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Building a genome-based understanding of bacterial
pH preferences
Josep Ramoneda1*, Elias Stallard-Olivera1,2, Michael Hoffert1,2, Claire C. Winfrey1,2,
Masumi Stadler3, Juan Pablo Niño-García3,4, Noah Fierer1,2*

The environmental preferences of many microbes remain undetermined. This is the case for bacterial pH pref-
erences, which can be difficult to predict a priori despite the importance of pH as a factor structuring bacterial
communities in many systems. We compiled data on bacterial distributions from five datasets spanning pH gra-
dients in soil and freshwater systems (1470 samples), quantified the pH preferences of bacterial taxa across
these datasets, and compiled genomic data from representative bacterial taxa. While taxonomic and phyloge-
netic information were generally poor predictors of bacterial pH preferences, we identified genes consistently
associated with pH preference across environments. We then developed and validated a machine learning
model to estimate bacterial pH preferences from genomic information alone, a model that could aid in the se-
lection of microbial inoculants, improve species distribution models, or help design effective cultivation strat-
egies. More generally, we demonstrate the value of combining biogeographic and genomic data to infer and
predict the environmental preferences of diverse bacterial taxa.
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INTRODUCTION
Predicting the environmental preferences of organisms is an impor-
tant goal in ecology. If we know the conditions under which a given
taxon can thrive, then we can better predict biogeographical distri-
butions (1), guide ecological restoration efforts (2), design effective
probiotics (3), and understand taxon-specific responses to global
change factors (4). Unfortunately, the environmental preferences
of most microbial taxa and the genomic attributes associated with
those preferences often remain undetermined (5, 6). One reason for
this is that most microorganisms, particularly those found in
nonhost-associated environments, can be difficult to cultivate in
vitro (7), making it difficult to measure environmental preferences
directly. Even for those taxa that can be cultivated, quantifying how
microbial growth rates vary across broad environmental gradients
can be time consuming and the environmental gradients created
in vitro may not necessarily mimic those found in situ. However,
when direct information on environmental preferences can be col-
lected, such information can be very useful for predicting microbial
distributions and functions across space and time [e.g., (8–11)].
Even without the direct measurement of environmental prefer-

ences, it is feasible to infer some environmental preferences from
genomic information (12). We can leverage the information con-
tained in curated genomic databases, which can include both culti-
vated and uncultivated microbial taxa (13), to infer the specific
environmental preferences of uncharacterized microorganisms
(14). For example, genomic information from isolates whose envi-
ronmental preferences have beenmeasured in vitro has been used to
infer the preferences of bacteria across gradients in oxygen (15) and
temperature (12). Using genomic information to determine the

environmental preferences of microbial taxa can have important
ramifications. For example, we could improve our ability to
predict community assembly across different environmental gradi-
ents, identify the conditions under which specific taxa can thrive,
and better optimize medium conditions to improve the cultivability
of fastidious taxa. However, genome-based inferences of environ-
mental preferences can be difficult to validate (especially for uncul-
tivated taxa), and we do not always know which genes or other
genomic attributes are associated with adaptations to specific envi-
ronmental conditions of interest.
Consider microbial preferences for specific pH conditions. To

our knowledge, it is not now possible to predict bacterial pH pref-
erences from genomic information alone, although we know that
pH is often a key factor determining the niche space occupied by
microorganisms. The distributions of specific bacterial taxa and
the overall composition of bacterial communities are often strongly
associated with gradients in pH, as has been observed in a wide
range of environments including soils (16–19), freshwater (20–
22), and geothermal systems (23). Despite the importance of this
environmental factor, the pH preferences of most bacterial taxa
remain undetermined, although we know that bacterial pH prefer-
ences can vary widely (24). This knowledge gap is particularly
evident in nonhost-associated systems that are often dominated
by taxa that are difficult to cultivate and study in vitro. Even
across cultivated taxa, pH tolerances and pH optima for growth
are rarely determined experimentally, and most cultivation media
likely select for taxa that grow at near-neutral pH conditions (25).
We note that “pH preference” across a given gradient is akin to the
“realized niche” of a population (as opposed to the “fundamental
niche”), where pH preference is the pH at which an organism
achieves maximal relative abundances in nature (17). This relative
abundance is determined by the metabolically optimal pH for
growth as well as other biotic or abiotic constraints. For example,
a given taxon may grow optimally at around pH 7 under controlled
conditions, but its pH preference could be lower if its abundance in
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a given environment is maximized at pH 6 due to its interplay with
other factors.
In the absence of whole genome sequence data, onemight still be

