication of the future long-term infection and reinfection 
patterns of SARS-CoV-2.

Keywords 
Seasonal coronavirus, Seroprevalence, Catalytic model, waning 
immunity

Open Peer Review

Reviewer Status    

Invited Reviewers

1 2 3

version 3

(revision)
21 Dec 2021

report

version 2

(revision)
22 Nov 2021

report report report

version 1
03 Jun 2021 report report report

Angkana T. Huang , University of Florida, 

Gainesville, USA 

Armed Forces Research Institute of Medical 

Sciences, Bangkok, Thailand

1. 

Barnaby Flower , Imperial College 

London, London, UK 

Oxford University Clinical Research Unit, 

Vietnam, Ho Chi Minh City, Vietnam

2. 

 
Page 1 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://wellcomeopenresearch.org/articles/6-138/v3
https://wellcomeopenresearch.org/articles/6-138/v3
https://orcid.org/0000-0002-4993-2795
https://orcid.org/0000-0002-9210-9657
https://orcid.org/0000-0003-3939-7343
https://doi.org/10.12688/wellcomeopenres.16701.1
https://doi.org/10.12688/wellcomeopenres.16701.2
https://doi.org/10.12688/wellcomeopenres.16701.3
https://wellcomeopenresearch.org/articles/6-138/v3
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://wellcomeopenresearch.org/articles/6-138/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://wellcomeopenresearch.org/articles/6-138/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-9857-3506
https://orcid.org/0000-0002-2659-544X
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.16701.3&domain=pdf&date_stamp=2021-12-21


Corresponding author: Eleanor M. Rees (eleanor.rees1@lshtm.ac.uk)
Author roles: Rees EM: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Visualization, Writing – Original 
Draft Preparation; Waterlow NR: Formal Analysis, Methodology, Writing – Review & Editing; Lowe R: Formal Analysis, Methodology, 
Supervision, Visualization, Writing – Review & Editing; Kucharski AJ: Conceptualization, Formal Analysis, Methodology, Supervision, 
Visualization, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: AK was supported by Wellcome Trust and the Royal Society (grant Number 206250/Z/17/Z). EMR receives funding 
from the UK Medical Research Council (MR/N013638/1). NRW receives funding from the UK Medical Research Council (MR/N013638/1). 
RL was supported by a Royal Society Dorothy Hodgkin Fellowship.  
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Rees EM et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Rees EM, Waterlow NR, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group 
et al. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies [version 3; peer 
review: 3 approved] Wellcome Open Research 2021, 6:138 https://doi.org/10.12688/wellcomeopenres.16701.3
First published: 03 Jun 2021, 6:138 https://doi.org/10.12688/wellcomeopenres.16701.1 

Sereina A. Herzog , Medical University of 

Graz, Graz, Austria

3. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 2 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

mailto:eleanor.rees1@lshtm.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.16701.3
https://doi.org/10.12688/wellcomeopenres.16701.1
https://orcid.org/0000-0002-5373-5866


Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
a novel beta coronavirus, was first detected in December  
2019 and has since spread globally causing high morbidity 
and mortality. There is evidence of some short-term sterilising  
immunity (protection against reinfection and symptoms) fol-
lowing infection with SARS-CoV-21, but also some reports of  
reinfection2. However, there is currently limited evidence on 
the duration of immunity conferred by SARS-CoV-2 infection. 
Given the limited duration of SARS-CoV-2 circulation to date,  
the dynamics of antibody responses of seasonal human  
coronaviruses (HCoV) could provide insights into the possible  
long-term potential for reinfections3. The duration of immunity  
following infection is of both clinical and epidemiological  
importance, as it provides information as to how long previously  
infected individuals may no longer be at risk of infection and 
disease, as well as influencing the long-term dynamics of  
epidemics4 and enabling the interpretation of population-wide  
serological data5.

There are four circulating HCoVs: HCoV-NL63 and HCoV-
229E (alpha coronaviruses), HCoV-OC43 and HCoV-HKU1  
(beta coronaviruses). HCoV-OC43 and HCoV-229E were first 
identified in the 1960s, but HCoV-NL63 and HCov-HKU1 
were not identified until 2004 and 2005 respectively6,7. Like  
SARS-CoV-2, these typically cause respiratory tract infections. 
A small number of human challenge studies have looked at 
the duration of immunity to these viruses. Callow et al.8 found  
that six out of nine participants were reinfected when chal-
lenged with HCoV-229E again one year later, as measured by a 
rise in IgG antibodies and viral shedding. However, the period of  
viral shedding was shorter following the second inocula-
tion, and none of the participants developed symptoms. Reed9 
found that reinfection did not occur when participants were  
re-inoculated with a homologous strain approximately one 
year following infection, but participants had partial immunity 
against reinfection with a heterologous strain. Taken together 
these results suggest that immunity against infection with a  
homologous strain could last at least one year8,9.

There are also a small number of cohort and community-based  
surveillance studies which have looked at reinfection of  
seasonal HCoV. One study looked at HCoV reinfection in a 
small cohort of ten individuals over 35 years and found the  
median reinfection times to be 30 months, but with reinfection  
often occurring at 12 months10. A larger study looking at data 
from Flu Watch, a community cohort study which measures the 
incidence and transmission of respiratory viruses, found that  
between 2006 and 2011, eight subjects were reinfected with 

a seasonal HCoV (of 216 with confirmed first infection), and 
the time between reinfection ranged from 7 to 56 weeks. None  
of these reinfections were with the same strain, providing some 
evidence of lasting immunity11. However, a community surveil-
lance study of 483 participants conducted in Kenya in 2010 
over six months found evidence of high numbers of repeat 
infections of HCoV-NL63 (20.9%), HCoV-OC43 (5.7%), and 
HCoV-229E (4.0%). The majority of these reinfections showed 
reduced virus replication in the second infection, and a lower 
proportion of individuals had symptoms following the second  
infection12. Furthermore, another study conducted in New 
York City which included 191 participants found that rein-
fections with the same strain can occur within one year13. 
Care should be taken with the interpretation of these studies 
since we do not know the background exposure rates, and  
this will influence the estimates of duration of immunity.

If infections are fully immunising – as is the case for patho-
gens like measles and varicella zoster – then seroprevalence 
would be expected to accumulate over time14, and hence with 
age, with little waning of responses. The dynamics can therefore  
be captured with catalytic models of seroconversion15, which 
enables estimation of the force of infection (FOI, the rate at 
which susceptible individuals acquire infection and seroconvert).  
In contrast, when individuals serorevert, i.e. their immunity 
wanes by the progressive loss of protective antibodies against a 
disease over time, ‘reverse catalytic models’ can jointly estimate  
FOI and waning of immunity16. Variation in FOI with age may 
further complicate the dynamics, particularly if a high infec-
tion rate in children is followed by a lower rate in adults as  
well as waning of seroprevalence. To understand how serocon-
version, waning and age-variation in infection risk could shape 
population-level seroprevalence, we combine age-stratified  
data with age-structured reverse catalytic models, and estimate 
the likely duration of seropositivity following seroconversion  
for the four seasonal coronaviruses.

Methods
Human seroprevalence from four different human coronavirus 
strains (229E, HKU1, NL63, and OC43) were identified in a  
recent systematic review7. Studies which did not include esti-
mates for individuals under 10 years old17 were excluded, as  
well as studies with which only reported two age groups18. 
A total of six different studies were included, covering the 
four seasonal HCoVs, with some studies reporting on multi-
ple strains19–24. Two studies were reported separately for two  
different strains, but the overall study population was the 
same21,22. A summary of these studies is presented in Table 1. 
The different assays used in each study for the different 
strains is shown, and where the antibody detected was speci-
fied this is included in the table. To account for maternal immu-
nity individuals aged ≤1 year were excluded. The full dataset  
used for this analysis can be found as underlying data25.

To explore the duration of antibody persistence for different  
seasonal coronaviruses, where detectable antibodies is defined  
as seropositivity, we developed age-structured reverse catalytic  
models. The basic reverse catalytic model follows individuals  
from birth and assumes that there is a constant FOI (λ), 

          Amendments from Version 2
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and LOO.
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which is independent of age (a) and calendar year, and that 
immunity (as measured by serological status) wanes over  
time, at a rate ω. This model also assumes that the mortal-
ity rate for susceptible and infectious individuals is the same. 
The expression for the proportion of individuals age a who are  
seropositive, z(a), in the reverse catalytic model is as follows:

( )( ) (1 )az a e λ ωλ
λ ω

− += −
+

where λ is the FOI, ω is seropositivity waning rate and a is age.  
The duration of antibody persistence was estimated as follows:

Duration of antibody persistence = 1/ω

We then extended the reverse catalytic model to allow for a dif-
ferent FOI by age. The expressions for seroprevalence in  
the reverse catalytic model with age-varying FOI are as follows:
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Where z(a) is those who are seropositive at age a, λ1 is the 
FOI in young age groups, λ2 is FOI in the old age group, ω is  
waning, a is age, a

0
 is the age cut-off used to define the young  

and old group, and the relative change in FOI, α, is the change 
in FOI in the older age group. In our analysis, we allowed λ

1
 to 

vary by study and strain, to account for local differences in  
population-level transmission dynamics, while the average rate 
of waning within a given individual was assumed to be universal  
and was jointly estimated across all studies and strains. This 
means that one overall estimate of waning was obtained. Some 
of the studies occurred in the same setting, and so the under-
lying contact patterns were presumed to be the same (in total 
we identified five settings). Therefore, the relative change in 
FOI (α) and the age at cut-off (a

0
) were jointly estimated across 

settings. This model assumes no cross-protection between 
strains. Annual attack rates were calculated after estimating the  
FOI using the following expression,

1 .Attack rate e λ−= −  

To reflect uncertainty in current knowledge about the transmis-
sion dynamics of HCoVs, weakly informative distributions 
were chosen as priors for ω, the rate of waning over time. Spe-
cifically uniform priors from 0 to 5 years. For the FOI, there 
is little information on the attack rate of HCoVs. However, 
there have been several systematic reviews and meta-analyses  
looking at influenza in unvaccinated individuals which have 
reported the attack rates to range between 15.2% – 22.5% 
in children and 3.5% – 10.7% in adults26–28. Modelling stud-
ies using serological influenza data predicted estimates from  
20 – 60%29,30. Based on the epidemiology of these viruses in 
children31, we expect the attack rate for HCoV may be lower. 
Therefore, we selected a Gamma distribution, with a mean of  
0.3 (shape = 1.2 and scale = 0.25) and this corresponds to 
an attack rate of 26% and covers a range of plausible values. 

Table 1. Characteristics of studies used to fit the model.

Strain Author (year 
published)

Pubmed ID Sample 
size

Country/ 
region

Years 
sampled

Assay Antigen Assay cut-off

HCoV-HKU1 Chan (2009) 19342289 709 Hong Kong Not specified ELISA (IgG) S protein Mean + 3SD 
(OD>0.495)

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

HCoV-OC43 Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

Monto (1974)c 4816305 910 USA 1965 – 1969 CF or HI Whole virus <1:8 to >1:8 or 
4-fold rise

Sarateanu (1980) 6248465 3,016 Germany 1974 – 1976 HI Whole virus >1:8

HCoV-NL63 Shao (2007)b 17889596 243 USA 2003 – 2004 ELISA (IgG) N protein OD>0.2 at 
dilution of 1:80 
or greater

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

HCoV-229E Shao (2007)b 17889596 243 USA 2003 – 2004 ELISA (IgG) N protein OD>0.2 at 
dilution of 1:80 
or greater

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

Cavallaro (1970)c 5504709 307 USA 1966 Neutralization Whole virus >1:4
Human coronavirus (HCoV), Enzyme-linked immunosorbent assays (ELISA), immunofluorescence assays (IFA), complement fixation (CF), hemagglutination 
inhibition assays (HI), Immunoglobulin G (IgG), standard deviation (SD), optical density (OD). Studies which occurred in the same setting are denoted by the 
superscripts, a, b and c.
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For the age at cut-off (a
0
), uniform priors from 0 to 20 years 

were chosen as we were interested in the difference in FOI in  
children and young adults. For the relative change in FOI (α) 
we did not have any prior information. Therefore, we selected 
a prior with median 1, which presumes no difference between 
FOI in young compared with FOI in old and allowed for a range 
of plausible values using a gamma distribution (shape = 5,  
scale = 0.2).

Several sensitivity analyses were conducted to assess the robust-
ness of these results. First, the choice of priors for the FOI was 
explored, and a less informed prior was tested (FOI ~ Normal  
(mean 0.3, standard deviation 0.5)). Second, waning was estimated  
by strain, instead of being jointly fitted across all studies.  
The relative change in FOI (α) and age at cut-off (a

0
)  

were then held across all studies (instead of allowing them 
to vary by setting) to explore the impact on the estimate for 
waning. The impact of excluding the youngest age groups  
(≤1 year) was also explored, and a model was run which 

included individuals ≤1 year. The impact of the assay used in 
the study on the estimate of waning was also explored, where 
FOI was allowed to vary by study, alpha and the age at cut-off 
varied by setting and waning varied by assay (ELISA, IFA, HI 
and neutralisation). Finally, the primary model (age-varying 
FOI model) was fitted using only half the data (seropreva-
lence studies from two strains), to explore whether the results  
from one study was heavily influencing the results. For this 
model, waning, the relative change in FOI (α) and age at  
cut-off (a

0
) were held across all studies. A description of these  

models is presented in Table 2.

Bayesian inference was used to fit the sero-catalytic models 
to the seroprevalence data, using Markov chain Monte Carlo  
(MCMC) with the Gibbs sampling algorithm to estimate model 
parameters. To do so, we used the following binomial likelihood 
representing seropositivity by age (a), study (i) and strain (j)

~ ( , ),ija ija ijay Binomial P N

Table 2. Description of models explored.

