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Abstract 

Purpose:  Acute kidney injury (AKI) frequently occurs in critically ill patients and often precipitates use of renal 
replacement therapy (RRT). However, the ideal circumstances for whether and when to start RRT remain unclear. We 
performed evidence synthesis of the available literature to evaluate the value of biomarkers to predict receipt of RRT 
for AKI.

Methods:  We conducted a PRISMA-guided systematic review and meta-analysis including all trials evaluating bio-
marker performance for prediction of RRT in AKI. A systematic search was applied in MEDLINE, Embase, and CENTRAL 
databases from inception to September 2017. All studies reporting an area under the curve (AUC) for a biomarker to 
predict initiation of RRT were included.

Results:  Sixty-three studies comprising 15,928 critically ill patients (median per study 122.5 [31–1439]) met eligibil-
ity. Forty-one studies evaluating 13 different biomarkers were included. Of these biomarkers, neutrophil gelatinase-
associated lipocalin (NGAL) had the largest body of evidence. The pooled AUCs for urine and blood NGAL were 0.720 
(95% CI 0.638–0.803) and 0.755 (0.706–0.803), respectively. Blood creatinine and cystatin C had pooled AUCs of 0.764 
(0.732–0.796) and 0.768 (0.729–0.807), respectively. For urine biomarkers, interleukin-18, cystatin C, and the product 
of tissue inhibitor of metalloproteinase-2 and insulin growth factor binding protein-7 showed pooled AUCs of 0.668 
(0.606–0.729), 0.722 (0.575–0.868), and 0.857 (0.789–0.925), respectively.

Conclusion:  Though several biomarkers showed promise and reasonable prediction of RRT use for critically ill 
patients with AKI, the strength of evidence currently precludes their routine use to guide decision-making on when to 
initiate RRT.

Keywords:  Acute kidney injury, Renal replacement therapy, Biomarkers, Prediction, Meta-analysis

*Correspondence:  michael.joannidis@i‑med.ac.at 
1 Division of Intensive Care and Emergency Medicine, Department 
of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 
6020 Innsbruck, Austria
Full author information is available at the end of the article

http://orcid.org/0000-0002-6996-0881
http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-018-5126-8&domain=pdf


324

Introduction
Acute kidney injury (AKI) is a frequent complication 
in critically ill patients in intensive care units (ICU), 
increasing significantly both hospital mortality and mor-
bidity [1, 2]. The disease management of these patients 
often comprises several conservative interventions (spe-
cifically prompt resuscitation of circulation, avoidance of 
nephrotoxins,  and avoidance of volume overload [3]). If 
such interventions are not effective, these patients may 
end up being treated with renal replacement therapy 
(RRT).

Despite considerable research efforts, it is still unclear 
whether and when RRT should be commenced to 
improve outcome of these critically ill patients with AKI. 
Early initiation of RRT may reduce mortality but it comes 
with a higher risk of treatment-related complications, 
such as catheter-related bloodstream infections [4, 5]. 
Likewise, clinicians have few tools to know with certainty 
whether kidney recovery is imminent or likely that can be 
integrated to guide decision-making for use of RRT [6].

The growing numbers of kidney function and damage 
biomarkers, often showing contradictory findings, have 
made clinical inferences about their utility challenging 
[7, 8]. Importantly, few studies have specifically evaluated 
the value of biomarkers to inform about the likelihood a 
patient with AKI will worsen or persist and progress to 
receive RRT.

To begin to address this issue, we conducted a system-
atic review and meta-analysis to assess the ability of avail-
able molecular and physiologic biomarkers to predict the 
initiation of RRT in critically ill patients suffering from 
AKI. Preliminary results of this meta-analysis have been 
previously partially presented as an abstract [9].

The aim of this review is to provide a rigorous sum-
mary of currently available data of biomarker-guided 
decision-support for the initiation of RRT in critically ill 
patients with AKI.

Methods
Review design
This is a systematic review and meta-analysis of stud-
ies reporting biomarkers for the prediction of RRT. The 
protocol design follows the “Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis” (PRISMA) 
guidelines (available in the Electronic Supplemental 
Material [ESM_5]) [10]. No modifications of the initial 
research process were applied.