able to predict bacterial pH preferences from taxonomic and phy-
logenetic information alone. Shifts in bacterial community compo-
sition across pH gradients can be evident at broad levels of
taxonomic resolution (26, 27), suggesting some degree of conserva-
tism in the traits related to pH adaptation. However, closely related
taxa can have very distinct pH preferences (28), such as bacteria
within the phylum Acidobacteria which tend to be more abundant
in lower pH soils (27), a pattern that does not necessarily hold for
subgroups within the phylum (29, 30). Thus, it is not clear whether
taxonomy and phylogenetic information is sufficient to predict bac-
terial pH preferences. Previous studies have focused on identifying
common adaptations to changes in pH conditions across different
taxonomic groups and the genes or transcripts associated with those
adaptations (28, 31–33). This generates the expectation that the
presence or absence of specific functional genes can be used to
predict bacterial pH preferences. An approach that integrates bio-
geographic distributions of multiple individual taxa with genomic
information across environmental gradients can address whether
taxonomic, phylogenetic, or genomic information can be used to
predict microbial environmental preferences.
We set out to determine whether bacterial pH preferences are

predictable. In other words, we asked whether we could use taxo-
nomic, phylogenetic, or genomic information to predict where
along a pH gradient a taxon is most likely to achieve its highest rel-
ative abundance (which we define here as its “pH preference”),
searching for patterns that are generalizable across distinct environ-
ment types. To do so, we used information on bacterial distributions
across five independent datasets that span large pH gradients in soil
and freshwater systems to infer the putative pH preferences of the
bacterial taxa found in these environments. We then used this in-
formation to assess the degree to which bacterial pH preferences are
phylogenetically and taxonomically conserved. To determine the
genomic features associated with adaptations to pH, we analyzed
representative genomes from taxa with varying pH preferences, as
inferred from our cultivation-independent analyses, and identified
genes that are consistently associated with differences in bacterial
pH preference across environments. Last, we developed and validat-
ed amachine learningmodel that enables the accurate identification
of bacterial pH preferences from the presence or absence of 56 func-
tional genes, making it feasible to infer pH preferences for both un-
cultivated and cultivated taxa. More generally, we demonstrate how
our workflow (Fig. 1) can be used to investigate other bacterial en-
vironmental preferences and the genes associated with environ-
mental adaptations while overcoming the limitations of
cultivation-based experimental approaches to expand our trait-
based understanding of microorganisms.

RESULTS AND DISCUSSION
Overview of the approach
We first inferred bacterial pH preferences using biogeographical in-
formation from natural pH gradients found in distinct systems (soil
and freshwater environments) (Fig. 1A).We acknowledge that pH is
unlikely to be the only factor influencing the distributions of bacte-
ria in these systems and that the pH preferences of many taxa could
not be inferred using this approach as there are other biotic or

abiotic factors that are of similar, or greater, importance in
shaping their distributions. However, we note that this approach
is similar to the approach routinely used in plant and animal
systems to quantify the relationships between environmental
factors and growth optima or tolerances (34). After inferring pH
preferences from the biogeographical information, we then
matched the 16S ribosomal RNA (rRNA) gene sequences from
those taxa for which pH preferences could be inferred to represen-
tative genomes, identifying sets of genes that are consistently asso-
ciated with pH preference based on their presence or absence in a
given genome (Fig. 1B). These genes were then incorporated into a
machine learningmodeling framework (Fig. 1C) to predict pH pref-
erences, with the approach validated using independent test sets.
The biogeographical analyses included 16S rRNA gene sequence

data from a total of 795 soil samples and 675 freshwater samples
spanning a pH range from 3 to 10 with a total of 250,275 amplicon
sequence variants (ASVs) included in downstream analyses (fig. S1
and table S1). These data came from five independent datasets, and,
in all cases, pH was an important driver of overall bacterial commu-
nity composition, with Mantel ρ values ranging from 0.37 [La
Romaine watershed (ROMAINE), freshwater] to 0.78 [Panama
(PAN), tropical forest soils] (fig. S1). These patterns are expected
considering that pH is often observed to have a strong influence
on bacterial community structure inmany systems (27, 35) and con-
sidering that each of these sample sets was specifically selected to
span broad gradients in pH. We also note that a broad diversity
of bacterial taxa was found within and across each of the five
sample sets (fig. S2A), which is important as we were trying to iden-
tify patterns in pH preferences across a broad array of taxa. Using
our conservative approach, we were able to estimate the pH prefer-
ences of bacterial taxa in these environmental samples for 0.5 to
4.9% of all ASVs per dataset (table S1). The analyses of the taxo-
nomic and phylogenetic signals in bacterial pH preferences and
the search for representative genomes from these taxa were ulti-
mately based on a total of 4568 ASVs (468 to 1614 ASVs per
dataset) spanning 38 bacterial phyla.