Model Priors Number of 
parameters

Main model: 
Reverse catalytic model with 
age-varying FOI (alpha and cut-off varying across settings) 
- More informed priors

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
Cut-off ~ uniform(0,20)

21

Reverse catalytic model with 
age-varying FOI (alpha and cut-off varying across settings) 
- less informed priors

FOI ~ normal(0.3,0.5) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
Cut-off ~ uniform(0,20)

21

Reverse catalytic model with 
age-varying FOI (alpha and cut-off varying across settings, 
waning varying by strain) 

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
Cut-off ~ uniform(0,20)

24

Reverse catalytic model with 
age-varying FOI (alpha and cut-off held across settings)

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
Cut-off ~ uniform(0,20)

13

Reverse catalytic model with 
age-varying FOI (alpha and cut-off varying across settings) 
including data <1 year

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
Cut-off ~ uniform(0,20)

21

Reverse catalytic model with 
age-varying FOI (alpha and cut-off varying across settings, 
waning varying by assay)

FOI ~ gamma(shape = 1.2, scale = 0.25)  
Waning ~ uniform(0,5)  
Alpha ~ gamma(shape = 5, scale = 0.2)  
Cut-off ~ uniform(0,20)

24

Reverse catalytic model FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5)

11

Force of infection (FOI), relative change in FOI (Alpha,α), age at which the FOI changes (Cut-off).
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where N
ija

 is total number of individuals by age group, strain 
and study, and P

ija
 is the proportion of individuals who are  

seropositive. The inference was implemented in RJags  
(version 4–10)32. The Gelman-Rubin statistic was used to  
evaluate MCMC convergence, and a threshold of <1.1 was  
chosen. The effective sample size (ESS), which is the esti-
mated number of independent samples accounting for autocor-
relations generated by the MCMC run, was checked, and an  
ESS >200 was used. All analysis and calculations were per-
formed using R version 3.6.1. Model selection was based on the  
lowest value of the widely applicable information criterion 
(WAIC) and the leave-one-out cross validation (LOO) using 
Pareto-smoothed importance sampling33,34. WAIC and LOO were 
estimated using the R package Loo (version 2.4.1)34. All code  
is available here at GitHub25.

Results
Using a reverse catalytic model, which allowed the FOI to 
change in individuals by age, we estimated the duration of  
antibody persistence for the four seasonal HCoVs. Despite  

having only four parameters by study, our model could capture 
the overall trends in most studies (Figure 1). Waning was jointly  
fitted across all studies and strains to obtain one overall esti-
mate, and the duration of antibody persistence was estimated 
to be 3.75 (95% credible interval [CrI]: 1.96 – 7.38) years  
(Table 3). The FOI across all studies and strains in the young 
age group ranged from 0.02 (95% CrI: 0.01 – 0.05) to 1.06 
(95% CrI: 0.57 – 1.68). The cut-off (age at which the FOI 
changes) ranged between 2.35 (95% CrI: 0.31 – 17.51) to 16.58  
(95% CrI: 7.71 – 19.81) years. The relative change in FOI 
(Alpha) which measures the relative value of FOI in the young 
age group compared with the older age group ranged from  
0.72 (95% CrI: 0.3 – 1.17) to 2.48 (95% CrI: 1.96 – 2.99).  
For three of the study settings, the FOI in the older age group 
was higher (Figure 2). A sensitivity analysis was conducted  
using less informative priors for the FOI parameters, where a  
normal distribution was used (extended data Figure 1,  
Table 135). This model estimated a shorter duration of anti-
body persistence [0.93 (95% CrI: 0.60 – 1.64) years]. The FOI 
across all studies and strains were higher, ranging from 0.09  

Figure 1. Reverse catalytic model with age-varying FOI. The points are the observed proportion of seropositive individuals from each 
study (with confidence intervals), i.e. the data that was fit to. The lines are the seroprevalence curves, sampled from the fitted model, where 
the shaded region represents the 95% credible interval of the predictive posterior distribution. FOI was allowed to vary by study, whilst the 
relative change in FOI (Alpha) and cut-off were allowed to vary by setting. Waning was jointly fit across all studies and strains.
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Table 3. Parameter estimates from the age-varying FOI reverse catalytic model (median [95% CrI]). 
FOI was allowed to vary across study, while waning was simultaneously estimated across all studies. The relative 
change in FOI (Alpha) and the cut-off were allowed to vary across study settings.

Strain First Author FOI (youngest 
age group)

Relative change 
in FOI (Alpha)

Age at which 
the FOI changes 
(cut-off)

Waning

HCoV-229E Shao 0.40 (0.26 – 0.64) 0.78 (0.35 – 1.68) 9.5 (0.59 – 19.47)

0.27 (0.14 - 0.51)

Zhou 1.06 (0.57 – 1.68) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Cavallaro 0.11 (0.06 – 0.3) 0.72 (0.3 - 1.17) 9.14 (0.57 - 19.28)

HCoV-HKU1 Chan 0.02 (0.01 - 0.05) 2.27 (1.44 – 3.45) 16.58 (7.71 – 19.81)

Zhou 0.59 (0.32 – 0.89) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

HCoV-OC43 Zhou 0.64 (0.35 – 0.96) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Monto 0.07 (0.04 – 0.19) 0.72 (0.3 – 1.17) 9.14 (0.57 – 19.28)

Sarateanu 0.19 (0.11 – 0.35) 2.48 (1.96 – 2.99) 9.93 (7.34 – 14.84)

HCoV-NL63 Zhou 0.50 (0.27 – 0.74) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Shao 0.41 (0.26 – 0.67) 0.78 (0.35 – 1.68) 9.5 (0.59 – 19.47)
Human coronavirus (HCoV), force of infection (FOI).

Figure 2. Posterior estimates for the relative change in FOI (alpha) from the age-varying reverse catalytic model for each 
study setting. The alpha estimate from the model where alpha and cut-off were simultaneously estimated across studies is shown  
in grey as “combined”. The prior is shown as a dashed line.
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(95% CrI: 0.04 - 0.16) to 3.22 (95% CrI: 1.95 - 4.85), with six 
studies reporting FOI estimates > one, which is equivalent to 
an attack rate of >63%. The relative change in FOI and cut-off 
were similar for both models. This model had a lower WAIC 
(536.4 compared with 545.9) and LOO (546.0 compared with 
557.8), which suggests that this model may have an improved 
fit compared with the model with more informed priors, how-
ever, large standard errors (SE) were reported for both WAIC 
and LOO. Furthermore, the high FOI estimates indicate that 
this model may be less plausible (Table 4). As an additional  
sensitivity we allowed the waning estimate to vary by strain 
(extended data Table 235). This model estimated the duration of 
antibody persistence to be similar for all strains, ranging from 
2.26 (1.06 – 5.07) years for HCoV-OC43 to 4.09 (1.91 – 9.60)  
years for HCoV-229E.

When the relative change in FOI and cut-off parameters were 
simultaneously estimated by setting (extended data Figure 2,  
Table 335) the duration of antibody persistence was estimated 
to be shorter, 2.20 (95% CrI: 1.57 - 3.08) years, although the  
confidence intervals overlap with the main model. The FOI 
ranged from 0.04 (95% CrI: 0.03 - 0.06) to 0.88 (95% CrI:  
0.67 - 1.19). The overall model WAIC (622.1 compared with 
545.9) and LOO (632.5 compared with 557.8) were higher, indi-
cating that this model did not have as much support, although  
the SEs reported were large for WAIC and LOO (Table 4).

We also tested a basic reverse catalytic model, where the  
FOI was not allowed to vary by age, and this model estimated 
a longer duration of antibody persistence (7.69 [95% CrI:  
6.25 - 9.09] years; extended data Table 4, Figure 335). The 
WAIC (717.2) and LOO (718.5) values for the basic reverse 
catalytic model were higher compared with the other models, 
indicating that this basic model did not have strong support  
among the models considered (Table 4).

To explore the effect of excluding the youngest ages (≤1 year), 
a sensitivity analysis was done where these individuals were  
included within the analysis. The duration of antibody per-
sistence was found to be slightly shorter (2.04 [95% CrI: 
0.1.28 -1.4.76] years) and the FOI was found to be higher for 

all studies, ranging from 0.04 (95% CrI: 0.02 - 0.07) to 2.92 
(95% CrI: 2.08 - 4.01); extended data Table 5, Figure 435). 
The estimates for the relative change in FOI were found to  
be very similar to the model which excluded this age group.

As an additional sensitivity analysis, we refit the models using 
data for only two strains at a time, and estimated the FOI,  
waning and the relative change in FOI (extended data Table 635). 
We found that although the results varied, the overall trends 
were the same, indicating that the model did not rely heavily  
on one dataset. The duration of antibody persistence varied  
from 1.80 years (95% CrI: 1.17 - 2.67) to 5.26 years  
(95% CrI: 2.53 - 13.56).

Finally, we explored the impact of the different assays used in 
the studies on the waning estimates. We allowed the waning 
estimate to vary by assay (extended data Table 7, Figure 535), 
whilst allowing FOI to vary by study, and alpha and cut-off 
to vary by setting. This model estimated the duration of anti-
body persistence to be similar for ELISA (2.63 [95% CrI:  
0.94-9.09] years), HI (1.08 [95% CrI: 0.44-3.33] years) and  
neutralisation (1.28 [95% CrI: 0.25-50.0] years) assays, but 
longer for IFA (7.69 [95% CrI: 3.03-14.29] years). The credible 
intervals were wide, likely due to the small number of studies  
by assay.

To demonstrate the relationship between FOI and seropositivity 
at age 30, we created simulated scenarios under different sero-
catalytic models. Using the parameters for the relative change 
in FOI and waning estimated from the age-varying reverse  
catalytic model (where the relative change in FOI and the age 
at cut-off were simultaneously estimated across settings), we 
simulated the proportion of individuals aged 30 years that  
would be seropositive using a range of FOI estimates to  
show how the proportion changes using the different models. 
The catalytic model, which does not allow for seroreversion, 
results in the highest estimates of seropositivity at age 30 
with increasing FOI. The age-varying FOI model results in  
higher estimates of seropositivity at age 30 compared with 
the reverse catalytic model. This is due to the FOI which was  
estimated to be almost twice as high in the older age 

Table 4. Comparison of duration of antibody persistence estimates from the different models explored.

Model Reverse catalytic model with 
age-varying FOI (alpha 
and cut-off varying across 
settings) - More informed 
priors

Reverse catalytic model 
with 
age-varying FOI (alpha 
and cut-off varying across 
settings) - less informed 
priors

Reverse catalytic model 
with 
age-varying FOI (alpha 
and cut-off held across 
settings)

Reverse catalytic 
model

Duration of antibody 
persistence (years)

3.75 (95% CrI: 1.96 – 7.38) 0.93 (95% CrI: 0.60 – 1.64) 2.20 (95% CrI: 1.57 – 3.08) 7.69 (95% CrI: 
6.25 – 9.09)

WAIC 545.9 (SE: 100.2) 536.4 (SE: 99.6) 622.1 (SE: 103.3) 717.2 (SE: 156.8)

LOO 557.8 (SE: 102.3) 546.0 (SE: 100.6) 632.5 (SE: 105.6) 718.5 (SE: 151.8)
Force of infection (FOI), relative change in FOI (Alpha), age at which the FOI changes (Cut-off), widely applicable information criterion (WAIC), leave-one-out 
cross validation (LOO), Standard Error (SE).
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group (with age at cut-off 8.49 [7.52 – 9.94] years) in the  
age-varying FOI model (Figure 3A). We further explored the  
relationship between FOI, attack rates and the estimated 
number of infections by age. We used the pooled estimate 
across all studies of FOI to estimate the proportion exposed at 
a given age to provide an indication of how many infections we 
might expect to see by age under our modelling assumptions  
(Figure 3B). We estimate that by two years, over 50% of the 
population will have at least one infection, and by age ten  
over 75% will have had more than four infections.

Discussion
To date, there has been limited evidence about the duration 
of immunity to SARS-CoV-2. Given the inevitable right  
censoring of data during an emerging infectious disease  
pandemic, understanding the duration of protection following  
infection with HCoV could help provide insights which will 
be relevant to SARS-CoV-2. Using an age-varying reverse  
catalytic model, we estimated the overall duration of immunity,  
as measured by seropositivity, to be between 0.9 (95%  
CrI: 0.6 - 1.6) years and 3.8 (95% CrI: 2.0 - 7.4) years for 
HCoV’s. When waning was estimated by strain, we found  
comparable estimates of the duration of seropositivity, indicating  
that the assumption that waning is similar across strains holds 
true. Previous studies have produced varied estimates for the 
duration of immunity for HCoVs. One study estimated the 
median duration of immunity to be 2.5 years10, and Reed found  
immunity lasts at least one year9. However, several studies 
have reported reinfection occurring in less than one year8,11–13.  
Aldridge et al.11 found that reinfection with HCoV did not 
occur with the same strain, but Kiyuka et al.12 found reinfec-
tion frequently occurred with the same strain within a six  

month period. The reverse catalytic model assumes that waning 
occurs at a constant rate, however, individuals may become 
reinfected within a shorter time period than average, and  
conversely some will take longer. Some evidence also exists  
for the duration of immunity to SARS-CoV-2. A recent  
survey of health care workers in Oxford, UK, found that pro-
tection against reinfection with SARS-CoV-2 lasts at least six  
months36, whilst another study of health care workers from 
across the UK conducted by Public Health England found that 
immunity lasts for at least five months2. This seems to align  
with what is known about reinfection in seasonal HCoVs.  
However, these studies only followed up individuals for six 
months and five months respectively, and longer follow-up 
times are needed. Future studies could also work to untangle the  
relationship between seroreversion as a result of waning homo-
typic antibody responses and antigenic evolution leading to a  
mismatch between prior immunity and circulating viruses37.