Search strategy
Systematic searches of MEDLINE (through the PubMed 
interface), Embase, and the Cochrane Central Regis-
ter of Controlled Trials (CENTRAL) were conducted in 
consultation with a research librarian from inception to 

18 September 2017. The search strategy included terms 
related to AKI, RRT, and AKI-associated biomarkers 
(e.g., NGAL, KIM-1, cystatin  C, IL-18, L-FABP). The 
comprehensive search strategy is available in the elec-
tronic supplemental material (ESM_1). As a supplemen-
tary approach, manual searches were performed and 
comprised screening of reference lists to cross-check for 
additional eligible papers.

Study identification and eligibility criteria
After removal of duplicates, titles and abstracts were 
screened for potential eligibility independently by two 
reviewers (SJK and MJ) using abstrackr [11]. Retrieved 
full texts were screened for study inclusion in a standard-
ized manner by two reviewers (SJK and MJ). Disagree-
ment in study assignment at any step of the inclusion 
process was resolved by consensus. Primary, empiri-
cal, quantitative studies (randomized controlled trials, 
non-randomized trials with and without control group, 
cohort, cross-sectional or case–control studies) pub-
lished in peer-reviewed journals in English and German 
language were included in qualitative and quantitative 
analysis.

Results from other meta-analyses of the field were not 
included. Eligible studies evaluated the predictive ability 
of one or more biomarkers measurable in blood or urine 
samples for initiation of RRT in critically ill patients with 
AKI. We did not restrict our inclusion criteria for sam-
ple size or minimal follow-up period. Accepted reporting 
of the outcomes was either the area under the receiver 
operating characteristic curve (AUC), risk ratio (RR), or 
odds ratio (OR). Studies reporting a combined outcome 
of interest (e.g., AUC for initiation of RRT AND mortal-
ity) as well as studies focusing on children with AKI were 
excluded.

Assessment of risk of bias
Following the adapted QUADAS-2 tool [12], two authors 
(SJK and AKB) independently assessed the risk of bias 
for the included studies. Since there is no reference/
gold standard for determination of the ideal time point 
for initiation of RRT, “Domain 3: Reference Standard” 
was adapted to “Domain 3: RRT Initiation”, in which the 
criteria used to determine receipt for RRT were rated 
to correctly classify the need for RRT initiation (e.g., 

Take‑home message 

In this meta-analysis, blood NGAL and cystatin C as well as urinary 
TIMP-2 × IGFBP-7 were found to have some potential as biomarkers 
for prediction of RRT in AKI. Further studies should better clarify their 
incremental value as decision-support for starting RRT.
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conventional clinical indications). The adapted version of 
the tool was pilot-tested on ten randomly selected stud-
ies. The applied version of the adapted QUADAS-2 tool 
is available in the ESM (ESM_4). Discrepancies were 
resolved by consensus.

Data extraction
Data elements from included studies were extracted 
using a predesigned extraction sheet, comprising study 
characteristics (i.e., study design, participant demograph-
ics, case-mix, intervention, comparators, outcomes) as 
well as setting and time intervals. Intervention-specific 
characteristics of the study population such as inves-
tigated biomarkers plus comparators and their corre-
sponding assays were retrieved. Values for AUC, RR and 
OR, sensitivity and specificity, as well as positive predic-
tive value and negative predictive value were extracted 
for quantitative analysis.

Data synthesis and statistical analysis
A meta-analysis was performed to create pooled values 
for the biomarkers. If stated in at least two studies, a bio-
marker was included in meta-analysis using a random 
effects model. If in one study a biomarker was measured 
at multiple time points, the value closest to 24  h after 
study inclusion was chosen. As a result of heterogeneity 
in the selected studies, especially in the chosen thresh-
old values for the biomarkers, we refrained from creating 
pooled sensitivities and specificities. Subgroup analyses 
were performed if feasible and can be found in the elec-
tronic supplemental material. To investigate homogene-
ity between the studies, we conducted Chi-squared tests 
and created an I2 index for every pooled AUC. To address 
the between-trial heterogeneity, biomarker results were 
paired if reported in the same study. Funnel plots were 
constructed to provide a visual assessment of poten-
tial for publication bias when at least 10 studies were 
included in the meta-analysis [13].