Is taxonomic and phylogenetic information good
predictors of the pH preference of bacterial taxa?
Taxonomy was a poor predictor of bacterial pH preferences (Fig. 2).
In almost every phylum, there were ASVs with very distinct pH
preferences and there were few cases where a high proportion of
ASVs from a particular phylum were found to have a similar pH
preference. For example, in the ROMAINE freshwater dataset,
many ASVs assigned to the phylum Acidobacteria did exhibit a
general preference for acidic pH conditions, but this observation
was not consistent across datasets (Fig. 2). Thus phylum-level infor-
mation provides relatively little insight into bacterial pH preferenc-
es, most likely because taxa within a given phylum can have
divergent pH preferences [as noted previously for different acido-
bacterial subdivisions (30, 36)]. We observed similar patterns at
finer levels of taxonomic resolution. For example, ASVs within
some of the most ubiquitous bacterial families observed across
these five datasets (Xanthobacteraceae in soil and Chitinophagaceae
in freshwater systems) included ASVs with inferred pH preferences
ranging from 4.01 to 8.20 and from 4.63 to 8.35, respectively.
Consistent with the taxonomy-based results, we also found that

bacterial pH preferences were not readily predictable from phyloge-
netic information. In other words, there was minimal phylogenetic
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conservation in pH preferences. Although we detected a significant
phylogenetic signal in pH preferences for all but one dataset (Fig. 3
and fig. S3), the signal was relatively weak (Pagel’s λ, 0.22 to 0.78)
(fig. S3). This is qualitatively evident from the phylogenetic trees as-
sociated with each dataset, which show that even closely related taxa
often had very distinct pH preferences. For example, within the Pro-
teobacteria phylum, some clusters of ASVs with similar preference
for higher or lower pH conditions were indeed observed in the phy-
logenies from both Australia (AUS) (soil) and ROMAINE (freshwa-
ter) datasets, but these clusters were not evident in the other datasets
(Fig. 3). These observations were further confirmed by the phyloge-
netic correlogram analyses that show that the Moran’s I autocorre-
lation values were low in all cases [<0.25; (37)], even at shallow
phylogenetic depth (figs. S2B and S3). A significant Pagel’s λ indi-
cates that there is a significant phylogenetic signal of the trait by
comparison to a random model of evolution, while Moran’s I indi-
cates whether this signal is clustered around a particular phyloge-
netic depth based on correlation. Because these indices are
differently affected by sample size and trait variation, there is no
consensus on thresholds that help interpret these parameters to-
gether (37). A statistically significant Pagel’s λ verifies that there is
phylogenetic signal, and the magnitude of Moran’s I indicates how
strong this signal is at a given phylogenetic depth. Our results are in
line with previous work that found no phylogenetic conservation of
pH preferences across both cultured bacteria (14) and uncultured
bacteria (38). Neither taxonomic nor phylogenetic information is
generally useful for determining pH preferences without additional
information, highlighting the potential value of incorporating func-
tional gene information to better predict bacterial pH preferences.

Associations between bacterial pH preferences and
functional genes
We next analyzed representative genomes of those ASVs with in-
ferred pH preferences. Expectedly, given the well-recognized
biases in reference genome databases (39), only a relatively small
fraction (6 to 24%) of those ASVs identified in our sample sets
had representative genomes in Genome Taxonomy Database
(GTDB) (40) and a substantial portion (~35%) of those genomes
were metagenome-assembled genomes (MAGs) and single-cell–as-
sembled genomes (SAGs) from uncultured taxa (fig. S4). The
number of genome matches obtained ranged from 57 genomes in
the AUS soil dataset to 293 genomes in the Carbon Biogeochemistry
in Boreal Aquatic Systems (CARBBAS) freshwater dataset (with a
total across all five datasets of 669 ASV-genome matches represent-
ing 580 unique genomes with inferred pH preferences; table S1 and
fig. S5A). From the taxa with inferred pH preferences, the propor-
tion of ASVs with available genome representatives was 10.6% in
soils and 22.4% in freshwater on average (fig. S5A). Still, the taxo-
nomic composition of the available genomes spanned 20 different
phyla, with a general predominance of Actinobacteria and Proteo-
bacteria among the matching genomes (fig. S5B), a result that is ex-
pected given that these two phyla are relatively well represented in
genome databases (5).
We identified 332 gene types that had the same significant asso-

ciation with inferred pH preference in at least two datasets, while 56
of those genes had the same association with pH in at least three
datasets across soil and freshwater habitats (Fig. 4 and table S2).
We note that the taxonomic distinctiveness of the datasets and
the generally even distribution of pH preferences across phyla
support the notion that the identified associations between gene