More informed priors for the FOI based on attack rates for 
influenza, resulted in higher estimates for the duration of  
seropositivity. When we used less informed priors for the FOI, 
a lower estimate of duration of seropositivity was obtained. 
However, this model produced higher estimates of FOI, with 
six studies reported FOI estimates in the young age group  
greater than one (attack rate >63%). There is limited infor-
mation on the attack rate of seasonal HCoV, however there 
have been numerous studies looking at influenza. Previous  
systematic reviews have estimated the attack rate of influenza 
to be between 3.5% and 22.5%26–28, whilst modelling studies  
have estimated this to be higher, 20 – 60%29,30. Based on  
reporting rates of seasonal HCoV we would expect the attack 
rate to be lower than influenza. Therefore, this suggests that 

Figure 3. (A) Proportion of individuals age 30 who are seropositive for different estimates of force of infection (FOI). The catalytic model is 
shown in red, the reverse catalytic model in green, and the reverse catalytic model with age-varying FOI is shown in blue. Model estimates 
were used for the parameter values (relative change in FOI (alpha),1.93 [1.69 – 2.19]; waning, 0.45 [0.32 – 0.64]; cut-off, 8.49 [7.52 – 9.94]). (B) 
Estimated proportion of individuals experiencing infections by age estimated from the age-varying reverse catalytic model (more informed 
priors) using the pooled median estimate across studies for FOI (0.46), and median estimates for waning (0.45), alpha (1.93) and cut-off 
(8.49).
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the results from the model with less informative priors are  
less plausible. Maternally derived immunity may also have a 
role, protecting young infants from infection38. We tested this 
with a model which included individuals ≤1 year. This resulted  
in a shorter estimate of the duration of antibody persistence, 
and a higher FOI, suggesting that maternal immunity may  
be important.

A wide range of different assays were used in the studies  
we considered in our analysis, including enzyme-linked immu-
nosorbent assays (ELISA), immunofluorescence assays (IFA), 
western blots, and complement fixation (CF), hemagglutination 
inhibition assays (HAI) and neutralisation assays. Neutrali-
sation assays are considered to be the gold standard as they  
measure the ability of the sera to inhibit viral processes7,39. 
Only Cavallaro and Monto22 used a neutralisation assay. Other 
assays, such as ELISA and IFA, do not assess the functionality 
of the antigen, but instead detect the presence of antibodies 
in a sample. Zhou et al.19 used IFA to detect levels of IgG anti-
bodies. When we allowed the waning estimate to vary by 
assay, we found a similar estimates of antibody persistence for  
ELISA, HI and neutralisation assays, ranging from 1.1 years 
to 2.6 years, and these are comparable to the estimates from 
the main model. However, for IFA, we observed a longer  
estimate of 7.7 years (CrI: 3.0-14.3). Due to the small number 
of studies, the credible intervals were large, particularly for  
the IFA and neutralisation assay, which only had one study  
setting for each assay. This highlights the need for more  
studies, and better standardisation of assays. A recent study  
provided evidence that IgG antibodies in SARS-CoV-2 are  
correlated with neutralising antibodies, and may therefore act  
as a correlate of sterilising immunity40, whilst another study 
suggested that neutralizing antibodies may be correlated with  
protection against reinfection1. Therefore, although antibody 
prevalence does not equate to immunity for seasonal HCoVs, 
prevalence of IgG antibody may be a good correlate of immu-
nity. However, all of these assays only assess humoural 
immunity, and it is thought that cellular immunity also has a  
role SARS-CoV-2, and so it is likely to be also important in  
seasonal HCoVs41–43.

The seroprevalence surveys included in this study were  
conducted in different countries and settings (USA, China,  
Germany and Hong Kong), as well as in different time- 
periods (ranging from 1965–2011). It is likely that there are  
differences in social structure and contact patterns between these 
settings. Furthermore, individual level data was not available  
for these studies, and instead aggregated data was used. Finer 
resolution, particularly for the younger age groups, would  
have helped to provide more certainty with these estimates. In  
addition, we did not take into consideration cross-protection 
between seasonal coronavirus strains. There is some evidence 
of cross protective immunity between seasonal coronavirus 
strains, and in settings where there is co-circulating HCoV 
strains, this may lead to a higher prevalence. There is also  
evidence that there is cross-reactivity between different  
coronaviruses, which may lead to false positive results. A recent  
systematic review found that there was some cross-reactivity  
that occurred within alpha (HCoV-229E and HCoV-NL63) 

and beta (HCoV-OC43 and HCoV-HKU1) coronaviruses, but 
minimal reactivity between alpha and beta coronaviruses7.  
However, it is not clear whether cross-reactivity equates to  
cross-protection. False positives due to cross-reactivity would  
lead to an over-estimation of seroprevalence in a setting.  
This would lead to a higher plateau in older ages, and therefore 
generally lead to an over-estimation of both the FOI and the  
duration of antibody persistence. We also did not account for  
seasonality within this model, which may have under-estimated 
our FOI. Ferrari et al.44 found that ignoring seasonality may  
overemphasize the role of adults in the transmission, however, 
this was observed in measles in Niger, with outbreak peaks  
ranging over severalorders of magnitude, and long periods 
between epidemics. Theepidemic profile is different for seasonal  
coronaviruses, and therefore, this is unlikely to apply in this  
context. Whitaker & Farrington45 found that accounting for  
seasonality resultingfrom past epidemics only had a marginal 
effect on the estimates, and that regular epidemic dynamics 
do not strongly bias the catalytic model. The time of year data  
collection occurred may influence seropositivity estimates,  
particularly given that the duration of antibody persistence is 
estimated to range between 0.9 (95% CrI: 0.6 - 1.6) years and 
3.8 (95% CrI: 2.0 - 7.4) years. Data collection during high  
transmission periods would lead to an overestimate of both 
the FOI and the duration of antibody persistence. All the 
studies (except for Chan et al.23 who did not report this  
information), included within this analysis collected data 
over at least a six-month period. For this reason, the timing of 
data collection is unlikely to have biased our results. We also  
assume an overall FOI by age, and we do not account for  
differences in population susceptibility, for example health care 
workers or immunocompromised individuals. Despite these  
limitations, the duration of immunity estimated in this study  
is in line with literature estimates, suggesting the age-varying 
reverse catalytic model was able to capture overall dynamics.

Numerous studies have looked at the age pattern of HCoV  
patients presenting to hospital and healthcare settings, and 
predominantly found that the burden of disease is higher in  
younger children and the elderly46–48. However, it is likely that 
these age groups may have more severe symptoms and are  
therefore more likely to be reported. In contrast, seroprevalence  
data makes it possible to examine the whole population for 
evidence of past exposure, and hence can provide a clearer 
understanding of the underlying transmission dynamics of  
disease, rather than just the resulting burden.

In this study, when the relative change in FOI and the age of  
cut-off were simultaneously estimated across studies, we found 
that the FOI was estimated to be twice as high in the older age 
group (in this case, those over 8.49 [CrI: 7.52 - 9.94] years),  
compared with the younger age group. A similar pattern was 
observed for three of five settings when the relative change 
in FOI and the cut-off age were allowed to vary by setting. 
This suggests that older children and adults may be important  
for the transmission of seasonal HCoVs in some settings. A 
previous study looking at social mixing patterns in Europe49  
found that children are expected to have the highest inci-
dence during the initial stages of an epidemic as a result of 
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their social mixing patterns, and this is what is found for some  
diseases, such as seasonal influenza, where there is evidence 
young children drive transmission50,51. However, a more recent 
study looking at a large scale dataset of movement and contact  
patterns in the United Kingdom data found contact inten-
sity was highest in the 18–30 year age group when looking 
at all types of contacts (conversational, which was defined as  
face-to-face conversation of three or more words, and physi-
cal), although for physical alone, those aged 5–9 years had the 
highest contact52. Therefore, any association between contact  
intensity and transmission will depend on the contacts consid-
ered, particularly if a pathogen is more commonly spread via 
conversational contacts or via prolonged physical contacts. One 
possible explanation for the higher FOI we estimate in older 
age groups is that conversational contacts – which are typically 
higher in volume but lower in duration and intensity – could be  
more important for the transmission of seasonal HCoVs.

The results from this study are in accordance with what studies 
have observed in children during the coronavirus disease 2019  
(COVID-19) pandemic, with low numbers of cases reported 
in young age groups, and several large seroprevalence studies 
have reported lower seroprevalence in children compared with  
adults53,54. As well as differences in contact structure, this 
could be explained in part by reduced susceptibility to acqui-
sition of infection; a meta-analysis of contact tracing studies  
found that children had 56% (31% – 71%) lower odds of  
becoming an infected contact compared with adults55.

The duration of immunity to SARS-CoV-2 is still largely 
unknown and is of significance for the interpretation of population  
wide serological data, the understanding of the long-term  
dynamics of the epidemic, as well as of clinical importance. 
Given the long-term circulation of seasonal HCoVs, data on 
these related coronaviruses could provide indications of the  
possible future dynamics of SARS-CoV-2. With infection 
likely to become endemic in parts of the world, the duration of  
antibody-mediated immune responses will be particularly impor-
tant in shaping transmission patterns in years to come. Using  
seroprevalence data, in this study we estimated the duration 
of seropositivity to seasonal HCoVs following seroconver-
sion to be between 0.9 (95% CrI: 0.6 - 1.6) years and 3.8 (95% 
CrI: 2.0 - 7.4) years. We allowed the FOI to vary by age group 
and found it to be lower in young children (≤8.5 years) compared  
with older children and adults, which is corroborated 
with what has been observed in the COVID-19 pandemic.  
This suggests individuals in settings with endemic HCoVs  
accumulate multiple infections over the course of their  
lifetime, punctuated by periods of waning seropositivity against  
circulating viruses.

Data availability statement
Underlying data
Zenodo: erees/seasonalHCoV: First release. https://doi.org/ 
10.5281/zenodo.570776425

This project contains the following underlying data:

-	� Data extracted from Huang et al.7 (“41467_2020_18450_
MOESM7_ESM-1.csv”)

GNU General Public License v3.0.

Extended data
Zenodo: Extended data: Estimating the duration of seropositivity 
of human seasonal coronaviruses using seroprevalence studies.  
https://doi.org/10.5281/zenodo.578401835.

This project contains the following extended data

•     �SupplementaryMaterial.pdf

•    �Sensitivity analysis: Less informed priors for FOI (sup-
plementary Table 1 and Figure 1)

•    �Sensitivity analysis: Waning estimated by strain (sup-
plementary Table 2)

•    �Sensitivity analysis: Alpha and cut-off jointly simul-
taneously by study (supplementary Table 3 and  
Figure 2)

•    �Reverse catalytic model (supplementary Figure 3 and 
Table 4)

•    �Sensitivity analysis: Including the youngest age  
groups (<1 year) (supplementary Table 5 and  
Figure 4)

•    �Sensitivity analysis: Refitting the model using data 
from only two strains (supplementary Table 6)

•    �Sensitivity analysis: Waning estimated by assay  
(supplementary Table 7 and Figure 5)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/erees/ 
seasonalHCoV

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.570776425

License: GNU General Public License v3.0.

Acknowledgements
Members of the Centre for Mathematical Modelling of 
Infectious Diseases (CMMID) COVID-19 Working Group  
(random order):
Hamish P Gibbs, Alicia Rosello, Nicholas G. Davies, Kevin van 
Zandvoort, Timothy W Russell, Graham Medley, Damien C  
Tully, Sebastian Funk, Emilie Finch, Kaja Abbas, Fiona Yueqian 
Sun, Rosanna C Barnard, Matthew Quaife, Oliver Brady, Joel 
Hellewell, David Hodgson, Carl A B Pearson, W John Edmunds, 
Simon R Procter, William Waites, Billy J Quilty, Jiayao Lei, 
James D Munday, Kathleen O’Reilly, Rosalind M Eggo,  
Christopher I Jarvis, Fabienne Krauer, Mihaly Koltai, Sophie 
R Meakin, Mark Jit, Anna M Foss, Yalda Jafari, Nikos I Bosse, 
Emily S Nightingale, Katherine E. Atkins. Thibaut Jombart. Frank 
G Sandmann, Samuel Clifford, Petra Klepac, Stefan Flasche,  
C Julian Villabona-Arenas, Yung-Wai Desmond Chan, Yang 

Page 11 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://doi.org/10.5281/zenodo.5707764
https://doi.org/10.5281/zenodo.5707764
https://github.com/erees/seasonalHCoV/blob/main/dataProcessing/41467_2020_18450_MOESM7_ESM-1.csv
https://github.com/erees/seasonalHCoV/blob/main/dataProcessing/41467_2020_18450_MOESM7_ESM-1.csv
https://doi.org/10.5281/zenodo.5784018
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/erees/seasonalHCoV
https://github.com/erees/seasonalHCoV
https://doi.org/10.5281/zenodo.5707764
https://doi.org/10.5281/zenodo.5707764


