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Abstract

Human populations feature both discrete and continuous patterns of variation. Current anal-

ysis approaches struggle to jointly identify these patterns because of modelling assump-

tions, mathematical constraints, or numerical challenges. Here we apply uniform manifold

approximation and projection (UMAP), a non-linear dimension reduction tool, to three well-

studied genotype datasets and discover overlooked subpopulations within the American

Hispanic population, fine-scale relationships between geography, genotypes, and pheno-

types in the UK population, and cryptic structure in the Thousand Genomes Project data.

This approach is well-suited to the influx of large and diverse data and opens new lines of

inquiry in population-scale datasets.

Author summary

The demographic history of human populations features varying geographic and social

barriers to mating. Over time, these barriers have led to varying levels of genetic related-

ness among individuals. This population structure is informative about human history,

and can have a significant impact on studies of medical genetics. Because population

structure depends on myriad demographic, ecological, and social forces, a priori visualiza-

tion is useful to identify subtle patterns of population structure. We use a dimension

reduction method—UMAP—to visualize population structure in three genomic datasets

and find previously unobserved patterns, revealing fine-scale population structure and

illustrating differences between groups in traits such as white blood cell count, height, and

FEV1, a measure of lung function. Using UMAP is computationally efficient and can

identify fine-scale population structure in large population datasets. We find it particularly

useful to reveal phenotypic variation among genetically related populations, and recom-

mend it is a complement to principal component analysis in primary data visualization.
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Introduction

Questions in medicine, anthropology, and related fields hinge on interpreting the deluge of

genomic data provided by modern high-throughput sequencing technologies. Because geno-

mic datasets are high-dimensional, their interpretation requires statistical methods that can

comprehensively condense information in a manner that is understandable to researchers and

minimizes the amount of data that is sacrificed. Both model-based and model-agnostic

approaches to summarize data have played important roles in shaping our understanding of

the evolution of our species [e.g., [1–5]].

Here we will focus on nonparametric approaches to visualize relatedness patterns among

individuals within populations. If we consider unphased single nucleotide polymorphism

(SNP) data, an individual genome can be represented as a sequence of integers corresponding

to the number of copies of the alleles carried by the individual at each of the L SNPs for which

genotypes are available, with L ranging from hundreds of thousands to hundreds of millions.

Since each individual is represented as an L-dimensional vector, dimension reduction methods

are needed to visualize the data.

Principal component analysis (PCA) is often the first dimensional reduction tool used for

genomic data. It identifies and ranks directions in genotype space that explain most-to-least

variance among individuals. Positions of individuals along directions of highest variance can

then be used to summarize individual genotypes. PCA coordinates have natural genealogical

interpretations in terms of expected times to a most recent common ancestor (TMRCA) [6],

and are used empirically to reveal admixture [7], continuous isolation-by-distance [8, 9], as

well as technical artefacts. PCA coordinates are particularly well-suited to correct for popula-

tion structure in GWAS [4].

The amount of information encoded in the highest-variance PCs increases slowly with sam-

ple size, so researchers typically examine multiple two-dimensional projections to lower-vari-

ance PCs to explore data. In this process, finer features of the data may be hidden by the

projections or hard to interpret. To display finer features of the data in a two dimensional fig-

ure, we can use non-linear transformations that emphasize the local structure of the data.

A popular method for such visualization is t-distributed stochastic neighbour embedding

(t-SNE) [10]. t-SNE has been used before to visualize SNPs [11]. Using data from the 1000

Genomes Project (1KGP) [12], it groups individuals corresponding roughly to their continent

of origin, with smaller ethnic sub-groups visible within the larger continental clusters [13].

However, t-SNE struggles with very large datasets, when a large number of locally optimal con-

figurations make convergence to a globally satisfying solution difficult.