Fig. 1. Workflow to predict environmental preferences from genomic and biogeographical information. (A) Marker gene sequencing datasets that include samples
spanning a broad range in the environmental factor of interest (pH in our case) are chosen and rare taxa are excluded on the basis of occurrence. The remaining taxa are
then used for the estimation of the environmental conditions at which the relative abundances of individual taxa are highest using either bootstrapping or generalized
additive model approaches. (B) The taxa for which an environmental preference has been statistically estimated are then queried against curated genome databases.
Genomesmatching the query sequence at high similarity (e.g., at 99.6% in this study) are considered representative of the taxa. (C) All genes present in those genomes are
then tested for their relationship to environmental preference, and those that are significantly associated with environmental preference (e.g., sharing the same statisti-
cally significant positive or negative relationship with pH across datasets) are incorporated into a machine learning modeling framework. Predictions can be validated
using an independent test set of the data, from pH preferences estimated in independent datasets, or from phenotypic assays.
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types and inferred pH preferences were general and unlikely to be a
product of the weak phylogenetic signal detected (figs. S3 and S5B;
see also Materials and Methods for additional information). No
gene types were identified as having a significant association with
pH in all datasets, which is likely a result of pH adaptations not
being conserved across taxa, these genes having other functionali-
ties besides just pH adaptation, and the habitat-specific nature of
some of the observed associations. The 56 gene types identified as
having shared pH associations across both soil and freshwater hab-
itats encoded for proteins known for their involvement in pH tol-
erance such as adenosine triphosphatases (ATPases), anion and
cation transporters and antiporters, and alkaline and acidic phos-
phatases (Fig. 4). Generally, bacteria need to maintain pH homeo-
stasis to maintain enzymatic function and cytoplasmic membrane
stability, and they generally use four main mechanisms to cope
with acid stress (41, 42). Across those genes that we identified as
being associated with pH preferences (Fig. 4), we see evidence for
all four mechanisms. First, proton-consuming reactions, notably
decarboxylation and deamination of amino acids, buffer proton
concentrations in the cytoplasm by incorporation of H+ to metabol-
ic by-products (43, 44). We identified genes for decarboxylases
(AAL_decarboxy, soils), amino acid transporters (AA_permease,
freshwater), carboxylate transporters (TctA, soils and freshwater),
and amino acid deaminases (Queuosine_synth, soils and freshwater)
associated with inferred pH preferences. Second, cells will produce
basic compounds, such as ammonia released from urea to counter
acidity. We found genes assigned to urea membrane transporters
(ureide_permeases) overrepresented in taxa with low pH preference
in soil and freshwater, as well as a gene for urease (UreE_C, soils)
that hydrolyzes urea into ammonia (45). Third, bacteria can actively
efflux protons to maintain intracellular pH levels. We identified

genes for a wide range of cation and anion efflux pumps such as
the Kdp K+ membrane transporters (KdpACD) that were overrepre-
sented in taxa with low pH preference in all habitats. In contrast,
Na+/H+ antiporters [PhaGF, MnhG, MrpF, and YufB; (33)] and
anion transporters such as citrate (CitMHS, soils and freshwater)
and lactate permeases (freshwater) were overrepresented in taxa
with preferences for higher pH. Last, bacteria also modify the per-
meability of the cytoplasmic membrane and control the maturation
and folding of proteins to limit acid stress. We identified genes for
multiple hydrogenase quality control proteins (HypCD, HycI, and
HupF) as overrepresented in taxa with low pH preference across
soils and freshwater, with these genes known to be involved in
acid stress response (45, 46). We also identified genes for process-
specific proteins that act in a pH-dependent manner such as acidic
phosphatases [Phosphoesterase and CpsB_CapC in soils and fresh-
water; (32)]. Malik et al. (28) analyzed genomic information from
soil bacterial communities across a pH gradient of 4 to 8.5 and iden-
tified very similar genes and gene functions as found here (summa-
rized in table S2). Overall, we found that 30 of the 56 gene types that
we found are consistently associated with pH across habitats have
previously been linked to bacterial pH adaptations in other
studies (Fig. 4 and table S2).
While we cannot confirm that the genes that we identified are

associated with pH preferences across multiple datasets actually rep-
resent specific bacterial adaptations to pH, our results make it pos-
sible to generate hypotheses about genes not previously involved in
bacterial responses to pH. Our results expand on previous work by
identifying multiple gene functions associated with pH preferences
beyond transporter genes (14) while also confirming established as-
sociations between specific genes and bacterial pH adaptations (28).
In addition, because most of our current knowledge regarding the