Liu, Kiesha Prem, Sam Abbott, Akira Endo, Amy Gimma,  
Gwenan M Knight

CMMID COVID-19 working group funding statements:
Hamish P Gibbs (EDCTP2: RIA2020EF-2983-CSIGN, UK  
DHSC/UK Aid/NIHR: PR-OD-1017-20001), Alicia Rosello 
(NIHR: PR-OD-1017-20002), Nicholas G. Davies (UKRI 
Research England, NIHR: NIHR200929, UK MRC: MC_PC_
19065), Kevin van Zandvoort (Elrha R2HC/UK FCDO/Wellcome  
Trust/NIHR, FCDO/Wellcome Trust: Epidemic Preparedness 
Coronavirus research programme 221303/Z/20/Z), Timothy 
W Russell (Wellcome Trust: 206250/Z/17/Z), Graham Medley  
(B&MGF: NTD Modelling Consortium OPP1184344),  
Sebastian Funk, (Wellcome Trust: 210758/Z/18/Z), Emilie Finch 
(MRC: MR/N013638/1), Kaja Abbas (BMGF: INV-016832; 
OPP1157270), Fiona Yueqian Sun (NIHR: 16/137/109), Rosanna 
C Barnard (European Commission: 101003688), Matthew Quaife  
(ERC Starting Grant: #757699, B&MGF: INV-001754), Oliver 
Brady (Wellcome Trust: 206471/Z/17/Z), Joel Hellewell 
(Wellcome Trust: 210758/Z/18/Z), David Hodgson (NIHR: 
1R01AI141534-01A1), Carl A B Pearson (B&MGF: NTD  
Modelling Consortium OPP1184344, FCDO/Wellcome Trust: 
Epidemic Preparedness Coronavirus research programme 221303/
Z/20/Z), W John Edmunds (European Commission: 101003688, 
UK MRC: MC_PC_19065, NIHR: PR-OD-1017-20002), Simon 
R Procter (B&MGF: INV-016832), William Waites (MRC: 
MR/V027956/1), Billy J Quilty (NIHR: 16/137/109, NIHR: 
16/136/46, B&MGF: OPP1139859), Jiayao Lei (B&MGF:  

INV-003174), James D Munday (Wellcome Trust: 210758/Z/18/Z),  
Kathleen O’Reilly (B&MGF: OPP1191821), Rosalind M Eggo 
(HDR UK: MR/S003975/1, UK MRC: MC_PC_19065, NIHR: 
NIHR200908), Christopher I Jarvis (Global Challenges Research 
Fund: ES/P010873/1), Fabienne Krauer (Innovation Fund: 
01VSF18015, Wellcome Trust: UNS110424), Mihaly Koltai 
(Wellcome Trust: 221303/Z/20/Z), Sophie R Meakin (Wellcome 
Trust: 210758/Z/18/Z), Mark Jit (B&MGF: INV-003174, NIHR: 
16/137/109, NIHR: NIHR200929, European Commission:  
101003688), Yalda Jafari (UKRI: MR/V028456/1), Nikos I 
Bosse (HPRU: NIHR200908), Emily S Nightingale (B&MGF: 
OPP1183986), Katherine E. Atkins (ERC: SG 757688),

Thibaut Jombart (Global Challenges Research Fund: ES/
P010873/1, UK Public Health Rapid Support Team, NIHR: Health  
Protection Research Unit for Modelling Methodology HPRU-
2012-10096, UK MRC: MC_PC_19065), Frank G Sandmann 
(NIHR: NIHR200929), Samuel Clifford (Wellcome Trust: 
208812/Z/17/Z, UK MRC: MC_PC_19065), Petra Klepac (Royal 
Society: RP\EA\180004, European Commission: 101003688), 
Stefan Flasche (Wellcome Trust: 208812/Z/17/Z), C Julian  
Villabona-Arenas (ERC: SG 757688), Yang Liu (B&MGF: INV-
003174, NIHR: 16/137/109, European Commission: 101003688,  
UK MRC: MC_PC_19065), Kiesha Prem (B&MGF: INV-003174, 
European Commission: 101003688), Sam Abbott (Wellcome 
Trust: 210758/Z/18/Z), Akira Endo (Nakajima Foundation), Amy 
Gimma (European Commission: 101003688), Gwenan M Knight  
(UK MRC: MR/P014658/1)

References

1. 	 Addetia A, Crawford KHD, Dingens A, et al.: Neutralizing Antibodies Correlate 
with Protection from SARS-CoV-2 in Humans during a Fishery Vessel 
Outbreak with a High Attack Rate. J Clin Microbiol. 2020; 58(11): e02107–20. 
PubMed Abstract | Publisher Full Text | Free Full Text 

2. 	 Hall V, Foulkes S, Charlett A, et al.: Do antibody positive healthcare workers 
have lower SARS-CoV-2 infection rates than antibody negative healthcare 
workers? Large multi-centre prospective cohort study (the SIREN study), 
England: June to November 2020. medRxiv. 2021; 2021.01.13.21249642. 
Publisher Full Text 

3. 	 Guthmiller JJ, Wilson PC: Remembering seasonal coronaviruses. Science. 
2020; 370(6522): 1272–3.  
PubMed Abstract | Publisher Full Text 

4. 	 Saad-Roy CM, Wagner CE, Baker RE, et al.: Immune life history, vaccination, 
and the dynamics of SARS-CoV-2 over the next 5 years. Science. 2020; 
370(6518): 811–8.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. 	 Bobrovitz N, Arora RK, Cao C, et al.: Global seroprevalence of SARS-CoV-2  
antibodies: a systematic review and meta-analysis. medRxiv. 2020; 
2020.11.17.20233460.  
Publisher Full Text 

6. 	 Vabret A, Dina J, Gouarin S, et al.: Detection of the New Human Coronavirus 
HKU1: A Report of 6 Cases. Clin Infect Dis. 2006; 42(5): 634–9.  
PubMed Abstract | Publisher Full Text | Free Full Text 

7. 	 Huang AT, Garcia-Carreras B, Hitchings MDT, et al.: A systematic review of 
antibody mediated immunity to coronaviruses: kinetics, correlates of 
protection, and association with severity. Nat Commun. 2020; 11(1): 4704. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8. 	 Callow KA, Parry HF, Sergeant M, et al.: The time course of the immune 
response to experimental coronavirus infection of man. Epidemiol Infect. 
1990; 105(2): 435–46.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9. 	 Reed SE: The behaviour of recent isolates of human respiratory 

coronavirus in vitro and in volunteers: Evidence of heterogeneity among 
229E-related strains. J Med Virol. 1984; 13(2): 179–92.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10. 	 Edridge AWD, Kaczorowska J, Hoste ACR, et al.: Seasonal coronavirus 
protective immunity is short-lasting. Nat Med. 2020; 26(11): 1691–3.  
PubMed Abstract | Publisher Full Text 

11. 	 Aldridge RW, Lewer D, Beale S, et al.: Seasonality and immunity to 
laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, 
and HCoV-229E): results from the Flu Watch cohort study [version 2; peer 
review: 2 approved]. Wellcome Open Res. 2020; 5: 52.  
PubMed Abstract | Publisher Full Text | Free Full Text 

12. 	 Kiyuka PK, Agoti CN, Munywoki PK, et al.: Human Coronavirus NL63 Molecular 
Epidemiology and Evolutionary Patterns in Rural Coastal Kenya. J Infect Dis. 
2018; 217(11): 1728–39.  
PubMed Abstract | Publisher Full Text | Free Full Text 

13. 	 Galanti M, Shaman J: Direct Observation of Repeated Infections With 
Endemic Coronaviruses. J Infect Dis. 2021; 223(3): 409–415.  
PubMed Abstract | Publisher Full Text | Free Full Text 

14. 	 Antia A, Ahmed H, Handel A, et al.: Heterogeneity and longevity of antibody 
memory to viruses and vaccines. PLoS Biol. 2018; 16(8): e2006601.  
PubMed Abstract | Publisher Full Text | Free Full Text 

15. 	 Melegaro A, Jit M, Gay N, et al.: What types of contacts are important for 
the spread of infections?: using contact survey data to explore European 
mixing patterns. Epidemics. 2011; 3(3–4): 143–51.  
PubMed Abstract | Publisher Full Text 

16. 	 Hens N, Aerts M, Faes C, et al.: Seventy-five years of estimating the force of 
infection from current status data. Epidemiol Infect. 2010; 138(6):  
802–12.  
PubMed Abstract | Publisher Full Text 

17. 	 Severance EG, Bossis I, Dickerson FB, et al.: Development of a Nucleocapsid-
Based Human Coronavirus Immunoassay and Estimates of Individuals 
Exposed to Coronavirus in a U.S. Metropolitan Population. Clin Vaccine 

Page 12 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

http://www.ncbi.nlm.nih.gov/pubmed/32826322
http://dx.doi.org/10.1128/JCM.02107-20
http://www.ncbi.nlm.nih.gov/pmc/articles/7587101
http://dx.doi.org/10.1101/2021.01.13.21249642
http://www.ncbi.nlm.nih.gov/pubmed/33303605
http://dx.doi.org/10.1126/science.abf4860
http://www.ncbi.nlm.nih.gov/pubmed/32958581
http://dx.doi.org/10.1126/science.abd7343
http://www.ncbi.nlm.nih.gov/pmc/articles/7857410
http://dx.doi.org/10.1101/2020.11.17.20233460
http://www.ncbi.nlm.nih.gov/pubmed/16447108
http://dx.doi.org/10.1086/500136
http://www.ncbi.nlm.nih.gov/pmc/articles/7107802
http://www.ncbi.nlm.nih.gov/pubmed/32943637
http://dx.doi.org/10.1038/s41467-020-18450-4
http://www.ncbi.nlm.nih.gov/pmc/articles/7499300
http://www.ncbi.nlm.nih.gov/pubmed/2170159
http://dx.doi.org/10.1017/s0950268800048019
http://www.ncbi.nlm.nih.gov/pmc/articles/2271881
http://www.ncbi.nlm.nih.gov/pubmed/6319590
http://dx.doi.org/10.1002/jmv.1890130208
http://www.ncbi.nlm.nih.gov/pmc/articles/7166702
http://www.ncbi.nlm.nih.gov/pubmed/32929268
http://dx.doi.org/10.1038/s41591-020-1083-1
http://www.ncbi.nlm.nih.gov/pubmed/33447664
http://dx.doi.org/10.12688/wellcomeopenres.15812.2
http://www.ncbi.nlm.nih.gov/pmc/articles/7786426
http://www.ncbi.nlm.nih.gov/pubmed/29741740
http://dx.doi.org/10.1093/infdis/jiy098
http://www.ncbi.nlm.nih.gov/pmc/articles/6037089
http://www.ncbi.nlm.nih.gov/pubmed/32692346
http://dx.doi.org/10.1093/infdis/jiaa392
http://www.ncbi.nlm.nih.gov/pmc/articles/7454749
http://www.ncbi.nlm.nih.gov/pubmed/30096134
http://dx.doi.org/10.1371/journal.pbio.2006601
http://www.ncbi.nlm.nih.gov/pmc/articles/6105026
http://www.ncbi.nlm.nih.gov/pubmed/22094337
http://dx.doi.org/10.1016/j.epidem.2011.04.001
http://www.ncbi.nlm.nih.gov/pubmed/19765352
http://dx.doi.org/10.1017/S0950268809990781


Immunol. 2008; 15(12): 1805–10.  
PubMed Abstract | Publisher Full Text | Free Full Text 

18. 	 Liang FY, Lin LC, Ying TH, et al.: Immunoreactivity characterisation of the 
three structural regions of the human coronavirus OC43 nucleocapsid 
protein by Western blot: implications for the diagnosis of coronavirus 
infection. J Virol Methods. 2013; 187(2): 413–20.  
PubMed Abstract | Publisher Full Text | Free Full Text 

19. 	 Zhou W, Wang W, Wang H, et al.: First infection by all four non-severe acute 
respiratory syndrome human coronaviruses takes place during childhood. 
BMC Infect Dis. 2013; 13: 433.  
PubMed Abstract | Publisher Full Text | Free Full Text 

20. 	 Shao X, Guo X, Esper F, et al.: Seroepidemiology of group I human 
coronaviruses in children. J Clin Virol. 2007; 40(3): 207–13.  
PubMed Abstract | Publisher Full Text | Free Full Text 

21. 	 Monto AS, Lim SK: The Tecumseh Study of Respiratory Illness. VI. Frequency 
of and Relationship between Outbreaks of Coronavirus Infection. J Infect 
Dis. 1974; 129(3): 271–6.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22. 	 Cavallaro JJ, Monto AS: Community-wide outbreak of infection with a 229E-
like coronavirus in Tecumseh, Michigan. J Infect Dis. 1970; 122(4): 272–9. 
PubMed Abstract | Publisher Full Text | Free Full Text 

23. 	 Chan CM, Tse H, Wong SSY, et al.: Examination of seroprevalence of 
coronavirus HKU1 infection with S protein-based ELISA and neutralization 
assay against viral spike pseudotyped virus. J Clin Virol. 2009; 45(1): 54–60. 
PubMed Abstract | Publisher Full Text | Free Full Text 

24. 	 Sarateanu DE, Ehrengut W: A two year serological surveillance of 
coronavirus infections in Hamburg. Infection. 1980; 8(2): 70–2.  
PubMed Abstract | Publisher Full Text | Free Full Text 

25. 	 erees: erees/seasonalHCoV: Second release (v2.0.0). Zenodo. 2021.  
http://www.doi.org/10.5281/zenodo.5707764

26. 	 Somes MP, Turner RM, Dwyer LJ, et al.: Estimating the annual attack rate of 
seasonal influenza among unvaccinated individuals: A systematic review 
and meta-analysis. Vaccine. 2018; 36(23): 3199–207.  
PubMed Abstract | Publisher Full Text 

27. 	 Jayasundara K, Soobiah C, Thommes E, et al.: Natural attack rate of influenza 
in unvaccinated children and adults: a meta-regression analysis. BMC Infect 
Dis. 2014; 14: 670.  
PubMed Abstract | Publisher Full Text | Free Full Text 

28. 	 Turner D, Wailoo A, Nicholson K, et al.: Systematic review and economic 
decision modelling for the prevention and treatment of influenza A and B. 
Health Technol Assess. 2003; 7(35): iii–iv, xi–xiii, 1–170.  
PubMed Abstract | Publisher Full Text 

29. 	 Kucharski AJ, Lessler J, Cummings DAT, et al.: Timescales of influenza A/H3N2 
antibody dynamics. PLoS Biol. 2018; 16(8): e2004974.  
PubMed Abstract | Publisher Full Text | Free Full Text 