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction tech-

nique designed to model and preserve the high-dimensional topology of data points in the

low-dimensional space [14]. With genotype data, UMAP creates a neighbourhood around

each individual’s genetic coordinates and identifies a pre-selected number of neighbours to

build high-dimensional manifolds. The end result is a patchwork of low-dimensional repre-

sentations of neighbourhoods that groups genetically similar individuals together on a local

scale while better preserving long-range topological connections to more distantly related indi-

viduals. The method has been successfully applied to single-cell RNA sequencing datasets [15].

Non-linear dimension reduction methods tend to be computationally intensive. A common

practice to reduce this burden is to first apply PCA to data, and perform dimensional reduc-

tion on data projected to leading principal components (PCs). In addition to being computa-

tionally advantageous, this discards noise that can confound non-linear approaches:

population structure arising from n isolated randomly-mating demes can be described by the

leading n − 1 PCs, with the following PCs describing stochastic variation in relatedness [4].
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Selecting the leading PCs therefore has potential to extract meaningful population structure

while filtering out stochastic noise. We explore different strategies to pre-process the data and

investigate discrete and continuous population structure patterns present in large datasets of

human genotypes: the 1KGP, the Health and Retirement Study (HRS) [16], and the UK Bio-

Bank (UKBB) [17], and compare UMAP’s performance to t-SNE.

Results

Fine-scale visualization of the 1KGP dataset

The 1KGP contains genotype data of 3,450 individuals from 26 relatively distinct labeled popu-

lations [12]. Fig 1 shows visualizations using PCA, t-SNE, UMAP, and UMAP with PCA pre-

processing. Using UMAP and t-SNE on the genotype data presents clusters that are roughly

grouped by continent, with UMAP showing a clear hierarchy of population and continental

clusters, whereas t-SNE fails to assign many individuals to population clusters. Using either

method on the top principal components leads to distinct population clusters and less defined

continental structure. Adding more components results in progressively finer clusters until

approximately 20 populations appear using 15 components; adding further components con-

verges to results similar to using the entire genotype data (see S1, S2, and S3 Figs). To investi-

gate the population information contained in low-variance PCs, we performed UMAP on data

projected onto PCs 100 to 3450 (i.e., without information about the leading 99 PCs). S4 Fig

shows that population structure is still clearly visible.

Focusing on UMAP with the leading 15 principal components (Fig 1D), several population

clusters reflect shared ancestries. British individuals from England and Scotland form a cluster

mixed with those from Utah who claim Northern and Western European ancestry. Toscani

and Iberian individuals form a cluster reflecting their Mediterranean heritage. African Ameri-

cans in the Southwest US, African Caribbean individuals in Barbados, and some Puerto Ricans

also form a cluster. Three East Asian clusters appear: one is largely Han and Southern Han

individuals, another is comprised of the Chinese Dai in southern China and the Kinh from

Vietnam, and the third is the Japanese population. Other clusters are comprised of Colom-

bians and Peruvians, the Esan and Yoruba populations of Nigeria, and several South Asian

populations.

Within population clusters, family members were projected near each other within broader

population groups. When UMAP was parameterized to use only 5 nearest neighbours, how-

ever, families often formed distinct clusters (S5 Fig): Using few neighbours to build a manifold

emphasizes closer relatedness.

A few individuals cluster with populations different from their label: some Mexican individ-

uals cluster with Spanish and Italian populations; some Puerto Rican individuals cluster with

African American and Caribbean populations; and one Gambian individual clusters with the

Mende of Sierra Leone. Two populations form multiple clusters: Gujarati Indians in Houston,

Texas and Punjabi people in Lahore, Pakistan. This clustering effect is robust to the number of

components considered (S2 Fig). Differentiation in the 1KGP Gujarati population has been pre-

viously identified through a PCA restricted to the Gujarati [18]. Following a preprint version of

the present article, 23andme released a statement [19] arguing that one of the two clusters could

be traced, via 23andMe participant recontact to individuals from a group in Western India with

shared ancestry and patronym. [D. Poznik, 23andme, personal communication, and [19]].