Results are presented as pooled AUCs with a 95% con-
fidence interval (CI). If there was no standard error stated 
for an AUC, it was calculated from its confidence inter-
vals or using Hanley’s method [14]. Results were inter-
preted according to AUC values ranging from 0.90 to 1.0 
indicating excellent, 0.80–0.89 indicating good, 0.70–0.79 
indicating fair, 0.60–0.69 indicating poor, and 0.50–0.59 
indicating no useful value [15]. p values < 0.05 were con-
sidered statistical significant.

Meta-analysis was performed with the metafor pack-
age [16] for R (version 3.4.0, R Foundation for Statistical 
Computing, Vienna, Austria) [17] and MedCalc (version 
17.4, MedCalc Software, Ostend, Belgium).

Results
Search results and study characteristics
The search identified 1501 studies. Of these, 215 were 
included in full text screening. A total of 152 studies were 
further excluded (ESM_1_Fig.  7). Sixty-three studies 
were selected for qualitative analysis. The included stud-
ies were published between 2004 and 2017. The major-
ity were conducted in intensive care unit (ICU) settings. 
Nine studies were conducted on general wards [18–26]. 
Of the studies conducted in ICUs, 30 were conducted in 
patients with mixed etiologies for AKI [27–56]. Ten tri-
als included patients after cardiac surgery [57–66], three 
studies investigated patients after major non-cardiac sur-
gery [67–69], two studies included patients after kidney 
transplantation [70, 71], and three studies included only 
patients with sepsis [72–74] while another two stud-
ies only comprised patients with malaria [75, 76]. Other 
etiologies of AKI investigated only by a single trial were 
contrast-associated AKI [77], Shiga toxin-mediated 
hemolytic uremic syndrome [78], burns [79], and crush 
syndrome [80]. Of included studies, only 9 (14.28%) 
had the primary aim focused on the prediction of RRT 
[18, 32, 41, 45, 50, 56, 72, 75, 78]. A total of 41 studies, 
including a total of 13 biomarkers, were included in the 
quantitative synthesis (meta-analysis). Qualitative syn-
thesis of included studies allowed the appraisal of 62 
biomarkers. Of these, 31 biomarkers were measured in 
blood and 31 in urine. Combinations of biomarkers and 
clinical scores (e.g., APACHE II, AKIN criteria) as well as 
biomarker combinations (e.g., TIMP-2 × IGFBP-7) were 
also evaluated.

Included studies showed considerable heterogeneity in 
sample sizes, ranging from 31 [62] to 1439 patients [46] 
(median 122.5).

Characteristics of included studies are presented in 
Table 1 of the ESM (ESM_2_Tab. 1).

Quality assessment
Overall quality of included trials was moderate. The 
results of the QUADAS-2 evaluation are provided in 
the ESM (ESM_1_Fig.  8; ESM_1_Tab.  2). While sam-
ple collection and biomarker analysis were quite similar 
throughout all studies, only 15 studies [18, 27, 32, 37, 41, 
50, 52, 56, 57, 61, 64, 68, 71, 75, 76] specified the clinical 
indications for initiation of RRT. Of these studies, seven 
[19, 27, 50, 56, 61, 64, 76] were rated as having set pre-
defined criteria for RRT initiation. A prespecified bio-
marker level threshold was used only in four trials [29, 
44, 72, 74].
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Meta‑analysis of biomarker performance
Urinary biomarkers
Altogether nine urinary biomarkers were eligible for 
meta-analysis. The number of included studies and num-
ber of patients analyzed in each forest plot differed signif-
icantly, ranging from two to 12 analyzed studies and from 
133 to 3412 patients. Urinary NGAL was analyzed in 12 
studies [23, 27, 31, 33, 40, 45, 50, 52, 56, 66, 72, 75], with 
a pooled AUC of 0.720 (95% CI 0.638–0.803) if uncor-
rected urinary concentrations were used (Fig. 1a) and in 
seven studies [28, 33, 35, 50–52, 60] with a pooled AUC 
of 0.727 (0.678–0.776) if normalization to urinary cre-
atinine was applied (Fig. 1b). Urinary interleukin 18 (IL-
18) was analyzed in five studies [23, 33, 40, 46, 51], had a 
pooled AUC of 0.668 (0.606–0.729) (ESM_1_Fig. 9a), and 
if normalized to urinary creatinine had a pooled AUC 
of 0.761 (0.661–0.862) in two studies [33, 51] (ESM_1_
Fig.  9b). There was evidence of a publication bias for 
urinary NGAL (concentration), as shown in the funnel 
plot in the ESM (ESM_1_Fig.  14a). For urinary NGAL, 
sensitivity analysis (different thresholds and population) 
revealed no significant findings and can be found in the 
ESM (ESM_1_Fig. 19a, ESM_1_Fig. 19b; ESM_1_Tab. 6).