30. 	 Minter A, Hoschler K, Jagne YJ, et al.: Estimation of Seasonal Influenza Attack 
Rates and Antibody Dynamics in Children Using Cross-Sectional Serological 
Data. J Infect Dis. 2020; jiaa338.  
PubMed Abstract | Publisher Full Text 

31. 	 Liu WK, Liu Q, Chen DH, et al.: Epidemiology of Acute Respiratory Infections 
in Children in Guangzhou: A Three-Year Study. PLoS One. 2014; 9(5):  
e96674.  
PubMed Abstract | Publisher Full Text | Free Full Text 

32. 	 Plummer M, Stukalov A, Denwood M: rjags: Bayesian Graphical Models using 
MCMC. 2019; (accessed 16 Dec 2020).  
Reference Source

33. 	 Vehtari A, Gelman A, Gabry J: Practical Bayesian model evaluation using 
leave-one-out cross-validation and WAIC. 2016.  
Reference Source

34. 	 Vehtari A, Gabry J, Magnusson M, et al.: loo: Efficient Leave-One-Out Cross-
Validation and WAIC for Bayesian Models. 2020; (accessed 15 Nov 2021). 
Reference Source

35. 	 Rees EM, Waterlow NR, Lowe R, et al.: Extended Data: Estimating the 
duration of seropositivity of human seasonal coronaviruses using 
seroprevalence studies. 2021.  
http://www.doi.org/10.5281/zenodo.5784018

36. 	 Lumley SF, O’Donnell D, Stoesser NE, et al.: Antibodies to SARS-CoV-2 
are associated with protection against reinfection. medRxiv. 2020; 
2020.11.18.20234369.  
Publisher Full Text 

37. 	 Eguia R, Crawford KHD, Stevens-Ayers T, et al.: A human coronavirus evolves 

antigenically to escape antibody immunity. Microbiology. 2020.  
Publisher Full Text 

38. 	 Dijkman R, Jebbink MF, Bahia el Idrissi N, et al.: Human Coronavirus NL63 
and 229E Seroconversion in Children. J Clin Microbiol. 2008; 46(7): 2368–73. 
PubMed Abstract | Publisher Full Text | Free Full Text 

39. 	 Kellam P, Barclay W: The dynamics of humoral immune responses following 
SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. 2020; 
101(8): 791–7.  
PubMed Abstract | Publisher Full Text | Free Full Text 

40. 	 Iyer AS, Jones FK, Nodoushani A, et al.: Dynamics and significance of the 
antibody response to SARS-CoV-2 infection. medRxiv. 2020.  
Publisher Full Text 

41. 	 Dan JM, Mateus J, Kato Y, et al.: Immunological memory to SARS-CoV-2 
assessed for up to 8 months after infection. Science. 2021; 371(6529): 
eabf4063.  
PubMed Abstract | Publisher Full Text | Free Full Text 

42. 	 Cox RJ, Brokstad KA: Not just antibodies: B cells and T cells mediate 
immunity to COVID-19. Nat Rev Immunol. 2020; 20(10): 581–2.  
PubMed Abstract | Publisher Full Text | Free Full Text 

43. 	 Ni L, Ye F, Cheng ML, et al.: Detection of SARS-CoV-2-Specific Humoral and 
Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020; 
52(6): 971–977.e3.  
PubMed Abstract | Publisher Full Text | Free Full Text 

44. 	 Ferrari MJ, Djibo A, Grais RF, et al.: Episodic outbreaks bias estimates of 
age-specific force of infection: a corrected method using measles as an 
example. Epidemiol Infect. 2010; 138(1): 108–16.  
PubMed Abstract | Publisher Full Text | Free Full Text 

45. 	 Whitaker HJ, Farrington CP: Estimation of infectious disease parameters 
from serological survey data: the impact of regular epidemics. Stat Med. 
2004; 23(15): 2429–43.  
PubMed Abstract | Publisher Full Text 

46. 	 Fischer N, Dauby N, Bossuyt N, et al.: Monitoring of human coronaviruses in 
Belgian primary care and hospitals, 2015–20: a surveillance study. Lancet 
Microbe. 2021.  
Publisher Full Text 

47. 	 Zhang SF, Tuo JL, Huang XB, et al.: Epidemiology characteristics of human 
coronaviruses in patients with respiratory infection symptoms and 
phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS 
One. 2018; 13(1): e0191789.  
PubMed Abstract | Publisher Full Text | Free Full Text 

48. 	 Fowlkes A, Giorgi A, Erdman D, et al.: Viruses Associated With Acute 
Respiratory Infections and Influenza-like Illness Among Outpatients From 
the Influenza Incidence Surveillance Project, 2010-2011. J Infect Dis. 2014; 
209(11): 1715–25.  
PubMed Abstract | Publisher Full Text | Free Full Text 

49. 	 Mossong J, Hens N, Jit M, et al.: Social Contacts and Mixing Patterns Relevant 
to the Spread of Infectious Diseases. PLoS Med. 2008; 5(3): e74.  
PubMed Abstract | Publisher Full Text | Free Full Text 

50. 	 Baguelin M, Flasche S, Camacho A, et al.: Assessing Optimal Target 
Populations for Influenza Vaccination Programmes: An Evidence Synthesis 
and Modelling Study. PLoS Med. 2013; 10(10): e1001527.  
PubMed Abstract | Publisher Full Text | Free Full Text 

51. 	 Kissler SM, Viboud C, Grenfell BT, et al.: Symbolic transfer entropy reveals 
the age structure of pandemic influenza transmission from high-volume 
influenza-like illness data. J R Soc Interface. 2020; 17(164): 20190628.  
PubMed Abstract | Publisher Full Text | Free Full Text 

52. 	 Klepac P, Kucharski AJ, Conlan AJK, et al.: Contacts in context: large-scale 
setting-specific social mixing matrices from the BBC Pandemic project. 
medRxiv. Epidemiology. 2020.  
Publisher Full Text 

53. 	 Munro APS, Faust SN: COVID-19 in children: current evidence and key 
questions. Curr Opin Infect Dis. 2020; 33(6): 540–7.  
PubMed Abstract | Publisher Full Text 

54. 	 Marks M, Millat-Martinez P, Ouchi D, et al.: Transmission of COVID-19 in 282 
clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis. 2021;  
21(5): 629–636.  
PubMed Abstract | Publisher Full Text | Free Full Text 

55. 	 Viner RM, Mytton OT, Bonell C, et al.: Susceptibility to SARS-CoV-2 infection 
amongst children and adolescents compared with adults: a systematic 
review and meta-analysis. medRxiv. Public and Global Health. 2020.  
Publisher Full Text 

Page 13 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

http://www.ncbi.nlm.nih.gov/pubmed/18945884
http://dx.doi.org/10.1128/CVI.00124-08
http://www.ncbi.nlm.nih.gov/pmc/articles/2593164
http://www.ncbi.nlm.nih.gov/pubmed/23174159
http://dx.doi.org/10.1016/j.jviromet.2012.11.009
http://www.ncbi.nlm.nih.gov/pmc/articles/7112824
http://www.ncbi.nlm.nih.gov/pubmed/24040960
http://dx.doi.org/10.1186/1471-2334-13-433
http://www.ncbi.nlm.nih.gov/pmc/articles/3848659
http://www.ncbi.nlm.nih.gov/pubmed/17889596
http://dx.doi.org/10.1016/j.jcv.2007.08.007
http://www.ncbi.nlm.nih.gov/pmc/articles/2100388
http://www.ncbi.nlm.nih.gov/pubmed/4816305
http://dx.doi.org/10.1093/infdis/129.3.271
http://www.ncbi.nlm.nih.gov/pmc/articles/7109979
http://www.ncbi.nlm.nih.gov/pubmed/5504709
http://dx.doi.org/10.1093/infdis/122.4.272
http://www.ncbi.nlm.nih.gov/pmc/articles/7110257
http://www.ncbi.nlm.nih.gov/pubmed/19342289
http://dx.doi.org/10.1016/j.jcv.2009.02.011
http://www.ncbi.nlm.nih.gov/pmc/articles/7108224
http://www.ncbi.nlm.nih.gov/pubmed/6248465
http://dx.doi.org/10.1007/BF01639150
http://www.ncbi.nlm.nih.gov/pmc/articles/7100827
http://www.doi.org/10.5281/zenodo.5707764
http://www.ncbi.nlm.nih.gov/pubmed/29716771
http://dx.doi.org/10.1016/j.vaccine.2018.04.063
http://www.ncbi.nlm.nih.gov/pubmed/25495228
http://dx.doi.org/10.1186/s12879-014-0670-5
http://www.ncbi.nlm.nih.gov/pmc/articles/4272519
http://www.ncbi.nlm.nih.gov/pubmed/14609480
http://dx.doi.org/10.3310/hta7350
http://www.ncbi.nlm.nih.gov/pubmed/30125272
http://dx.doi.org/10.1371/journal.pbio.2004974
http://www.ncbi.nlm.nih.gov/pmc/articles/6117086
http://www.ncbi.nlm.nih.gov/pubmed/32556290
http://dx.doi.org/10.1093/infdis/jiaa338
http://www.ncbi.nlm.nih.gov/pubmed/24797911
http://dx.doi.org/10.1371/journal.pone.0096674
http://www.ncbi.nlm.nih.gov/pmc/articles/4010508
https://cran.r-project.org/web/packages/rjags/index.html
https://arxiv.org/pdf/1507.04544.pdf
https://cran.r-project.org/web/packages/loo/index.html
http://www.doi.org/10.5281/zenodo.5784018
http://dx.doi.org/10.1101/2020.11.18.20234369
http://dx.doi.org/10.1101/2020.12.17.423313
http://www.ncbi.nlm.nih.gov/pubmed/18495857
http://dx.doi.org/10.1128/JCM.00533-08
http://www.ncbi.nlm.nih.gov/pmc/articles/2446899
http://www.ncbi.nlm.nih.gov/pubmed/32430094
http://dx.doi.org/10.1099/jgv.0.001439
http://www.ncbi.nlm.nih.gov/pmc/articles/7641391
http://dx.doi.org/10.1101/2020.07.18.20155374
http://www.ncbi.nlm.nih.gov/pubmed/33408181
http://dx.doi.org/10.1126/science.abf4063
http://www.ncbi.nlm.nih.gov/pmc/articles/7919858
http://www.ncbi.nlm.nih.gov/pubmed/32839569
http://dx.doi.org/10.1038/s41577-020-00436-4
http://www.ncbi.nlm.nih.gov/pmc/articles/7443809
http://www.ncbi.nlm.nih.gov/pubmed/32413330
http://dx.doi.org/10.1016/j.immuni.2020.04.023
http://www.ncbi.nlm.nih.gov/pmc/articles/7196424
http://www.ncbi.nlm.nih.gov/pubmed/19538818
http://dx.doi.org/10.1017/S0950268809990173
http://www.ncbi.nlm.nih.gov/pmc/articles/4520443
http://www.ncbi.nlm.nih.gov/pubmed/15273957
http://dx.doi.org/10.1002/sim.1819
http://dx.doi.org/10.1016/S2666-5247(20)30221-4
http://www.ncbi.nlm.nih.gov/pubmed/29377913
http://dx.doi.org/10.1371/journal.pone.0191789
http://www.ncbi.nlm.nih.gov/pmc/articles/5788356
http://www.ncbi.nlm.nih.gov/pubmed/24338352
http://dx.doi.org/10.1093/infdis/jit806
http://www.ncbi.nlm.nih.gov/pmc/articles/5749912
http://www.ncbi.nlm.nih.gov/pubmed/18366252
http://dx.doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/pmc/articles/2270306
http://www.ncbi.nlm.nih.gov/pubmed/24115913
http://dx.doi.org/10.1371/journal.pmed.1001527
http://www.ncbi.nlm.nih.gov/pmc/articles/3793005
http://www.ncbi.nlm.nih.gov/pubmed/32183640
http://dx.doi.org/10.1098/rsif.2019.0628
http://www.ncbi.nlm.nih.gov/pmc/articles/7115222
http://dx.doi.org/10.1101/2020.02.16.20023754
http://www.ncbi.nlm.nih.gov/pubmed/33027185
http://dx.doi.org/10.1097/QCO.0000000000000690
http://www.ncbi.nlm.nih.gov/pubmed/33545090
http://dx.doi.org/10.1016/S1473-3099(20)30985-3
http://www.ncbi.nlm.nih.gov/pmc/articles/7906723
http://dx.doi.org/10.1101/2020.05.20.20108126


Open Peer Review
Current Peer Review Status:    

Version 3

Reviewer Report 04 January 2022

https://doi.org/10.21956/wellcomeopenres.19394.r47731

© 2022 Herzog S. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Sereina A. Herzog   
Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 
Austria 

No comments on the current version 3.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease modeling, biostatistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 26 November 2021

https://doi.org/10.21956/wellcomeopenres.19266.r47156

© 2021 Huang A. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Angkana T. Huang   
1 Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 
USA 
2 Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 

I thank the authors for thoroughly considering and addressing my comments. I only have one 

 
Page 14 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://doi.org/10.21956/wellcomeopenres.19394.r47731
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5373-5866
https://doi.org/10.21956/wellcomeopenres.19266.r47156
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9857-3506


minor point to make regarding my suggestion of ELPD but is not meant to hold off the state of the 
approval. Specifically, it would be great if the authors could also include the 95% CI (in addition to 
the point estimates of the performance metric) to demonstrate that the superiority was well 
supported (i.e., whether the intervals were non-overlapping).
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: infectious disease modeling

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Dec 2021
Eleanor Rees, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for taking the time to review the manuscript again. 
 