Admixed individuals fall along a genetic continuum

The 1KGP sampled individuals from relatively distinct populations, so the data are more likely

to form clusters. Most medical cohorts, however, comprise larger numbers of individuals
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Fig 1. Four methods of dimension reduction of 1KGP genotype data with population labels. (A) PCA maps individuals in a triangle with

vertices corresponding to African, Asian, and European continental ancestry. Discarding lower-variance PCs leads to overlap of populations

with no close affinity, such as Central and South American populations with South Asians. (B) t-SNE forms groups corresponding to

continents, with some overlap between European and Central and South American people. Smaller subgroups are visible within continental

clusters. The cloud of peripheral points results from the method’s poor convergence. (C) UMAP forms distinct clusters related to continent with

clearly defined subgroups. Japanese, Finnish, Luhya, and some Punjabi and Telugu populations form separate clusters consistent with their

population history [12]. (D) UMAP on the first 15 principal components forms fine-scale clusters for individual populations. Groups closely

related by ancestry or geography, such as African Caribbean/African American, Spanish/Italian, and Kinh/Dai populations cluster together.

Results using t-SNE on principal components are presented in S1 Fig. Axes in UMAP and t-SNE are arbitrary. Since the algorithms prioritize

local distances, long distances between clusters are not meaningful. ACB, African Caribbean in Barbados; ASW, African Ancestry in Southwest

US; BEB, Bengali; CDX, Chinese Dai; CEU, Utah residents with Northern/Western European ancestry; CHB, Han Chinese; CHS, Southern Han

Chinese; CLM, Colombian in Medellin, Colombia; ESN, Esan in Nigeria; FIN, Finnish; GBR, British in England and Scotland; GWD, Gambian;

GTH, Gujarati; IBS, Iberian in Spain; ITU, Indian Telugu in the UK; JPT, Japanese; KHV, Kinh in Vietnam; LWK, Luhya in Kenya; MSL,

Mende in Sierra Leone; MXL, Mexican in Los Angeles, California; PEL, Peruvian; PJL, Punjabi in Lahore, Pakistan; PUR, Puerto Rican; STU, Sri

Lankan Tamil in the UK; TSI, Toscani in Italy; YRI, Yoruba in Nigeria.

https://doi.org/10.1371/journal.pgen.1008432.g001
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sampled across extended geographical areas. The HRS contains genotype data of 12,454 Amer-

icans from a variety of backgrounds. Using UMAP on the first 10 principal components, we

demonstrate projections that present a collection of sub-populations and a continuum of

genetic variation.

The HRS forms several large clusters, reflecting both ethnicity (S6 Fig) and admixture pro-

portions (S7 Fig). Gradients in admixture proportion are visible within the predominantly

Hispanic cluster, but not within the predominantly Black cluster, perhaps because the variance

in ancestry proportions is greater among Hispanics. The “White Not Hispanic” (WNH) group

forms several interconnected clusters, and these do not correspond to broad geographical

areas (S8 Fig). By generating the PC axes and UMAP embedding for the HRS data in S6 Fig,

and projecting the 1KGP data onto it, we reveal substructure within the Hispanic cluster,

groupings of Finnish individuals within the WNH groups, as well as Italian and Spanish indi-

viduals grouping near the White Hispanic population (S9 Fig). One group of WNH individu-

als regularly appears at the periphery of the main cluster and does not cluster with any 1KGP

populations.

Regional patterns in the Hispanic subpopulation

Applying UMAP to self-identified Hispanic individuals in the HRS reveals clear groupings

related to birth region in Fig 2A. The highlighted cluster consists almost entirely of individuals

born in the Mountain Region of the United States. This cluster is not apparent when looking

at a grid of pairwise plots of the first 8 principal components, provided in S10 Fig, as the signal

is distributed along PCs 3, 4, and 6. Even though continental admixture patterns do correlate

with UMAP position (S11 Fig), these do not explain the Mountain Region cluster. Individuals

from 1KGP populations do not appear in the cluster when projected to the UMAP embedding.