Urinary cystatin  C showed a fair predictive perfor-
mance with a pooled AUC of 0.722 (0.575–0.868) (three 
studies) (ESM_1_Fig.  10) and 0.790 (0.645–0.934) when 
it was normalized to urinary creatinine, thereby adjusting 
for urine volume (four studies) (Fig. 2).

Urine output (UO), analyzed in two studies [41, 49] 
including 604 patients, showed the lowest predictive abil-
ity with a pooled AUC of 0.614 (0.389–0.840) (ESM_1_
Fig. 13a). Kidney injury molecule-1 (KIM-1) had a pooled 
AUC of 0.648 (0.540–0.756) in two studies [33, 51] if it 
was normalized to urinary creatinine (ESM_1_Fig.  11b) 
and of 0.594 (0.499–0.689) if  it was not normalized in 
three studies [33, 40, 51] (Fig. ESM_1_Fig. 11a).

Urinary N-acetyl-beta-d-glucosaminidase (NAG) had a 
pooled AUC of 0.709 (0.502–0.915) (two studies [19, 23], 
176 patients) (ESM_1_Fig. 13b).

The combination of TIMP-2 ×  IGFBP-7, analyzed in 
four studies [40, 63, 67, 70] and 280 patients, showed a 
pooled AUC of 0.857 (0.789–0.925) (Fig.  3). These two 
markers were also analyzed separately by two studies 
[40, 70] comprising 133 patients: for TIMP-2 alone the 
pooled AUC was 0.780 (0.509–1.000) (ESM_1_Fig.  12a) 
and IGFBP-7 alone showed a pooled AUC of 0.716 
(0.463–0.969) (ESM_1_Fig. 12b).

The fractional excretion of sodium (FeNa) was assessed 
in two studies [40, 75] including 240 patients. Its pooled 
AUC showed a fair predictive performance of 0.718 
(0.619–0.816) (ESM_1_Fig. 13c).

Blood biomarkers
Of biomarkers assessed in blood, four were included in 
this meta-analysis.

Plasma, serum, and/or whole blood NGAL, analyzed in 
22 studies [18, 21, 24, 28–31, 35, 40, 42, 48, 52, 56, 62, 
64, 66, 68, 71, 72, 77–79] and 4391 patients, had a pooled 
AUC of 0.755 (0.706–0.803) (Fig.  4). When comparing 
NGAL measured in plasma and serum, the difference of 
values across the included studies was 0.114 (p = 0.1593). 
There was evidence of publication bias, as can be noticed 
in the funnel plot (ESM_1_Fig.  14b). Two sensitivity 
analyses were performed investigating different thresh-
olds, namely 150–350  ng/ml and > 600  ng/ml. Pooled 
AUCs were 0.742 (0.678–0.805) and 0.779 (0.689–0.870) 
for the lower and higher threshold, respectively, with no 
significant difference (p = 0.5613). Excluding studies with 
specific patient populations (e.g., after cardiac surgery) 
afforded a pooled AUC of 0.747 (0.685–0.808). Figures 
and tables can be found in the ESM (ESM_1).

Plasma and serum cystatin C was investigated in eight 
studies [23, 32, 37, 41, 44, 50, 53, 57]; one was excluded 
for duplicate publication [32], and the remaining seven 
showed a pooled AUC of 0.768 (0.729–0.807) derived 
from 1079 patients (Fig. 5).

Plasma and serum creatinine was investigated in 15 
studies [21, 23, 41, 44, 49, 50, 56, 57, 62, 66, 71–73, 75, 77] 
totaling 2969 patients and showed a pooled AUC of 0.764 
(0.732–0.796) (Fig. 6). A funnel plot showed low proba-
bility of publication bias for creatinine (ESM_1_Fig. 14c).