Fig. 2. Range of pH preferences of those amplicon sequence variants (ASVs) fromwhich pH preferences could effectively be inferred from the biogeographical
patterns in the marker gene sequencing data. The taxonomic assignments of the ASVs are shown at the phylum level with more complete taxonomic information
included in fig. S2A. (A to E) correspond to the different datasets included in the study (brown labels, soil; turquoise labels, freshwater). Values at the end of the boxplots
correspond to the number of ASVs with estimated pH preferences in each phylum. The length and width of the violins depict the entire range of pH preferences and the
most frequent pH preferences of taxa within each phylum, respectively. SRS, Savannah River Site; AUS, Australia; PAN, Panama; ROMAINE, La Romaine watershed;
CARBBAS, Carbon Biogeochemistry in Boreal Aquatic Systems.
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Fig. 3. Phylogenetic distributions of the most abundant amplicon sequence variants (ASVs) with estimated pH preferences in each dataset. Panels show the
phylogenetic trees of the most abundant ASVs found in soil (A to C) and freshwater (D and E) habitats. Clades are colored by the affiliation at the phylum level. The inner
ring depicts the estimated pH preference of the ASVs, and the outer ring indicates whether a genome with no more than one nucleotide mismatch to the amplicon
sequence is available in the Genome Taxonomy Database (GTDB). The displays are maximum likelihood (ML) phylogenetic trees, and these trees only show the 300 most
abundant ASVs per dataset, with the complete set of ASVs (numbers indicated in Fig. 2) used for the calculation of the phylogenetic signal in pH preferences (see
”Phylogenetic visualization and analysis“ section and fig. S3). The minimum pH preference is depicted in white, and the maximum is depicted in blue according to
the legend. SRS, Savannah River Site; AUS, Australia; PAN, Panama; ROMAINE, La Romaine watershed; CARBBAS, Carbon Biogeochemistry in Boreal Aquatic Systems.
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specific genes involved in pH tolerance is derived from in vitro
studies focused on bacterial pathogens (47), our findings provide
a basis to extend the investigation of bacterial adaptations to pH
more broadly beyond those selected taxa.

Prediction of bacterial pH preference from genomic
information alone
We incorporated the information on the presence/absence of the 56
gene types consistently associated with pH preference across habi-
tats into a machine learning modeling framework to predict bacte-
rial pH preferences. Preselecting gene types with consistent
associations across habitats increased the likelihood that the
model wouldmaintain its predictive power on independent datasets
(i.e., those containing genomes not included in this study). Across
datasets, we obtained an average coefficient of determination (R2)
value of 0.80 for the linear regression between predicted and

observed pH preferences using the training data (Fig. 5). These
genes encoded very diverse functions, from well-established ones
such as transmembrane anion and cation transport, ATPase, and
phosphatase activity, to functions less known to be involved in bac-
terial pH responses such as nucleases for DNA repair, endolysins, or
the type V secretion system (table S2). With only presence/absence
information of these 56 genes, we were able to predict the pH pref-
erences of bacterial taxa that had not been used for model training.
The validations conducted on a randomly selected subset of the
genomes in each dataset (10% of genomes) had a mean absolute
error (MAE) of 0.63 (MAE = 0.43 using the training data; Fig. 5),
indicating that, with available presence/absence information of
these 56 genes, this machine learning model can predict the pH
preference of a given bacterial taxon with an accuracy of 0.63 pH
units. Considering bacterial taxa generally have pH optima within
1 pH unit (48, 49), this error is relatively small. Likewise, the average

Fig. 4. Associations between gene categories and estimated pH preferences in bacteria across soils and freshwater systems. Positive trends (blue cells) indicate
that the presence of the gene is associated with inferred bacterial preferences for higher pH, and negative trends (orange cells) indicate that presence of the gene is
associated with bacterial preferences for lower pH conditions. We only included gene types that had consistent relationships to pH preference in at least three datasets
and/or in both soil and freshwater. We highlighted categories with well-known involvement in pH tolerance and response in bacteria. For a complete summary of the
putative functionality, Pfam identifier, and available references linking these specific gene types to pH adaptations see table S2. The x axis was sorted left to right in the
order of Savannah River Site (SRS), Australia (AUS), Panama (PAN), La Romaine watershed (ROMAINE), and Carbon Biogeochemistry in Boreal Aquatic Systems (CARBBAS)
datasets, respectively.
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R2 of the linear regression between the observed and predicted pH
preferences in the independent validation set was 0.55. Note that,
with this model, the absence of a gene is as informative for predic-
tive purposes as gene presence (fig. S6) and that, due to the lack of
data for taxa with estimated pH preferences below pH 4 and above
pH 9, the model can only predict accurately within that range. We
also note that our model predicted bacterial pH preferences across
all five datasets, not necessarily pH optima for growth. Observed pH
preferences correspond to the pH at which taxa achieve maximal
abundance in nature, reflecting both the pH optimum for growth
and the biotic and abiotic factors that may constrain bacterial abun-
dances—the realized niche. We have made a detailed description of
this model and how it can be applied to any genome of interest in
https://doi.org/10.6084/m9.figshare.22588963.
We further validated our model using information on bacterial

pH preferences estimated in a completely independent study of bac-
terial distributions in soils across the United Kingdom (38). The
linear regression between the statistically estimated pH preference
of taxa in the dataset and our model predictions had R2 = 0.21
and MAE = 0.93 (fig. S7). Note that the estimated pH preferences
in that study were obtained using a different approach from our
study and that the pH preferences for many taxa were inferred
using models with relatively weak fits, a point that the authors
were careful to acknowledge (38). Despite the limitations of this