Thank you for the suggestion, we have now included the standard error estimates as a 
measure of the variance for both the WAIC and LOO. The standard errors for these point 
estimates are large, and we have highlighted this in the text.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 23 November 2021

https://doi.org/10.21956/wellcomeopenres.19266.r47157

© 2021 Flower B. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Barnaby Flower   
1 Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK 
2 Oxford University Clinical Research Unit, Vietnam, Ho Chi Minh City, Vietnam 

No further comments.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: SARSCoV2 antibody seroprevalence, SARSCoV2 diagnostics, Hepatitis C Clinical 
Trialist. No modeling expertise.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

 
Page 15 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://doi.org/10.21956/wellcomeopenres.19266.r47157
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2659-544X


Reviewer Report 22 November 2021

https://doi.org/10.21956/wellcomeopenres.19266.r47155

© 2021 Herzog S. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Sereina A. Herzog   
Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 
Austria 

The authors have addressed the comments I had, and I have no further comments on the revised 
version.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease modeling, biostatistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 14 October 2021

https://doi.org/10.21956/wellcomeopenres.18416.r46084

© 2021 Herzog S. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Sereina A. Herzog   
Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 
Austria 

Rees et al. provide estimations for the force of infection (FOI) and seropositivity waning rate 
regarding four different human coronaviruses (HCoV) strains using reverse catalytic model with 
age-varying FOI. The limitations of the modelling approach as well as the limitations about the 
datasets are well discussed. 
 
Some minor points that should be addressed:

The authors give in the introduction examples about pathogens which are ‘fully immunising’ 
like pertussis. To my knowledge pertussis natural infection protects longer than vaccination 

1. 

 
Page 16 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://doi.org/10.21956/wellcomeopenres.19266.r47155
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5373-5866
https://doi.org/10.21956/wellcomeopenres.18416.r46084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5373-5866


but not lifelong (see Wendelboe et al., 20051). Please rephrase the sentence accordingly. 
 
Please clarify in the method section what is meant with “[…] were excluded, as well as 
studies with small number of data points.” Is ‘small number’ referring to number of different 
age (groups) reported in the study or number of total observations in a study, and what is 
‘small’? 
 

2. 

The full dataset used is not available on Zenodo (reference 25) but on GitHub (reference 33) 
[Method section, 1st paragraph, last sentence] – please check throughout the text those two 
references (e.g. last sentence Method section GitHub is mentioned with reference number 
25). 
 

3. 

In the method section it is stated that for the age at the cut-off time (a0) also uniform priors 
from 0 to 5 years are also investigated, however, I don’t see this prior appearing in the Table 
2 with the different models and priors or in the Result section. 
 

4. 

Can the authors clarify in the discussion why they did not investigate a sensitivity analysis 
about the different assays used in the studies, e.g. allowing to vary waning according to 
assays used? 
 

5. 

It is not clear which model was used to produce Figure 3B and which FOI estimates were 
used (from the main model, all models?) and how they were pooled. The description and 
interpretation of Figure 3B should be deepened.

6. 

 
Some minor points which could improve readability:

In the 3rd paragraph of the introduction, the authors provide the number of observations 
for the studies mentioned in this paragraph except for the studies conducted in Kenya and 
in New York. It would help to put the results in perspective to also have the numbers for 
those two studies. 
 

1. 

Assay description: Table 1 indicates a very rough description of the assay used in the study. 
For interested readers it would be helpful to have more information in the supplementary 
material about the assays like exact assay name, was it qualitative/quantitative, 
sensitivity/specificity, what cut-off values were used, what is the lower limit of detection 
(LLOD), what happened with equivocal results (count towards being positive or negative), 
etc. 
 

2. 

Referring to tables and figures in the supplementary material: change ‘extended data Figure 
1, Table 1’ to ‘Supplementary Figure 1, Table 1’ etc. 
 

3. 

Table 1-4: add the abbreviations used within the table in the table legend (e.g. Table 1 
HCoV). 
 

4. 

Table 2 - 5th model: maybe rephrase ‘using all data’ to ‘using also data on <1 year’. 
 

5. 

Table 3: I would suggest to extend the column titles a bit: “FOI”: clarifying that it is the one 
for the younger age group (i.e. lambda1); “Cut-off”: clarifying that his is about splitting 
observations into two age groups and adding the unit years. 

6. 
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Table 4: Why are not all models from Table 2 reappearing in this table?7. 

 
 
References 
1. Wendelboe AM, Van Rie A, Salmaso S, Englund JA: Duration of immunity against pertussis after 
natural infection or vaccination.Pediatr Infect Dis J. 2005; 24 (5 Suppl): S58-61 PubMed Abstract | 
Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease modeling, biostatistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Nov 2021
Eleanor Rees, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for taking the time to read our article. We have added an additional sensitivity analysis 
by assay and clarified and amended the technical points you raised. Please see our detailed 
responses to your comments below. 
 
 
Some minor points that should be addressed:

The authors give in the introduction examples about pathogens which are ‘fully 
immunising’ like pertussis. To my knowledge pertussis natural infection protects 

1. 
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longer than vaccination but not lifelong (see Wendelboe et al., 20051). Please 
rephrase the sentence accordingly.

 
Thank you for bringing this to our attention, we have now corrected this. 
 
2. Please clarify in the method section what is meant with “[…] were excluded, as well as 
studies with small number of data points.” Is ‘small number’ referring to number of different 
age (groups) reported in the study or number of total observations in a study, and what is 
‘small’? 
 
We excluded Liang et al. 2013 since they only reported two age groups (ages 0 and 18-25). This 
has now been clarified in the text: 
“Studies which did not include estimates for individuals under 10 years old were excluded, as well 
as studies with which only reported two age groups.” 
  
3. The full dataset used is not available on Zenodo (reference 25) but on GitHub (reference 
33) [Method section, 1st paragraph, last sentence] – please check throughout the text those 
two references (e.g. last sentence Method section GitHub is mentioned with reference 
number 25). 
 
Thank you – these references have now been corrected throughout the text. 
 
4. In the method section it is stated that for the age at the cut-off time (a0) also uniform 
priors from 0 to 5 years are also investigated, however, I don’t see this prior appearing in 
the Table 2 with the different models and priors or in the Result section. 
 
This is referred to as “cut-off” in all the tables and text. Uniform priors between 0 and 20 were 
chosen for the cut-off (a0), and these are stated in Table 2.  I have now clarified the description or 
the priors in the methods and added further information below the table to avoid confusion. 
Methods: 
“For the age at cut-off (a 0), uniform priors from 0 to 20 years were chosen as we were interested 
in the difference in FOI in children and young adults.” 
 
5. Can the authors clarify in the discussion why they did not investigate a sensitivity analysis 
about the different assays used in the studies, e.g. allowing to vary waning according to 
assays used? 
 
Following yours and the other reviewers suggestion we have now included an additional 
sensitivity in the supplementary material, where we estimated the duration of antibody 
persistence by assay. We found that when we allowed waning to vary by assay (ELISA, IFA, HI and 
Neutralisation) we estimated the duration of antibody persistence to be between 1.1 years to 2.6 
years for ELISA, HI and neutralisation. For IFA we observed a longer estimate of 7.7 (CrI: 3.0-14.3) 
years. However, we found wide credible intervals, particularly for the neutralisation and IFA which 
only had one study setting per assay. This highlights the need for more studies looking at the 
seroprevalence of HCoVs, and for better standardisation of assays.  
 
Results: 

 
Page 19 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022

https://wellcomeopenresearch.org/articles/6-138/v1#rep-ref-46084-1


"Finally, we explored the impact of the different assays used in the studies on the waning 
estimates. We allowed the waning estimate to vary by assay (extended data Table 7, Figure 525), 
whilst allowing FOI to vary by study, and alpha and cut-off to vary by setting. This model 
estimated the duration of antibody persistence to be similar for ELISA (2.63 [95% CrI: 0.94-9.09] 
years), HI (1.08 [95% CrI: 0.44-3.33] years) and neutralisation (1.28 [95% CrI: 0.25-50.0] years) 
assays, but longer for IFA (7.69 [95% CrI: 3.03-14.29] years). The credible intervals were wide, 
likely due to the small number of studies by assay." 
Discussion: 
"When we allowed the waning estimate to vary by assay, we found a similar estimates of antibody 
persistence for ELISA, HI and neutralisation assays, ranging from 1.1 years to 2.6 years, and these 
are comparable to the estimates from the main model. However, for IFA, we observed a longer 
estimate of 7.7 years (CrI: 3.0-14.3). Due to the small number of studies, the credible intervals 
were large, particularly for the IFA and neutralisation assay, which only had one study setting for 
each assay. This highlights the need for more studies, and better standardisation of assays." 
 
6. It is not clear which model was used to produce Figure 3B and which FOI estimates were 
used (from the main model, all models?) and how they were pooled. The description and 
interpretation of Figure 3B should be deepened. 
 
Thank you for this comment. We have clarified within the figure legend which model was used for 
Fig 3B. We have also expanded the description and interpretation of the figure within the results 
section. 
“To demonstrate the relationship between FOI and seropositivity at age 30, we created simulated 
scenarios under different sero-catalytic models. Using the parameters for the relative change in 
FOI and waning estimated from the age-varying reverse catalytic model (where the relative 
change in FOI and the age at cut-off were simultaneously estimated across settings), we 
simulated the proportion of individuals aged 30 years that would be seropositive using a range of 
FOI estimates to show how the proportion changes using the different models. The catalytic 
model, which does not allow for seroreversion, results in the highest estimates of seropositivity at 
age 30 with increasing FOI. The age-varying FOI model results in higher estimates of 
seropositivity at age 30 compared with the reverse catalytic model. This is due to the FOI which 
was estimated to be almost twice as high in the older age group (with age at cut-off 8.49 [7.52 – 
9.94] years) in the age-varying FOI model ( Figure 3A). We further explored the relationship 
between FOI, attack rates and the estimated number of infections by age. We used the pooled 
estimate across all studies of FOI to estimate the proportion exposed at a given age to provide an 
indication of how many infections we might expect to see by age under our modelling 
assumptions ( Figure 3B). We estimate that by two years, over 50% of the population will have at 
least one infection, and by age ten over 75% will have had more than four infections.” 
 
Some minor points which could improve readability:

In the 3rd paragraph of the introduction, the authors provide the number of 
observations for the studies mentioned in this paragraph except for the studies 
conducted in Kenya and in New York. It would help to put the results in perspective to 
also have the numbers for those two studies. 
 
This has now been added to the introduction. 
 

1. 
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Assay description: Table 1 indicates a very rough description of the assay used in the 
study. For interested readers it would be helpful to have more information in the 
supplementary material about the assays like exact assay name, was it 
qualitative/quantitative, sensitivity/specificity, what cut-off values were used, what is 
the lower limit of detection (LLOD), what happened with equivocal results (count 
towards being positive or negative), etc. 
 
 Thank you, I have added some further information to Table 1 regarding the assay 
characteristics (antigen used and assay cut-off used in the study). I have also added an 
assay-specific sensitivity analysis and added further details regarding different assays in 
the discussion section. There is limited information in the literature on sensitivity and 
specificity of these assays, likely because these pathogens aren’t tested routinely in the 
community. Furthermore, given seroprevalence studies include asymptomatic and mildly 
symptomatic individuals, it is uncertain how these assays perform as validation is usually 
conducted in acute cases. 
 

2. 

Referring to tables and figures in the supplementary material: change ‘extended data 
Figure 1, Table 1’ to ‘Supplementary Figure 1, Table 1’ etc.

3. 

Thank you for your suggestion, however, this is the naming convention chosen by Wellcome Open 
research. 
 
4. Table 1-4: add the abbreviations used within the table in the table legend (e.g. Table 1 
HCoV). 
 
These have been added. 
 
5. Table 2 - 5th model: maybe rephrase ‘using all data’ to ‘using also data on <1 year’. 
 
This has been amended. 
 
6. Table 3: I would suggest to extend the column titles a bit: “FOI”: clarifying that it is the one 
for the younger age group (i.e. lambda1); “Cut-off”: clarifying that his is about splitting 
observations into two age groups and adding the unit years. 
 
Thank you for your suggestion, the table headings have been changed. 
 
7. Table 4: Why are not all models from Table 2 reappearing in this table? 
 
Since we explored many different models, we chose to focus this table only on the models which 
we felt were the most relevant, particular since this table is a comparison summary table, and the 
detailed information for all models is provided elsewhere in the manuscript.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 October 2021
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https://doi.org/10.21956/wellcomeopenres.18416.r46089

© 2021 Flower B. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Barnaby Flower   
1 Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK 
2 Oxford University Clinical Research Unit, Vietnam, Ho Chi Minh City, Vietnam 

Rees et al. provide a timely analysis of duration of natural immunity against seasonal human 
coronaviruses. They use an age-structured catalytic model which inputs historical seroprevalence 
data from five studies to estimate likely duration of seropositivity following seroconversion. They 
estimate HCoV antibodies last between 0.9 and 3.8 years, and find that the rate at which 
susceptible individuals acquire infection and seroconvert is higher in older children (>8.49 years) 
and adults than it is in younger children. The duration of seropositivity is consistent with previous 
estimates by Edridge et al. and tallies with emerging data concerning SARSCoV2. 
 
I am not a modeler and defer to my modeling colleague's review regarding aspects of the 
methodology. However to the non-specialist the methods appear robust and reproducible and 
they are transparently described in this well-written paper. 
 
As with all models, the outputs are only as good as the inputs, and in this case, data has been 
extracted from just 5 studies performed between 1965 and 2011 in four countries (Hong Kong, 
China, USA and Germany). The studies employ different assays, namely: enzyme-linked 
immunosorbent assays (ELISA), immunofluorescence assays (IFA), western blots, and complement 
fixation (CF), hemagglutination inhibition assays (HAI) and neutralisation assays which have 
different sensitivities and specificities, and I suspect this will lead to heterogeneous under-
estimation of actual antibody positivity rates, particularly in comparison to current estimates of 
SARSCoV2 using highly sensitive ELISAs. The study would be strengthened by assay specific 
sensitivity analysis. 
 