Paired analysis was conducted for plasma, serum, and 
whole blood NGAL which performed slightly worse than 
plasma/serum creatinine in the unpaired, pooled analy-
sis. When only studies reporting both NGAL and cre-
atinine were considered, the predictive performance of 
NGAL improved, being slightly better than creatinine 
with an average AUC improvement of 0.013. Additional 
paired analysis as well as sensitivity analysis for creati-
nine and cystatin  C did not result in significant results 
(ESM_1).

Blood urea nitrogen (BUN) showed a fair predictive 
performance in two studies [41, 75] and 283 patients. The 
pooled AUC was 0.732 (0.661–0.802) (ESM_Fig. 13d).

When comparing biomarkers, which were evaluated 
both in blood and urine (e.g., NGAL), we observed no 
significant differences between pooled AUCs (results can 
be found in the ESM [ESM_1]).

Biomarkers not included in the meta‑analysis
A forest plot could not be established in 27 biomarkers 
measured in blood and in 24 urinary biomarkers, because 
of reporting in a single study only.
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a

b

Fig. 1  Forest plots of urinary NGAL predicting RRT. a Urinary concentration of NGAL. b Urinary NGAL normalized to urinary creatinine. AUC area 
under the curve, RE Model random effects model, CI confidence interval, RRT renal replacement therapy (i.e., number of patients having received 
RRT)
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Fig. 2  Urinary cystatin C normalized to urinary creatinine. AUC area under the curve, RE Model random effects model, CI confidence interval, RRT 
renal replacement therapy (i.e., number of patients having received RRT)

Fig. 3  Forest plot of urinary TIMP-2 × IGFBP-7 predicting RRT. AUC area under the curve, RE Model random effects model, CI confidence interval, 
RRT renal replacement therapy (i.e., number of patients having received RRT)
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Of these biomarkers, the best predictive ability was 
shown for urinary FABP-1 and FABP-3 with AUCs of 
0.9995 and 1, respectively [32]. In patients undergo-
ing kidney transplantation, urinary vascular endothe-
lial growth factor (VEGF) had the best predictive value 
shortly (4  h) after surgery with an AUC of 0.85 (0.72–
0.99); the 8-h time point had an AUC 0.81 (0.64–0.98) 
and after 12 h VEGF had an AUC of 0.77 (0.59–0.94) [70].

Some studies reported combinations of biomarkers or 
combinations of a biomarker with clinical parameters. 
Plasma NGAL combined with creatinine showed an 
excellent predictive value with an AUC of 0.914 (0.827–
1.000) [21].

Conducting a furosemide stress test (FST) had an AUC 
of 0.86 (0.78–0.94), while combining an FST with urinary 
TIMP-2 ×  IGFBP-7 resulted in an AUC of 0.89 (0.82–
0.96). The combination of an FST and other biomarkers 
(IGFBP-7, NGAL, uromodulin) also showed slight AUC 
improvements [40].

A combined model of serum NGAL (cutoff ≥ 300 ng/
ml) and AKIN ≥ stage I had an odds ratio (OR) of 20.00 

(3.07–160.65), while AKIN ≥  stage  I had an OR of 7.30 
(1.01–66.07) [78].

A list of all biomarkers reported in the included 63 
studies is available in the ESM (ESM_3).

Discussion
Key findings
We performed a systematic review to identify the most 
promising biomarkers which may potentially guide 
decision-making for timing of initiation of RRT among 
patients with AKI. We found 63 heterogeneous studies 
investigating 62 different blood and urine biomarkers 
for the prediction of likelihood for starting RRT. Over-
all, study quality was moderate and most studies failed to 
integrate standardized criteria for RRT initiation, thereby 
potentially increasing risk of bias or confounding by indi-
cation. By far the largest number of studies was available 
for NGAL. However, of biomarkers measured in blood, 
cystatin C showed the best predictive value, followed by 
creatinine, which alone showed fair discrimination, and 
NGAL. While urinary TIMP-2 ×  IGFBP-7 was showing 

Fig. 4  Forest plot of plasma, serum, and whole blood NGAL predicting RRT. AUC area under the curve, RE Model random effects model, CI confi-
dence interval, RRT renal replacement therapy (i.e., number of patients having received RRT)
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the best predictive value in its pooled AUC, the num-
ber of studies and total sample size were relatively small 
compared to other biomarkers and therefore limit the 
significance of this finding. Cystatin  C was the second 
best urinary biomarker with a significantly larger body of 
evidence.