independent dataset and the limitations associated with our
model, the correspondence between predicted and observed pH
preferences from this independent study (and an independent set
of genomes from our study; Fig. 5) supports the value of our ap-
proach and the model we developed. We emphasize the importance
of including data from future studies that could measure actual pH
preferences of bacterial isolates studied in vitro. While curated bac-
terial phenotypic information from culture collections can provide
information on bacterial pH preferences, preexisting data on bacte-
rial pH preferences of cultured isolates are now limited to the very
narrow distribution of putative pH preferences [85.4% of pH pref-
erences falling between 6 and 8 (5)], a pattern that most likely re-
flects the limited breadth of culturing conditions most commonly
used in isolation efforts (14). Further quantification of microbial
growth responses across large pH gradients under laboratory con-
ditions coupled with whole genome sequencing is key to improving
our knowledge of the genetic underpinnings of microbial adapta-
tions to pH.
We show that biogeographical information can be combined

with genomic information to infer and predict the pH preferences
of bacterial taxa. This is important given the considerable effort
often required to directly measure pH preferences of cultivated
taxa in vitro and given that such in vitro assays are impossible for
the majority of bacterial taxa that are resistant to cultivation. We

Fig. 5. Correlations between the estimated and predicted pH preferences of bacterial taxa based on a gradient boosted decision tree model built on the
presence/absence of 56 top predictor gene types. (A to E) Each panel corresponds to a distinct dataset from either soil (brown) or freshwater (blue). The regressions
on the plot include the predictions using the full dataset (black) and the independent validation using 10% of the genomes (orange) not included in the model devel-
opment. The gray-shaded area depicts the SE around the fitted line. SRS, Savannah River Site; AUS, Australia; PAN, Panama; ROMAINE, La Romaine watershed; CARBBAS,
Carbon Biogeochemistry in Boreal Aquatic Systems.
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show that pH preferences can be inferred from genomic informa-
tion alone, making it feasible to leverage the ever expanding
genomic databases, including those which include MAGs and
SAGs, to determine a key ecological attribute that cannot be
readily determined from taxonomic or phylogenetic information
alone (14). We not only identified genes that had been previously
linked to pH tolerance via detailed studies of select bacteria but
also identified genes that warrant further investigation as they
have not previously been associated with pH adaptations.
Our approach demonstrates the feasibility of using genomic in-

formation to make predictions for other important traits that can be
difficult to infer directly. In this sense, our work is similar to previ-
ous studies that have used genomic data to predict maximum poten-
tial growth rates (50, 51), oxygen tolerances (15), and temperature
optima (12), among other traits. However, in those cases, data from
cultivated isolates were used to develop the models linking genomic
attributes to the trait values of interest. This represents an important
bottleneck given that well-characterized cultivated isolates represent
only a fraction of the phylogenetic and ecological diversity found in
many environments. Instead, we demonstrate how biogeographical
information, specifically distributions of taxa across environmental
gradients of interest, combined with data from representative
genomes, can be used to predict environmental preferences and
identify the specific adaptations that may be associated with the eco-
logical attributes. We expect that a similar approach could be used
to quantify other relevant traits that have traditionally been difficult
to infer directly for uncultivated taxa, including tolerances to
changes in moisture, salinity, or heavy metals and other potentially
toxic compounds.
The machine learning model presented here has the potential to

aid the rational design of microbiomes where information on the
pH preferences of bacterial taxa is needed. For example, several
studies with N2-fixing rhizobia have successfully improved the sym-
biotic benefits to legume crops via the isolation and inoculation of
acid resistant Rhizobium and Bradyrhizobium strains (52, 53). Fore-
casting invasive species spread can also benefit from genome-based
predictions of pH (54–56), given the likely importance of pH as a
factor limiting bacterial colonization of habitats. In addition, by pre-
dicting bacterial pH preferences, our model can aid the optimiza-
tion of culturing conditions for any bacterial taxon with available
genomic information. The coupling of biogeographical and
genomic information can be successfully used to predict the envi-
ronmental preferences of bacterial taxa, presenting opportunities
for improving our trait-based understanding of microbial life.

MATERIALS AND METHODS
Datasets and sequence processing
We compiled five 16S rRNA gene sequencing datasets that spanned
broad gradients in pH and represented distinct ecosystem types.
These datasets included two previously published soil datasets
[soils collected from across Panama and across Australia; (18)],
two previously published freshwater datasets [samples collected
from streams, rivers, and lakes in Canada; (21, 22)], and one
dataset of soils collected from the Savannah River Site (SRS) in
South Carolina, United States.
For the SRS dataset, we collected soil samples in May 2021 from

patches of savanna and surrounding forests of longleaf and loblolly
pine that have been maintained since 2000 as part of the Corridor