The cluster possibly comprises the Hispano/Nuevomexicano population of the Southwest US,

who have been present in the Mountain Region area long before the more recent immigrants

from Latin America, and whose ancestry is expected to reflect both distinct Native ancestry

and population-specific drift relative to other Hispanic populations. Such a cluster has been

previously identified in AncestryDNA data using network-based clustering on identity-by-

descent connections [20]; a recent preprint discusses the Mountain Region Hispanics with a

more detailed historical description [21].

Population structure in the UKBB reflects local and global genetic

variation

The UKBB contains data on 488,377 individuals including genotypes, phenotypic measures

and self-identified ethnic backgrounds. Fig 3 compares UMAP to PCA applied to the UKBB.

As expected, PCA captures major axes of variation emphasizing continental ancestry, whereas

UMAP reveals finer structure. UMAP on the top 10 principal components reveals continuous

and discrete population structure (Fig 3B): the patchwork of local topologies identifies multiple

sub-populations, as well as continuous structure within populations and admixture gradients

between populations. The result is a succinct illustration of the complex structure and popula-

tion relationships in a large and multi-ethnic dataset.

The largest cluster in Fig 3B consists of the White British and Irish populations. The Irish

population forms a sub-cluster, but many individuals are also scattered throughout the Brit-

ish-identifying population. Individuals identifying as Black African and Black Caribbean par-

tially overlap, but admixed individuals form distinct trails leading to Asian and European

clusters. Chinese individuals form a cluster, within a broader East Asian population; Indian,

Pakistani, and Bangladeshi populations form a closely bound cluster as well. The East Asian
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and South Asian populations each have large clusters of individuals who identify as having an

“other Asian background” or belonging to an “other ethnic group”. The patchwork of genetic

neighbourhoods is connected by trails of admixed individuals, which converge at a nexus of

individuals with a variety of ethnicities. Many claim mixed ancestry, and there are clusters of

individuals who belong to an “other ethnic group”. Using data on countries of birth, we identi-

fied many finer groups in S14 Fig, and confirmed they appeared in intuitive areas with, e.g.,

Japanese and Filipino clusters being projected near Chinese clusters.

Fig 4 presents the UMAP projection from Fig 3B coloured instead by geographical coordi-

nates from the Ordnance Survey National Grid (OSGB1936), with distances defined as a north

or east position relative to the Isles of Scilly. Geographic clusters form in the large White Brit-

ish grouping, reflecting the relationship between genetic and geographic distance, as has been

observed in Europe and British-wide data [8, 22]. Fig 3B shows that the admixed individuals

have UMAP coordinates next to White British individuals residing in the South East of the

Fig 2. Applying UMAP to subsets of data can reveal deep population structure. (A) UMAP on the top 7 principal components of the self-

identified Hispanic population of the HRS reveals a cluster. Colouring the points by birthplace shows they were born almost entirely in the

Mountain region (in green) of the United States (New Mexico, Arizona, Colorado, Utah, Nevada, Wyoming, Idaho, and Montana). When

populations from the 1KGP are projected onto the UMAP embedding they do not map to the cluster. Six 1KGP populations are presented:

CLM, Colombian in Medellin, Colombia; IBS, Iberian in Spain; MXL, Mexican in Los Angeles, California; PEL, Peruvian; PUR, Puerto Rican;

TSI, Toscani in Italy. S11 and S12 Figs present the same projection of individuals from the HRS coloured by estimated admixture proportions

census region of birth, respectively. (B) UMAP on the top 8 principal components of the self-identified Asian populations of the UKBB creates

clusters. Indian individuals born in Kenya (in purple) form one such cluster. A version coloured by self-identified ethnicity is presented in

S13 Fig.

https://doi.org/10.1371/journal.pgen.1008432.g002
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UK, where London is located (see also S15 Fig, where individuals are coloured by distance

from London). This likely reflects the high migration levels to the city and surrounding area:

the UMAP projection attempted to preserve both the genetic similarity among admixed indi-

viduals and the relatedness with White British individuals in cosmopolitan areas.