Context with existing literature
Since damage in AKI at first manifests in renal tubular 
cells, urinary biomarkers are considered most sensitive 
for AKI diagnosis. Whether this is also true for predic-
tion of RRT has not been addressed extensively. In our 
systematic review the largest body of evidence was found 
for urinary NGAL, but overall it showed a very hetero-
geneous performance in included studies with AUCs 
ranging between 0.470 [52] and 0.884 [21]. Our results 
are quite similar to those of a previously published meta-
analysis reporting a pooled AUC of 0.782 (0.648–0.917) 
for the prediction of RRT [81]. Urinary NGAL is present 
in different molecular forms (mono-, homo-, and heter-
odimeric) [35], depending on its origin either represent-
ing filtered serum NGAL released by neutrophils or that 

released directly from damaged tubular cells. Systemic 
NGAL levels may rise as activated neutrophils release 
it with their granular content, and increase the filtered 
quantity and thereby increasing urinary NGAL levels 
unrelated to any acute renal damage [82]. It is impor-
tant to note that different commercially available NGAL 
assays measure various molecular forms depending on 
their antibody combination which may partly explain the 
large variation in the predictive performance of NGAL.

Except for one trial [40], TIMP-2  ×  IGFBP-7 [83] 
showed a good predictive performance with individual 
AUCs well above 0.8, with the pooled AUC confirming 
these values. The performance of the combined biomark-
ers was superior to the individual markers. Both bio-
markers are involved in the G1 cell cycle arrest, which 
occurs in the early stages of cell injury [84]. Interest-
ingly, TIMP-2 was found to perform slightly better than 
IGFBP-7  in patients with sepsis-induced AKI, while 
IGFBP-7 outperformed TIMP-2 in surgical patients. 
Clinical applicability of these findings may be limited, but 
it supports the combined use of those two biomarkers to 
provide more consistent results [84]. Despite the fact that 

Fig. 5  Forest plot of plasma and serum cystatin C predicting RRT. AUC area under the curve, RE Model random effects model, CI confidence inter-
val, RRT renal replacement therapy (i.e., number of patients having received RRT)
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those cell cycle arrest biomarkers showed the best pre-
dictive performance for the initiation of RRT, the total 
number of investigated patients is still small and further 
studies are warranted evaluating possible influences like 
pulmonary disease and diabetes mellitus on their levels 
as shown by Bell et al. [85, 86].

All other biomarkers measured in urine had pooled 
AUCs below 0.8, leaving considerable uncertainty 
whether they could sufficiently predict the initiation of 
RRT.

Of biomarkers measured in blood, plasma/serum cys-
tatin  C performed best, followed by plasma/serum cre-
atinine and NGAL. However, differences in AUCs were 
marginal. Cystatin C is considered an established marker 
for glomerular filtration rate (GFR) in chronic kidney dis-
ease but has also been demonstrated to detect AKI ear-
lier than creatinine does in critically ill patients [87, 88]. 
Still, creatinine showed a fair predictive performance, 
despite being potentially influenced by age, sex, body 
weight, muscle mass, and drugs [89–91]. One possible 
explanation for this finding could be the fact that those 

biomarkers are often used as a trigger for the initiation 
of RRT and therefore provide a bias for the predictive 
performance. Serum creatinine can be serially meas-
ured with relative ease and low cost, so multiple serum 
creatinine values over the course of an episode of AKI 
showing trends for worsening or not improving may also 
serve as an important trigger. This is the theory behind 
the concept of creating a kinetic estimation of GFR [92]. 
However, two studies [41, 56] used creatinine both as a 
trigger for RRT and also evaluated the predictive per-
formance of creatinine in the same cohort. Interestingly, 
the obtained AUCs in these two studies were still lower 
than the pooled AUCs for creatinine of this meta-anal-
ysis, indicating that the impact of this bias might not be 
that important. The same pattern can be noticed in BUN, 
which was along with others a predefined trigger for RRT 
initiation in two studies [50, 56].