Project experiment [e.g., (57)]. The SRS is a National Environmen-
tal Research Park. It is a U.S. Department of Energy site that is
managed by the U.S. Department of Agriculture Forest Service.
Each soil sample consisted of a homogenate of eight 5-cm-deep
soil core subsamples. We extracted DNA using the DNeasy Power-
Soil HTP 96 Kit (Qiagen) from well-mixed soil slurries consisting of
1 g of soil and 2ml of deionized and autoclaved water. We amplified
the V4 region of the 16S rRNA gene using universal primers 515
forward and 806 reverse in duplicate polymerase chain reactions
(PCRs). We cleaned and normalized amplicon samples using the
SequelPrep Normalization Plate Kit (Applied Biosystems,
Waltham, MA, USA) and sequenced a total of 240 soil samples,
22 extraction blanks (400 μl of deionized and autoclaved water),
and three PCR negative controls using paired-end Illumina MiSeq
sequencing (300-cycle flow cell). For pH measurements, we created
soil slurries consisting of 1 g of soil and 10 ml of deionized water,
vortexed the slurries at maximum speed for 20 s, and then let them
rest for about 1 hour.
The five datasets were selected as each one encompassed a broad

range in measured sample pH values, each included a sufficiently
large number of samples across the five pH gradients (>200
samples per dataset), and pHwas strongly correlated with differenc-
es in overall bacterial community composition across each dataset
(fig. S1). From all but the SRS dataset, we compiled the metadata
from open-source databases and from the authors upon request
and downloaded the DNA sequences from the Sequence Read
Archive (SRA) of the National Center for Biotechnology Informa-
tion. The raw sequences of the SRS project were deposited in the
SRA under bioproject ID PRJNA898410. Additional details on
these datasets are provided in fig. S1.
All datasets were analyzed using the same bioinformatic pipe-

line. Briefly, primers, adapters, and ambiguous bases were initially
removed from the 16S rRNA gene reads using cutadapt [v1.18;
(58)]. Sequences were then quality-filtered, and ASVs were inferred
using the DADA2 pipeline [v1.14.1; (59)]. Chimeric sequences were
also removed, and taxonomic affiliations were determined against
the SILVA SSU database [release 138; (60)]. The outputs were
loaded into R (61) using the phyloseq package [v1.38.0; (62)] for
downstream analyses.

Statistical inference of pH preferences
Singletons (ASVs represented by only a single read within a given
dataset) were removed, and samples were rarefied to the minimum
read number that ensured sufficient sequencing depth based on rar-
efaction curves (see table S1). As archaeal reads were relatively rare
in most of these samples, we focused our analyses only on bacteria.
Those bacterial ASVs that occurred in fewer than 20 samples per
dataset were excluded from the analysis as ASVs needed to occur
in a sufficiently large number of samples to effectively infer pH pref-
erences (2 to 10% of ASVs passed this minimum threshold of oc-
currence per dataset; table S1). To infer pH preferences for
individual ASVs in each dataset, we first generated 1000 random-
ized distributions of the relative abundance of each ASV across
samples with replacement (i.e., each relative abundance value
could be sampled more than once) and calculated the maximum
value for each of these distributions. We then calculated 95% con-
fidence intervals of these relative abundance maxima using the boot
package (v1.3.28) in R. The extremes of these intervals in relative
abundance maxima were then matched to the pH of the samples
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where these ASVs achieved these relative abundance values, thus
obtaining an estimated range of preferential pH for each ASV
(i.e., the range of pH in which a given ASV consistently achieved
maximal abundance across randomizations). All ASVs with in-
ferred pH preferences that had ranges greater than 0.5 pH units
were removed from downstream analyses as we were not confident
that we could accurately infer a specific pH preference for those
taxa. This stems from the assumption that we could only obtain
confident statistical inferences for taxa with narrower pH preferenc-
es, excluding taxa with broader ranges in pH preferences to yield
more accurate inferences. We visually inspected whether the abun-
dance of each ASV in the nonrandomized dataset was within the
identified preferred pH range to verify that our pH range filter
was sufficiently stringent to exclude unreliable associations
between ASVs and pH preferences. The midpoint of the pH
range was taken as the estimated pH preference for each ASV.
Our preliminary tests showed this bootstrapping approach to be
more robust to zero inflation compared to alternative randomiza-
tion approaches, generalized additive model, or logistic regression
model fits that have previously been used for estimating environ-
mental optima (34). We note that many factors, besides just pH,
can influence the distributions of bacteria, and we restricted our
analyses just to those taxa (ASVs) for which pH preferences could
effectively be determined (4568 ASVs in total, 468 to 1614 ASVs per
dataset; table S1).