The second limitation regards not accounting for seasonality. The authors point out that other 
studies have found that ignoring seasonality may overemphasize the role of adults in the 
transmission. Given that HCoVs are detected at much higher rates in the winter and spring 
seasons this makes it difficult to interpret one of the study's major findings of a higher force of 
infection in adults. This is mentioned in the 4th paragraph of the discussion but not in the context 
of the finding that the FOI was estimated to be twice as high in the older age group (6th 
paragraph) and perhaps this should be better tied together.  
 
While these considerations might improve the paper, the limitations are well discussed and the 
manuscript is well worthy of indexing and dissemination.  
 
One minor point: 
In paragraph 4 of the methods it says: 
"There is little information on the attack rate of HCoVs, but there have been several systematic 
reviews and meta-analyses looking at unvaccinated individuals which have reported the attack 
rate to range between 15.2% – 22.5% in children and 3.5% – 10.7% in adults26–28." 
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This sentence is missing 'influenza'. 
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: SARSCoV2 antibody seroprevalence, SARSCoV2 diagnostics, Hepatitis C Clinical 
Trialist. No modeling expertise.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 17 Nov 2021
Eleanor Rees, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for your comments on this manuscript. As you suggest, we have added an additional 
sensitivity analysis by assay and expanded our discussion around seasonality. Please see our 
detailed responses to your comments below. 
 
 
As with all models, the outputs are only as good as the inputs, and in this case, data has 
been extracted from just 5 studies performed between 1965 and 2011 in four countries 
(Hong Kong, China, USA and Germany). The studies employ different assays, 
namely: enzyme-linked immunosorbent assays (ELISA), immunofluorescence assays (IFA), 
western blots, and complement fixation (CF), hemagglutination inhibition assays (HAI) and 
neutralisation assays which have different sensitivities and specificities, and I suspect this 
will lead to heterogeneous under-estimation of actual antibody positivity rates, particularly 
in comparison to current estimates of SARSCoV2 using highly sensitive ELISAs. The study 
would be strengthened by assay specific sensitivity analysis. 
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Thank you for this suggestion, we have added an additional sensitivity looking at how the 
estimates of waning antibody duration change by assay. We found that when we allowed waning 
to vary by assay (ELISA, IFA, HI and Neutralisation) we estimated the duration of antibody 
persistence to be between 1.1 years to 2.6 years for ELISA, HI and neutralisation. For IFA we 
observed a longer estimate of 7.7 (CrI: 3.0-14.3) years. However, we found wide credible intervals, 
particularly for the neutralisation and IFA which only had one study setting per assay. This 
highlights the need for more studies looking at the seroprevalence of HCoVs, and for better 
standardisation of assays. 
 
Results: 
"Finally, we explored the impact of the different assays used in the studies on the waning 
estimates. We allowed the waning estimate to vary by assay (extended data Table 7, Figure 525), 
whilst allowing FOI to vary by study, and alpha and cut-off to vary by setting. This model 
estimated the duration of antibody persistence to be similar for ELISA (2.63 [95% CrI: 0.94-9.09] 
years), HI (1.08 [95% CrI: 0.44-3.33] years) and neutralisation (1.28 [95% CrI: 0.25-50.0] years) 
assays, but longer for IFA (7.69 [95% CrI: 3.03-14.29] years). The credible intervals were wide, 
likely due to the small number of studies by assay." 
Discussion: 
"When we allowed the waning estimate to vary by assay, we found a similar estimates of antibody 
persistence for ELISA, HI and neutralisation assays, ranging from 1.1 years to 2.6 years, and these 
are comparable to the estimates from the main model. However, for IFA, we observed a longer 
estimate of 7.7 years (CrI: 3.0-14.3). Due to the small number of studies, the credible intervals 
were large, particularly for the IFA and neutralisation assay, which only had one study setting for 
each assay. This highlights the need for more studies, and better standardisation of assays." 
 
 
The second limitation regards not accounting for seasonality. The authors point out that 
other studies have found that ignoring seasonality may overemphasize the role of adults in 
the transmission. Given that HCoVs are detected at much higher rates in the winter and 
spring seasons this makes it difficult to interpret one of the study's major findings of 
a higher force of infection in adults. This is mentioned in the 4th paragraph of the 
discussion but not in the context of the finding that the FOI was estimated to be twice as 
high in the older age group (6th paragraph) and perhaps this should be better tied 
together.  
 
 
Thank you for your comment. The seasonality of HCoVs is an important consideration, and we 
have now expanded this in the discussion: 
 
“The time of year data collection occurred may influence our results, particularly given that the 
duration of antibody persistence is estimated to range between 0.9 (95% CrI: 0.6 - 1.6) years and 
3.8 (95% CrI: 2.0 - 7.4) years. Data collection during high transmission periods would lead to an 
over estimate of both the FOI and the duration of antibody persistence. All the studies (except for 
Chan et al.23 who did not report this information), included within this analysis collected data 
over at least a six-month period. For this reason, the timing of data collection and the seasonality 
is unlikely to have biased our results.” 
 

 
Page 24 of 33

Wellcome Open Research 2021, 6:138 Last updated: 04 JAN 2022



We have also further considered the Ferrari et al. paper in the context of our results. Their paper 
looked at measles outbreaks in Niger, which have a very different epidemic profile, with erratic 
outbreaks that vary by orders of magnitude, and large periods between epidemics. The epidemic 
profile is different for seasonal coronaviruses and we think that regular cyclic outbreaks do not 
strongly bias the model, as found by Whitaker & Farrington. We have expanded this within the 
discussion: 
 
“We also did not account for seasonality within this model, which may have under-estimated our 
FOI. Ferrari et al.42 found that ignoring seasonality may overemphasize the role of adults in the 
transmission, however, this was observed in measles in Niger, with outbreak peaks ranging over 
several orders of magnitude, and long periods between epidemics. The epidemic profile is 
different for seasonal coronaviruses, and therefore, this is unlikely to apply in this context.” 
 
While these considerations might improve the paper, the limitations are well discussed and 
the manuscript is well worthy of indexing and dissemination.  
 
One minor point: 
In paragraph 4 of the methods it says: 
"There is little information on the attack rate of HCoVs, but there have been several 
systematic reviews and meta-analyses looking at unvaccinated individuals which have 
reported the attack rate to range between 15.2% – 22.5% in children and 3.5% – 10.7% in 
adults26–28." 
This sentence is missing 'influenza'. 
 
Thank you, this has now been corrected.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 28 June 2021
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© 2021 Huang A. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Angkana T. Huang   
1 Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 
USA 
2 Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 

Leveraging data on other human coronaviruses (HCoV) that have been circulating for longer, the 
authors estimated a range of antibody waning rates that might apply to SARS-CoV-2. They 
performed multiple sensitivity analyses to assess the robustness of their estimates. Their results 
also pointed towards transmission being higher in older individuals. 
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The authors provided ample background to understand the motivation and the approach of their 
work. Below are some minor points that I view should be addressed. 
 
1) Please consider using the term ‘seropositivity waning rate’ instead of ‘immunity waning rate’ for 
ω as many of the assays in the dataset are binding assays which may not directly translate to 
protection, though correlated. 
 
2) I appreciate that the authors included multiple sensitivity analyses in their study. I would like to 
suggest one more where waning rates are assay specific. The assays measure different functional 
aspects of the antibodies which may involve different subsets of the induced repertoires. Some 
hints exist in the authors’ results. Shao (2007) and Chan (2009) used IgG ELISA while Monto (1974) 
and Sarateanu (1980) were HI based. Looking at plots of the observed data, these tend to exhibit 
more prominent wanes. In Table S6, Model 1, 5, and 6 where Monto (1974) and Sarateanu (1980) 
were included, the estimated waning rates were much higher than the others. It could be that 
these were specific to HCoV-OC43, but looking at Table S2, the estimates for -NL63 and -HKU1 
were similar to -OC43 (considering both the point estimates and credible intervals). Posterior 
density plots from code provided by the authors showed that combined cutoff of the Cavallaro 
(1970) and the Monto (1974) study in the main model, though converged, is bimodal. I wonder if 
this resulted from the model trying to accommodate the enforced single waning rate between 
studies which used different assays. This assessment will likely help the field reconcile 
discrepancies in serosurveys that were measured using different assays. 
 
3) As the authors pointed out, data for some strains were from the same settings. This is evidence 
for co-circulation. The cross-reactivity between strains, specifically within alpha- and beta-CoVs, 
would affect the seropositivity. I acknowledge that literature is slim on what the degree of cross-
reactivity is and the limited data may make it hard to infer from the data. Anyhow, please consider 
adding some discussion around how this would change the estimated waning rate as it will help 
readers adjust their expectations on what the true waning rates could be. One way to gain such 
intuition may involve extending the models to include cross-reactivity in studies with known co-
circulation, imposing different sets of informative priors to the cross-reactivity rate, and assess 
how those affect the inferred waning rates. It is optional whether the authors would take on this 
path. 
 
4) The authors may consider additional metrics of model performance, for instance, the expected 
log predictive density (ELPD) which is based on approximate leave-one-out cross-validation, 
https://doi.org/10.1007/s11222-016-9696-4. The measure provides uncertainties around the 
performance estimates which may help determine the superiority among the suite of models, 
especially for ones where DIC were very similar. 
 
5) It would be helpful to provide an equation to explicitly show the link between the estimated 
waning rates and the duration of antibody persistence which were reported throughout the 
paper, and is the main finding of the study. 
 
6) In contrast to the previous point, the authors provided an equation linking the FOI to the attack 
rates but barely touched upon this topic in the paper except for one occurrence in the Discussion. 
May there be ideas that the authors wished to discuss but were not fully expressed in the text? 
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7) It is unclear what the motivation for the analysis which led to Figure 3 was. Providing some 
context, especially how that would better our projections on SARS-CoV-2 would be helpful. 
 
8) Lastly, there are some truncated sentences or missing/inconsistent information in the paper 
that needs to be fixed. For example:

In the Methods, “The different assays used in each study for the different strains is shown, 
and where the antibody detected was specified this is included in the table.” 
 

○

In the Results, “When the relative change in FOI and cut-off parameters were 
simultaneously estimated by setting (extended data Figure 2, Table 3) the duration of 
antibody persistence was estimated to be shorter, …”. 
 

○

According to the captions, it occurs to me that the pairings are as follows: 
Table S1 with Figure S1, Table S3 with Figure S2, Table S5 with Figure S4. The pair of Table 
S2 is not obvious. It is unclear for Figure S3 which analysis this belongs to. Please also 
double check that the Extended data section in the main text matches the materials 
provided in the supplement.

○

“The inference was impleented in RJags…” 
 

○

The figure legend of Figure 3A says “reverse catalytic & age varying FOI” while the caption 
says “reverse catalytic model with time-varying FOI”. The colors also do not seem to match 
the legend (blue vs green vs grey). May be helpful to choose colors that are more different, 
especially that the lines in the legend keys are quite thin. 
 

○

It is unclear which model was used to generate Figure 3B. I am guessing the “reverse 
catalytic model” from its matching color but explicit statements would be helpful to the 
readers. 
 

○

Please consider breaking this portion in the Discussion into a new sentence, “... and a meta-
analysis of contact tracing studies found that children had 56% (31% – 71%) lower odds of 
becoming an infected contact compared with adults52.”

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: infectious disease modeling

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Nov 2021
Eleanor Rees, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for taking the time to review our article. We have added an additional sensitivity 
analysis by assay and technical details to the manuscript, as you suggest. Please see our 
detailed responses to your comments below. 
 
1) Please consider using the term ‘seropositivity waning rate’ instead of ‘immunity waning 
rate’ for ω as many of the assays in the dataset are binding assays which may not directly 
translate to protection, though correlated. 
 
Thank you for this comment. We agree with the point you raise, and have amended “immunity 
waning rate” to “seropositivity waning rate” as suggested. 
 
2) I appreciate that the authors included multiple sensitivity analyses in their study. I would 
like to suggest one more where waning rates are assay specific. The assays measure 
different functional aspects of the antibodies which may involve different subsets of the 
induced repertoires. Some hints exist in the authors’ results. Shao (2007) and Chan (2009) 
used IgG ELISA while Monto (1974) and Sarateanu (1980) were HI based. Looking at plots of 
the observed data, these tend to exhibit more prominent wanes. In Table S6, Model 1, 5, 
and 6 where Monto (1974) and Sarateanu (1980) were included, the estimated waning rates 
were much higher than the others. It could be that these were specific to HCoV-OC43, but 
looking at Table S2, the estimates for -NL63 and -HKU1 were similar to -OC43 (considering 
both the point estimates and credible intervals). Posterior density plots from code provided 
by the authors showed that combined cutoff of the Cavallaro (1970) and the Monto (1974) 
study in the main model, though converged, is bimodal. I wonder if this resulted from the 
model trying to accommodate the enforced single waning rate between studies which used 
different assays. This assessment will likely help the field reconcile discrepancies in 
serosurveys that were measured using different assays. 
 
Thank you for this suggestion, we have added an additional sensitivity looking at how the 
estimates of waning antibody duration change by assay. We found that when we allowed waning 
to vary by assay (ELISA, IFA, HI and Neutralisation) we estimated the duration of antibody 
persistence to be between 1.1 years to 2.6 years for ELISA, HI and neutralisation. For IFA we 
observed a longer estimate of 7.7 (CrI: 3.0-14.3) years (See Extended data Figure 5 and Table 7). 
However, we found wide credible intervals, particularly for the neutralisation and IFA which only 
had one study setting per assay. This highlights the need for more studies looking at the 
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seroprevalence of HCoVs, and for better standardisation of assays. 
 