Investigated in a larger number of studies, plasma, 
serum, and whole blood NGAL showed quite similar 
performance compared to cystatin  C and creatinine. 
As mentioned above, NGAL levels were also identified 

Fig. 6  Forest plot of plasma and serum creatinine predicting RRT. AUC area under the curve, RE Model random effects model, CI confidence inter-
val, RRT renal replacement therapy (i.e., number of patients having received RRT)
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as being influenced by inflammatory processes or sep-
sis [93–95]. This is an important consideration, because 
sepsis is the most frequent cause of AKI in critically ill 
patients [1]. Interestingly, one study found no signifi-
cant difference in plasma NGAL levels between septic 
shock patients with and without AKI [95]. Furthermore 
in patients with severe sepsis, NGAL showed only fair 
prediction of RRT with an AUC of 0.700 [72]. Overall, 
though NGAL has been reported by several studies as 
being a biomarker which predicts AKI earlier than serum 
creatinine does [81], we could not confirm that NGAL 
was superior to creatinine for predicting requirement for 
RRT. However, when we compared NGAL and creatinine 
and analyzed only those studies reporting results for both 
biomarkers, the AUC for NGAL improved, slightly out-
performing creatinine.

For most biomarkers measured in blood, different sam-
ples were analyzed, namely plasma, serum, and in some 
cases whole blood samples. When comparing these vari-
ous samples, no significant differences were noted, so 
overall it does not seem to have a major impact, where 
those biomarkers are measured.

Though single biomarker assessments may add incre-
mental support to guide clinical decision-making, it 
becomes clear from the data that they should not be used 
in isolation. Therefore a promising approach seems to be 
the combination between biomarkers and clinical param-
eters. Unfortunately, only few studies investigated various 
combinations and none of them have been replicated; 
thus, a meta-analysis was not possible. However, some of 
the single studies showed remarkable results. For exam-
ple, Koyner et al. [40] showed that an FST outperformed 
each of the additionally assessed urinary biomarkers. 
The FST may be considered a functional test revealing 
the loss of tubular functional capacity or the severity of 
AKI. As such it adds additional information to clinical 
criteria alone. This may explain why the general combi-
nation of FST with individual biomarkers did improve 
predictive value only in those patients with increased 
biomarker levels (urinary NGAL > 150  ng/ml, urinary 
TIMP-2 × IGFBP-7 > 0.3 [40]), but not when biomarker 
levels were not elevated.

A major limitation of biomarker studies evaluating the 
prediction of RRT is the fact that a gold standard for this 
end point is missing, because it is still unclear whether 
and when to commence RRT. As previously mentioned, 
only 15 studies stated the criteria for initiation of RRT 
and only seven studies had predefined criteria for RRT 
initiation. This limits the applicability and significance of 
published results, especially in the case of AUCs, since 
those rely heavily on the comparison with an established 
gold standard [96–98]. Two recent trials (the “Effect of 
Early vs Delayed Initiation of Renal Replacement Therapy 

on Mortality in Critically Ill Patients With Acute Kidney 
Injury” [ELAIN] trial [5] and the “Comparison of stand-
ard and accelerated initiation of renal replacement ther-
apy in acute kidney injury” [STARRT-AKI pilot trial] [99, 
100]) employed a preset NGAL threshold as an inclusion 
criterion, while another study used NGAL to guide the 
early initiation of RRT [101]. While in the ELAIN trial, 
NGAL was found to detect patients with progressively 
deteriorating AKI, in the STARRT-AKI pilot trial NGAL 
was found to be universally elevated, but did not show 
good discriminative value between patients requiring 
RRT or not [5, 100].