The detailed shape of extended clusters is not stable as we vary the number of PCs included,

but the patterns mentioned above are preserved. S16, S17 and S18 Figs show UMAP plots

using the top 40 PCs from the UKBB.

As an alternate visualization of geography and genetic diversity, we performed a 3D UMAP

projection and converted the UMAP coordinates into RGB values, allowing us to plot individ-

uals on a map of Great Britain, emphasizing both spatial gradients of genetic relatedness and

increased diversity in urban centers (Fig 5A). The geographical patterns outside major urban

centers are similar to those reported in [22] using the haplotype-based CHROMOPAINTER

on British individuals whose grandparents lived nearby. Using data about country of birth, we

performed a similar analysis of a world map in Fig 5B, revealing subtle regional variation

around the world.

Similarly to UMAP, t-SNE applied to the UKBB data both displays diversity within the

“White British” population and identifies clusters among other groups. However, it has three

drawbacks: it is much slower, requiring 2.26 hours for its first thousand iterations alone on 10

Fig 3. The UKBB coloured by self-reported ethnic background. (A) The first two principal components, showing the usual triangle with

vertices corresponding to African, Asian, and European ancestries, and intermediate values indicating admixture or lack of relationship to the

vertex populations. (B) UMAP on the first 10 principal components. The cluster of White British and White Irish individuals is greatly

expanded, with the Irish forming a distinct sub cluster mixed with the White British population. South Asian and East Asian individuals form

their separate clusters, as do individuals of African or Caribbean backgrounds. Population clusters are connected by “trails” comprised of large

proportions of individuals with mixed backgrounds. BA, Black African; BC, Black Caribbean; BG, Bangladeshi; CHN, Chinese; IND, Indian;

PK, Pakistani; WB, White British; WI, White Irish; WBC, White and Black Caribbean; WBA, White and Black African; WAA, White and Asian;

AAB, Any other Asian Background; ABB, Any other Black Background; AWB, Any other White Background; AMB, Any other Mixed

Background; OEG, Other ethnic group.

https://doi.org/10.1371/journal.pgen.1008432.g003
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principal components against UMAP’s 14 minutes; it fails to find a global optimum, which

results in a scattering of individuals and groups that are not stable across independent runs;

and it does not identify continuity between different continental groups resulting from admix-

ture (S22 Fig).

Identifying patterns in phenotype variation related to genetic population

structure

Covariates such as height and leukocyte count (Fig 6) and autoimmune and asthma-related

measures (S23 to S34 Figs) correlate strongly with both discrete and continuous population

structure. Several populations in Fig 6, including South Asian, East Asian, African, and others

have noticeably lower-than-average heights. More subtle patterns are also visible: the area of

the projection in Fig 3B with the cluster of White Irish people appears more blue than the

main body of White British individuals. To quantify and statistically test these qualitative

observations, we performed an unpaired two sample t-test of self-identified White Irish and

White British individuals and found British males taller on average by 0.846cm (p-value

2.10 × 10−23) and British females by 0.763cm (p-value 3.65 × 10−23) (see S35 and S36 Figs for

boxplots). Height differences between Irish and British populations have been previously

observed but the direction of the difference is not consistent [23, 24].

Fig 4. UMAP captures relationships between population structure and geography. Each individual is coloured by their geographical

coordinates of residence. Coordinates follow the UKBB’s OSGB1936 geographic grid system and represent distance from the Isles of Scilly,

which lie southwest of Great Britain. The left image colours individuals by their north-south (“northing”) coordinates, and the right image

colours them by their east-west (“easting”) coordinates. Adding more components creates finer clusters (S17 and S18 Figs). Northing values

were truncated between 100km and 700km, and easting values were truncated between 200km and 600km.

https://doi.org/10.1371/journal.pgen.1008432.g004
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In clinical settings, baseline Forced Expiratory Volume in 1 second (FEV1) is determined

via equations that include ethnicity or race [25], but studies in several populations have shown

that there is considerable variation based on ancestry, even within self-defined ethnicity [26].