Genome search and annotation
The ASVs with estimated pH preferences were matched to the an-
notated GTDB (release 207; (40)], using vsearch [v2.21.1; (63)] to
identify representative genomes.We acknowledge that the represen-
tative genome identified for any given ASV will not necessarily be
an identical match to the genome of that taxon in situ as even bac-
terial taxa with identical 16S rRNA genes can have distinct genomes
(64). However, this limitation poses a challenge to nearly all
genomic analyses of bacteria from environmental samples, as
even collections of MAGs would not necessarily capture the
genomic heterogeneity that could exist at finer levels of taxonomic
resolution. We also note that, when selecting representative
genomes, we only allowed a single–base pair mismatch between
the genomes and the 16S rRNA gene amplicons, corresponding to
a conservative 99.6% sequence similarity for the 250–base pair am-
plicons. In situations where a single ASV matched multiple
genomes with the same similarity, we selected the most com-
plete genome.
Predicted coding sequences for the ~62,000 unique bacterial

genomes (“species clusters”) available in the GTDB representative
set were identified using Prodigal [v2.6.3; (65)]. The predicted
coding sequences for each genome were aligned to the Pfam data-
base [v35.0; (66)] using HMMER [v3; (67)] to obtain annotation of
potential domains, genes, and gene families in each coding se-
quence. We discarded matches with a bit score lower than 10.
This pipeline yielded a list of putative genes and domains found
in each of the GTDB genomes that matched the ASVs identified
from the samples included in this study with estimated pH prefer-
ences (580 genomes in total, 57 to 293 genomes per dataset; table
S1). The copy numbers of genes and domains were binarized to
presence/absence for further analyses.

Identification of genes associated with pH preference
We next determined associations between the estimated pH prefer-
ences of ASVs and the annotated genes in the corresponding repre-
sentative genomes. We identified genes associated with pH
preference by fitting generalized linear models with a binomial dis-
tribution and using the logit as a link function with core R func-
tions. For each binarized gene function, we fitted a single model
with the presence/absence of that gene type as the response variable
and the estimated pH preference of each genome as the independent
variable. We evaluated the statistical significance of the model coef-
ficients using the Wald test as implemented with R core functions.
We obtained the slope (positive or negative) of the relationship
between pH preference and the presence/absence of each gene
from the model estimates. We verified that the model estimates re-
liably reflected whether the relationship was positive or negative by
plotting the proportion of genomes containing a particular gene
type against the estimated pH preferences of those genomes. Last,
we filtered out genes that had nonsignificant associations to pH
preference in all datasets as well as those gene types that had signifi-
cant associations in only one of the five datasets (as our goal was to
identify consistent associations between genes and pH preferences
across multiple datasets). We thus considered those gene types with
the same significant association (P < 0.05 and same positive or neg-
ative direction of the model estimate) that occurred in two or more
datasets to be associated with bacterial pH preferences. We verified
that phylogenetic signal of pH preference among the representative
genomes was very weak (in two datasets, Pearson’s r ~ 0.06 to 0.07)
or nonexistent (in three datasets) to justify not penalizing the gen-
eralized linear model estimates with phylogenetic information
(fig. S8).

Phylogenetic visualization and analysis
We generated phylogenetic trees for each dataset that included only
those ASVs for which pH preferences could be inferred. For each of
those ASVs, we selected the corresponding highest quality full-
length 16S rRNA gene sequence from the SILVA SSU database
[release 138; (60)], aligned those sequences with MUSCLE [v5;
(68)], and created maximum likelihood (ML) trees using the
RAxML approach with standard parameters [v8; (69)]. We visual-
ized and edited the trees using iTOL [v6; (70)]. We additionally
tested whether pH preference had a phylogenetic signal by calculat-
ing Blomberg’sK (71) and Pagel’s λ (72) with the depth at which pH
preference had a phylogenetic signal estimated using phylogenetic
correlograms (73). These three types of phylogenetic analyses were
conducted using the R package phylosignal [v1.3; (74)] using ML
trees constructed as described above with all ASVs from a given
dataset for which pH preference could be inferred (table S1).

Prediction and independent validation of pH preferences
from genomic information
We used the full set of genes associated with pH preference across
habitats to train a gradient boosted decision tree model to predict
bacterial pH preference from genomic information. The gene type
presence/absence table was imported into Python, and pH prefer-
ences were predicted for all ASVs from a one-hot encoded gene
matrix using gradient boosted decision trees created with the
XGBRegressor function from Python’s xgboost package [v1.6.2;
(75)]. Hyperparameter optimization was implemented with the hy-
peropt package [v0.2.7; (76)] to select the best hyperparameters for
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the XGBRegressor model. We validated the accuracy of the model
by measuring its MAE on an independent 10% of the genomes in
each dataset (i.e., the test set). We estimated the impact of each gene
type on model predictions using Shapley additive explanations as
integrated in Python’s xgboost package. We also tested the model
using a dataset of bacterial taxa with estimated pH preferences
from soils across the United Kingdom (38), from which we selected
taxa with unimodal relationships of abundance with pH and there-
fore more confident estimation of pH preference [models IV and V
in (38)]. For each of these taxa, we obtained reference genomes
using the same approach described for the ASVs in the other data-
sets and recorded the presence/absence of the predictive genes in
those genomes to run the model.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Tables S1 and S2
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