Results: 
"Finally, we explored the impact of the different assays used in the studies on the waning 
estimates. We allowed the waning estimate to vary by assay (extended data Table 7, Figure 525), 
whilst allowing FOI to vary by study, and alpha and cut-off to vary by setting. This model 
estimated the duration of antibody persistence to be similar for ELISA (2.63 [95% CrI: 0.94-9.09] 
years), HI (1.08 [95% CrI: 0.44-3.33] years) and neutralisation (1.28 [95% CrI: 0.25-50.0] years) 
assays, but longer for IFA (7.69 [95% CrI: 3.03-14.29] years). The credible intervals were wide, 
likely due to the small number of studies by assay." 
Discussion: 
"When we allowed the waning estimate to vary by assay, we found a similar estimates of antibody 
persistence for ELISA, HI and neutralisation assays, ranging from 1.1 years to 2.6 years, and these 
are comparable to the estimates from the main model. However, for IFA, we observed a longer 
estimate of 7.7 years (CrI: 3.0-14.3). Due to the small number of studies, the credible intervals 
were large, particularly for the IFA and neutralisation assay, which only had one study setting for 
each assay. This highlights the need for more studies, and better standardisation of assays." 
 
                        
3) As the authors pointed out, data for some strains were from the same settings. This is 
evidence for co-circulation. The cross-reactivity between strains, specifically within alpha- 
and beta-CoVs, would affect the seropositivity. I acknowledge that literature is slim on what 
the degree of cross-reactivity is and the limited data may make it hard to infer from the 
data. Anyhow, please consider adding some discussion around how this would change the 
estimated waning rate as it will help readers adjust their expectations on what the true 
waning rates could be. One way to gain such intuition may involve extending the models to 
include cross-reactivity in studies with known co-circulation, imposing different sets of 
informative priors to the cross-reactivity rate, and assess how those affect the inferred 
waning rates. It is optional whether the authors would take on this path. 
 
Thank you for this comment. We have added some additional discussion surrounding cross-
reactivity and cross-protection to the discussion and explored how this might have impacted our 
results. Since we only have a limited number of datasets and data points, we don’t feel that we 
have sufficient data to include cross-reactivity within this analysis. 
 
Discussion: 
"In addition, we did not take into consideration cross-protection between seasonal coronavirus 
strains. There is some evidence of cross protective immunity between seasonal coronavirus 
strains, and in settings where there is co-circulating HCoV strains, this may lead to a higher 
prevalence. There is also evidence that there is cross-reactivity between different coronaviruses, 
which may lead to false positive results. A recent systematic review found that there was some 
cross-reactivity that occurred within alpha (HCoV-229E and HCoV-NL63) and beta (HCoV-OC43 
and HCoV-HKU1) coronaviruses, but minimal reactivity between alpha and beta coronaviruses7 . 
However, it is not clear whether cross-reactivity equates to cross-protection. False positives due to 
cross-reactivity would lead to an over-estimation of seroprevalence in a setting. This would lead 
to a higher plateau in older ages, and therefore would generally lead to an over-estimation of 
both the FOI and the duration of antibody persistence." 
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4) The authors may consider additional metrics of model performance, for instance, the    
 (ELPD) which is based on approximate leave-one-out cross-validation, 
https://doi.org/10.1007/s11222-016-9696-4. The measure provides uncertainties around the 
performance estimates which may help determine the superiority among the suite of 
models, especially for ones where DIC were very similar. 
 
 
Thank you for the suggestion. We agree that DIC as a metric has limitations for model selection, 
particularly given our DIC estimates were so similar, which is why in the main results and 
abstract we chose to report a range of estimates from the different models, rather than focussing 
simply on just one model. We have now added leave-one-out cross validation (LOO) to estimate 
the out of sample prediction ability. Additionally, we have added WAIC, which offers advantages 
over the DIC for Bayesian models, since it uses the entire posterior distribution. We have reported 
these for all models, and found the same general trends as observed using DIC.  
 
“A sensitivity analysis was conducted using less informative priors for the FOI parameters, where 
a normal distribution was used (extended data Figure 1, Table 1 25 ). This model estimated a 
shorter duration of antibody persistence [0.93 (95% CrI: 0.60 - 1.64) years]. The FOI across all 
studies and strains were higher, ranging from 0.09 (95% CrI: 0.04 - 0.16) to 3.22 (95% CrI: 1.95 - 
4.85), with six studies reporting FOI estimates > one, which is equivalent to an attack rate of 
>63%. The relative change in FOI and cut-off were similar for both models. This model had a 
lower DIC (476.8 compared with 480.8; with a DIC difference of 4), WAIC (536.2 compared with 
546.4), and LOO (546.9 compared with 560.9), which suggests that this model has an improved fit 
compared with the model with more informed priors. However, the high FOI estimates indicate 
that this model may be less plausible ( Table 4).” 
 
“When the relative change in FOI and cut-off parameters were simultaneously estimated by 
setting (extended data Figure 2, Table 3 25 ) the duration of antibody persistence was estimated to 
be shorter, 2.20 (95% CrI: 1.57 - 3.08) years, although the confidence intervals overlap with the 
main model. The FOI ranged from 0.04 (95% CrI: 0.03 - 0.06) to 0.88 (95% CrI: 0.67 - 1.19). The 
overall model DIC (548.2 compared with 480.8), WAIC (622.0 compared with 546.5) and LOO 
(633.2 compared with 560.9) were higher, indicating that this model did not have as much 
support (Table 4).” 
 
5) It would be helpful to provide an equation to explicitly show the link between the 
estimated waning rates and the duration of antibody persistence which were reported 
throughout the paper, and is the main finding of the study. 
 
The duration of antibody persistence was estimated a 1/seropositivity waning rate. I have now 
included this as an equation in the text. 
 
“The duration of antibody persistence was estimated as follows: 
Duration of antibody persistence = 1/ ω” 
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6) In contrast to the previous point, the authors provided an equation linking the FOI to the 
attack rates but barely touched upon this topic in the paper except for one occurrence in 
the Discussion. May there be ideas that the authors wished to discuss but were not fully 
expressed in the text? 
 
Our primary motivation for exploring attack rates was to inform our priors for the FOI estimates 
using attack rates from influenza (reported on in the methods). We realise we could have been 
clearer, so we have clarified this in the methods. We also compare the attack rates estimated for 
seasonal HCoV with influenza in the results and discussion to ensure that model parameter 
estimates were within plausible ranges. 
 
Methods: 
“For the FOI, there is little information on the attack rate of HCoVs. However, there have been 
several systematic reviews and meta-analyses looking at influenza in unvaccinated individuals 
which have reported the attack rates to range between 15.2% – 22.5% in children and 3.5% – 
10.7% in adults 26– 28 . Modelling studies using serological influenza data predicted estimates 
from 20 – 60% 29, 30 . Based on the epidemiology of these viruses in children31, we expect the 
attack rate for HCoV may be lower. Therefore, we selected a Gamma distribution, with a mean of 
0.3 (shape = 1.2 and scale = 0.25) and this corresponds to an attack rate of 26% and covers a 
range of plausible values. For the age at cut-off (a 0), uniform priors from 0 to 20 years were 
chosen as we were interested in the difference in FOI in children and young adults.” 
 
Results: 
“A sensitivity analysis was conducted using less informative priors for the FOI parameters, where 
a normal distribution was used (extended data Figure 1, Table 1 25 ). This model estimated a 
shorter duration of antibody persistence [0.93 (95% CrI: 0.60 - 1.64) years]. The FOI across all 
studies and strains were higher, ranging from 0.09 (95% CrI: 0.04 - 0.16) to 3.22 (95% CrI: 1.95 - 
4.85), with six studies reporting FOI estimates > one, which is equivalent to an attack rate of 
>63%. The relative change in FOI and cut-off were similar for both models. This model had a 
lower DIC (476.8 compared with 480.8; with a DIC difference of 4), WAIC (536.2 compared with 
546.4), and LOO (546.9 compared with 560.9), which suggests that this model has an improved fit 
compared with the model with more informed priors. However, the high FOI estimates indicate 
that this model may be less plausible ( Table 4).” 
 
Discussion: 
“When we used less informed priors for the FOI, a lower estimate of duration of seropositivity was 
obtained. However, this model produced higher estimates of FOI, with six studies reported FOI 
estimates in the young age group greater than one (attack rate >63%). There is limited 
information on the attack rate of seasonal HCoV, however there have been numerous studies 
looking at influenza. Previous systematic reviews have estimated the attack rate of influenza to be 
between 3.5% and 22.5% 26– 28 , whilst modelling studies have estimated this to be higher, 20 – 
60% 29, 30 . Based on reporting rates of seasonal HCoV we would expect the attack rate to be 
lower than influenza. Therefore, this suggests that the results from the model with less 
informative priors are less plausible.” 
 
7) It is unclear what the motivation for the analysis which led to Figure 3 was. Providing 
some context, especially how that would better our projections on SARS-CoV-2 would be 
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helpful. 
 
Thank you for this comment. Our motivation for this figure was to look at the relationship 
between FOI, attack rates, and the number of infections you might expect to observe in younger 
ages. As you suggest, we have expanded the interpretation of this figure in the last paragraph of 
the results: 
 
“To demonstrate the relationship between FOI and seropositivity at age 30, we created simulated 
scenarios under different sero-catalytic models. Using the parameters for the relative change in 
FOI and waning estimated from the age-varying reverse catalytic model (where the relative 
change in FOI and the age at cut-off were simultaneously estimated across settings), we 
simulated the proportion of individuals aged 30 years that would be seropositive using a range of 
FOI estimates to show how the proportion changes using the different models. The catalytic 
model, which does not allow for seroreversion, results in the highest estimates of seropositivity at 
age 30 with increasing FOI. The age-varying FOI model results in higher estimates of 
seropositivity at age 30 compared with the reverse catalytic model. This is due to the FOI which 
was estimated to be almost twice as high in the older age group (with age at cut-off 8.49 [7.52 – 
9.94] years) in the age-varying FOI model ( Figure 3A). We further explored the relationship 
between FOI, attack rates and the estimated number of infections by age. We used the pooled 
estimate across all studies of FOI to estimate the proportion exposed at a given age to provide an 
indication of how many infections we might expect to see by age under our modelling 
assumptions ( Figure 3B). We estimate that by two years, over 50% of the population will have at 
least one infection, and by age ten over 75% will have had more than four infections.” 
  
 
 
8) Lastly, there are some truncated sentences or missing/inconsistent information in the 
paper that needs to be fixed. For example: 
 
Thank you for highlighting these, these have all been fixed.

In the Methods, “The different assays used in each study for the different strains is 
shown, and where the antibody detected was specified this is included in the table.”

○

This has been amended. 
 

In the Results, “When the relative change in FOI and cut-off parameters were 
simultaneously estimated by setting (extended data Figure 2, Table 3) the duration of 
antibody persistence was estimated to be shorter, …”.

○

This has been amended. 
 

According to the captions, it occurs to me that the pairings are as follows: 
Table S1 with Figure S1, Table S3 with Figure S2, Table S5 with Figure S4. The pair of 
Table S2 is not obvious. It is unclear for Figure S3 which analysis this belongs to. 
Please also double check that the Extended data section in the main text matches the 
materials provided in the supplement.

○

The contents of the extended data can be found at the end of the manuscript under the “extended 
data” section: 
The supplementary contains the following:
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• Sensitivity analysis: Less informed priors for FOI (supplementary Table 1 and 
Figure 1)

○

• Sensitivity analysis: Waning estimated by strain (supplementary Table 2)○

• Sensitivity analysis: Alpha and cut-off jointly simultaneously by study 
(supplementary Table 3 and Figure 2)

○

• Reverse catalytic model (supplementary Figure 3 and Table 4)○

• Sensitivity analysis: Including the youngest age groups (<1 year) (supplementary 
Table 5 and Figure 4)

○

• Sensitivity analysis: Refitting the model using data from only two strains 
(supplementary Table 6)

○

• Sensitivity analysis: Waning estimated by assay (supplementary Table 7 and Figure 
5)

○

○

We have also included subheadings within the supplementary material to make it easier to 
follow.

“The inference was impleented in RJags…”○

This has been amended.
The figure legend of Figure 3A says “reverse catalytic & age varying FOI” while the 
caption says “reverse catalytic model with time-varying FOI”. The colors also do not 
seem to match the legend (blue vs green vs grey). May be helpful to choose colors 
that are more different, especially that the lines in the legend keys are quite thin.

○

 
I have updated the figure caption to clarify the models used to create Figure 3. I have changed 
the colours to allow for a clearer distinction between the models. 
 

It is unclear which model was used to generate Figure 3B. I am guessing the “reverse 
catalytic model” from its matching color but explicit statements would be helpful to 
the readers.

○

 I have updated the figure caption to clarify the model used to create Fig 3b. 
“Figure 3. ( A) Proportion of individuals age 30 who are seropositive for different estimates of 
force of infection (FOI). The catalytic model is shown in red, the reverse catalytic model in green, 
and the reverse catalytic model with age-varying FOI is shown in blue. Model estimates were used 
for the parameter values (relative change in FOI (alpha),1.93 [1.69 – 2.19]; waning, 0.45 [0.32 – 
0.64]; cut-off, 8.49 [7.52 – 9.94]). ( B) Estimated proportion of individuals experiencing infections 
by age estimated from the age-varying reverse catalytic model (more informed priors) using the 
pooled median estimate across studies for FOI (0.46), and median estimates for waning (0.45), 
alpha (1.93) and cut-off (8.49).”

Please consider breaking this portion in the Discussion into a new sentence, “... and a 
meta-analysis of contact tracing studies found that children had 56% (31% – 71%) 
lower odds of becoming an infected contact compared with adults52.”

○

This has been amended.  
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