S27 and S28 Figs show strong correlations with genetic clustering: certain populations—South

Asian, African, and Caribbean—have considerably lower measurements on average (see S37

and S38 Figs for boxplots and p-values).

Notably, there appears to be a juncture in the admixed population, highlighted in S39 Fig,

where the distribution of FEV1 changes. This roughly corresponds to the transition from

Black African/Caribbean individuals to those who identified having mixed backgrounds. Box-

plots and statistical testing suggest that relative to White British populations, FEV1 values are

significantly lower for Black African and Black Caribbean populations, but not for White and

Black Caribbean and White and Black African populations (S37 and S38 Figs).

S40 Fig further suggests a difference in FEV1 between those who self-identified as Chinese

and a nearby cluster enriched in individuals born in Japan; to our knowledge there have not

been studies into differences in FEV1 between these populations. To focus on individuals of

Asian ancestry (rather than, e.g., individuals born in Japan but who have European ancestry),

we first selected the individuals whose UMAP coordinates were near the Chinese cluster. We

then focused on individuals born in Japan, Malaysia, and the Philippines as well as the self-

identified Chinese population. These four groups are mutually exclusive and are shown in

S41 Fig. After adjusting for age, age2, height, and sex, an unpaired two-sample t-test shows

those born in Japan have a higher mean FEV1 than Chinese individuals by 0.224 (p-value

2.787 × 10−15). By sex, there is a difference of 0.213 (p-value 5.4 × 10−13) among females and

Fig 5. Maps coloured by 3D UMAP projections of the top 20 principal components of the UKBB. Each individual is assigned a 3D RGB

vector based on 3D UMAP coordinates (a flattened projection is in the top right of panel A). Individuals who are closer to each other in the

projection will be closer in colour in the maps. More details on colouring, as well as randomization of points to protect participant privacy, are

available in the materials and methods. (A) Each point is an individual placed based on where they live. Patterns in genetic similarity are visible

in Scotland, South England, North and South Wales, the East and West Midlands, and major urban centres. (B) Geographic distribution of

UMAP coordinates. Using the country of birth of individuals in the UKBB, we colour countries by the closeness in 3D UMAP space of those

born there. Broad patterns of similarity appear in East Asia, South Asia, North African and the Middle East, West Africa, and South America.

Differences between neighbouring countries can reflect both ancient population structure and recent differences in migration history. Evidence

of migrations related to colonialism are visible with, e.g., European ancestry in South Africa and South Asian ancestry in Kenya and Tanzania.

Because of the large number of White British individuals born abroad, to avoid skewing the colour scale they were not included unless they were

born in the UK, Europe, Australia, Canada, or the United States, where UKBB participants already tended to have European ancestry. Zoomed

maps of East Asia, the Caribbean, and Europe are available in S19, S20, and S21 Figs, respectively.

https://doi.org/10.1371/journal.pgen.1008432.g005
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0.317 (p-value 5.1 × 10−4) among males, though there are considerably fewer males in the sam-

ple (distributions presented in S42 Fig). For comparison, the adjusted difference between self-

identified African and British individuals in the UKBB is 0.762 (p-value 2.2 × 10−16).

Comparing t-SNE and UMAP

Identifying the best dimension reduction technique is challenging, both because the “best”

representation depends on context, and because convergence issues may mean that a good the-

oretical model for dimensional reduction might perform poorly because of challenges in

numerical optimization. To assess whether the relatively poor performance of t-SNE could be

due to convergence rather than a flawed model, we used UMAP to preprocess the UKBB data

and provide a starting point to a standard t-SNE implementation. This led to representations

that were objectively better (according to the t-SNE metric) than the default t-SNE implemen-

tation (S43 Fig). Yet, these representations were much less detailed than the UMAP embed-

ding provided as a starting point (S44 Fig). Given these results, we recommend UMAP over t-

SNE for large and diverse genomic datasets.