Implications for clinicians, policy, and research
The results of this meta-analysis may have signifi-
cant implications for clinicians and researchers. Clini-
cians may be encouraged to utilize novel biomarkers to 
improve risk stratification for patients with AKI but this 
must be tempered by the fact that there is uncertainty 
as to the role of the additional information as well as 
the financial implications associated with this technol-
ogy. The biomarkers showing fair to good prediction of 
RRT are actually markers of renal stress, damage, and/
or (loss of ) glomerular filtration rate. But clinically, the 
decision to start RRT is not simply based on the severity 
of kidney damage but rather on the imbalance between 
the patient’s remaining renal capacity and the demands 
characterized by the severity of acute disease, comor-
bidities, metabolism as well as solute and fluid load (i.e., 
“demand–capacity imbalance”) [102, 103]. Hence, it is 
clear that to enable prediction of the need for RRT more 
focused validation studies are needed, as well as stud-
ies investigating outcomes based on various biomarker 
thresholds. For NGAL, while statistically not significant, 
there was a trend that a threshold > 600 ng/ml improves 
prediction of RRT, as can be seen in our sensitivity analy-
sis. As a result of insufficient data, we were not able to 
perform sensitivity analysis on TIMP-2 ×  IGFBP-7, for 
which two cutoffs, one of 0.3 and a high-sensitivity cutoff 
of 2.0, are available [104].

Of importance for further evaluation of biomarkers 
seems to be the time point of assessment. Not all bio-
markers have the same “window of opportunity”. For 
example, urinary VEGF had the best predictive value 
early after the insult and thereafter it declined over the 
following 12 h [70]. The cell cycle arrest biomarkers uri-
nary TIMP-2 and IGFBP-7 demonstrated the opposite 
kinetics, with their predictive ability rising over the first 
12  h [70]. This is an important detail for future studies 
evaluating the prognostic ability of biomarkers. Gener-
ally, biomarker research evaluating the necessity of a cer-
tain treatment (e.g., RRT) should focus on the ability of 
a biomarker to discriminate patients that may potentially 
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benefit from this therapy from those with low likelihood 
of benefit. However, the studies in this review aimed to 
predict a clinical diagnosis (e.g., AKI) or the initiation of 
a therapy (e.g., RRT) on the basis of biomarker profiles, 
without examining the impact this treatment has on the 
outcome. For the case of RRT in AKI patients, this would 
require a study investigating whether there is benefit in 
early RRT initiation guided by biomarker profiles.

Limitations
Our review has several limitations. First, there was sig-
nificant heterogeneity present in the included studies. 
Possible sources of this heterogeneity are the variation 
in study design, differences in size (power), variations 
in case-mixes, bias in RRT initiation standards (not 
defined)—hence they are susceptible to practice vari-
ation; variation in AKI etiology/diagnosis/reference 
standard; differences in biomarker measurement tim-
ing relative to AKI injury and intrinsic variation in bio-
marker properties, assays, and sample handling. Since 
AKI can result from different injury pathways, a bio-
marker demonstrating good predictive value in patients 
after cardiac surgery may not have equal value in patients 
after major abdominal surgery. This heterogeneity pre-
cludes clear and clinical applicable conclusions. Second, 
the only performance measures which were available in 
enough studies to be included in a meta-analysis were the 
stated AUCs. Additionally, we did not limit the eligibil-
ity criteria of studies to the reported follow-up period 
for initiation of RRT. This is a consequence of a lack of 
harmonization of reporting criteria, possibly resulting 
in the false classification of the predictive ability of the 
evaluated biomarker [96]. We encountered this problem 
by screening included studies for the stated reasons for 
RRT initiation. Evaluation of possible publication bias 
by creating funnel plots was only possible for NGAL and 
creatinine, and these results showed a trend towards a 
publication bias for NGAL; however, we cannot preclude 
potential publication bias for biomarkers which had 
insufficient data to create funnel plots. Another impor-
tant limitation was that most of the included studies were 
designed for evaluating biomarker performance for pre-
diction of AKI. As a result, data on prediction of RRT 
was also often incompletely reported. Additionally, many 
trials were of small sample size, with only a few patients 
requiring RRT, possibly resulting in an underestimation 
of biomarker performance. This may have diminished the 
correct interpretation of results.

Conclusion
Only few candidates have been identified with a fair 
potential to aid clinical decision-making for when to start 
RRT among patients with AKI. However, the strength of 

evidence in our review would largely preclude their rou-
tine use pending further validation. Future work should 
further characterize the role biomarkers may have in 
decision-support for starting RRT among patients with 
AKI.
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