Discussion

Methods such as UMAP and t-SNE focus on preserving local distances to reveal fine-scale

structure in populations, and in the process may preserve aspects of global structure as well. In

Fig 6. UMAP captures relationships between population structure and phenotype heterogeneity. Females from the UMAP projection in Fig

3B, coloured by age-adjusted difference from mean population height (left) and leukocyte counts (right). Individuals with missing data were

excluded. To protect participant privacy, data in these images has been randomized as explained in the materials and methods section.

https://doi.org/10.1371/journal.pgen.1008432.g006

UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008432 November 1, 2019 10 / 24

https://doi.org/10.1371/journal.pgen.1008432.g006
https://doi.org/10.1371/journal.pgen.1008432


contrast, PCA preserves long range distances but hides finer-scale details. Hierarchical cluster-

ing of networks has also successfully detected fine-scale population structure using identity-

by-descent similarity by attempting to preserve relations between global networks and smaller

local ones (e.g., [20]). We speculate that the addition of weak constraints favouring the preser-

vation of longer distances in UMAP-like approaches has the potential of preserving the desir-

able local properties while encouraging more intuitive positioning of clusters on a global scale.

UMAP comprehensively illustrates genotypic information at fine scales and within the con-

text of global population structure. It is easy to use and fast: given PCA data and a desktop

computer, UMAP can be performed in 15 to 25 minutes on a sample of hundreds of thousands

of individuals over tens of dimensions. It excels with larger datasets containing individuals

with admixed backgrounds, which present discrete and continuous population structure.

Using UMAP reveals clusters that would have been difficult to identify via pairwise PCA

plots or Admixture analysis, such as the geographically restricted cluster within the Hispanic

population of the HRS, or the splits within the Gujarati and Punjabi population samples in the

1KGP. More importantly, UMAP helps reveal patterns of covariation between geography, phe-

notypes and genotypes. Traits such as height showed continuous variation across admixture

edges and geographic gradients, as expected from genetically controlled complex traits, and

others, such as leukocyte counts or FEV1, showed sharper boundaries and non-linear behavior

consistent with the existence of strong regional environmental influences.

We found that pre-processing the data with PCA allowed for time savings, but identifying

an optimal number of PCs to use is challenging. Groupings on ethnicity formed slowly as PCs

were added until reaching a stable number around 10 to 15 PCs. Geographical patterns in the

UKBB continued to appear even up to 40 components, as visible in S17 and S18 Figs.

Caveats

In contrast to PCA, UMAP has more adjustable parameters. Changing the PC cutoff, mini-

mum distance, and number of neighbours can change characteristics of the visualizations.

Using a minimal number of neighbours (e.g. 5 rather than the default 15) can result in the for-

mation of disjoint clusters comprised of related family members (S5 Fig), and using a low min-

imum distance (e.g. 0.001 rather than the default 0.1) can result in clusters becoming more

compact, losing visual detail. We used a minimum distance of 0.5 and 15 neighbours; however,

default suggested parameters in UMAP generally perform well across datasets.

In the absence of clear theoretical rationales, we suggest to use as many PCs as are available

and computationally feasible, even though we sometimes found that a lower number of PCs

led to a simpler shape that facilitated discussion (e.g. Fig 3B). Overall, we recommend report-

ing on a range of parameter values and following up on observations with statistical testing.

Like most non-linear methods, UMAP lacks direct interpretability. It emphasizes local dis-

tances over global distances; while points that are very close in UMAP space are likely close in

the original data, points that are distant in UMAP space are not necessarily very different in

the original data. Disconnected clusters may also change their positions relative to other clus-

ters over the course of multiple projections, as in S2 Fig. For these reasons, UMAP coordinates

should not be used as GWAS covariates or for quantifying distances between populations.

UMAP is sensitive to sample sizes and spends more visual space on populations with larger

sample sizes. This is useful to identify significant patterns in a cohort, but it makes comparing

visualization across cohorts difficult and may appear to exaggerate the genetic variation within

the most sampled populations, such as the White British population in the UKBB. We did not

assign meaning to wiggles in UMAP figures, which occurred consistently in the UKBB but

may be an artefact of the dimensional reduction strategy rather than a meaningful feature of
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the data. Hand-waving interpretations of pretty plots have a history of getting population

geneticists in trouble (as pointed out, e.g., in [27]): visualization is not a replacement for statis-

tical testing.

With these caveats in mind, a priori data visualization plays a central role in quality con-

trol, hypothesis generation, and confounder identification for a wide range of genomic

applications. Non-linear approaches, despite their limitations, become increasingly useful as

the size of datasets increases. UMAP, in particular, reveals a wide range of features that

would not be apparent using linear maps. Given its ease of use, broad applicability, and low

computational cost, we propose that UMAP should become a default companion to PCA

and other population structure visualization and inference methods in large genomic

cohorts.

Materials and methods

We used genotype data from 12,454 individuals from the Health and Retirement Study (HRS),

genotyped on the Illumina Human Omni 2.5M platform [16]. Principal components were

computed in PLINK v1.90b5.2 64-bit [28] using variants with a minor allele frequency greater

than 0.05, Hardy-Weinberg p-value of more than 1 × 10−6, and genotype missing rate of less

than 0.1, and sample with genotype missing rate of less than 0.1. We used the principal compo-

nents of genotype data from 488,377 individuals in the UK BioBank (UKBB) as computed by

the cohort [17]. We used genotype data from 3,450 individuals from the 1KGP project using

Affy 6.0 genotyping [12].

The HRS contains genotype data of 12,454 American individuals across all 50 states who

have provided racial identity (10,434 White, 1,652 Black, 368 Other) as well as whether they

identify as Hispanic (1,203 total) and, if so, whether they identify as Mexican-American (705

total) [16]. We crossed these three variables to form a composite self-reported ethnicity result-

ing in 10 categories (e.g. White Hispanic Mexican-American), and considered birth regions

based on the 10 census regions and divisions used by the US Census Bureau. Admixture pro-

portions for each individual were estimated in [29] by assuming ancestral African, Asian, and

European populations using RFMIX [30]. We have scaled each of the three proportions to val-

ues between 0 and 255 (with 100% corresponding to 255), to colour individual points by their

estimated admixture represented by RGB where red, green, and blue respectively correspond

to African, European, and Asian/Native American ancestry. To project 1KGP data on HRS

embeddings, as in Fig 2A and S9 Fig, we created the PC axes and UMAP embedding for the

HRS data and then projected the 1KGP data onto them.

The UKBB provides genotype data on 488,377 individuals along with self-identified ethnic

background in a hierarchical tree-structured dictionary. Participants provided ethnic back-

ground on two occasions. We used the initial ethnicity after finding minimal differences

between the two. The dataset is majority White (88.3% British, 2.6% Irish, 3.4% other), with

large populations identifying as Black (1.6% either African, Caribbean, or other), Asian (1.9%

either Indian, Pakistani, Bangladeshi, or other), Chinese (0.3%), an other ethnic group (0.8%),

mixed ethnicity (0.6%), or an unavailable response (0.5%).

Scripts for all tests and plotting functions can be found on https://github.com/diazale/gt-

dimred with a command line script for UMAP available at https://github.com/diazale/gt-

dimred/scripts/general_umap_script.py. A demo version using freely available 1KGP data is

available at https://github.com/diazale/1KGP_dimred. PCA and standard t-SNE were done

with Scikit-learn [31]. UMAP was performed using a Python implementation [14]. Statistical

testing was done in SciPy [32], StatsModels [33], and R [34]. Visualizations were created with

Matplotlib [35] and ggplot2 [36], and maps were made with Natural Earth.
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Both UMAP and t-SNE feature a number of adjustable parameters. Among the parameters

that we varied, the number of PCs used in pre-processing of the data has the largest effect for

both methods (see S1 and S2 Figs). With UMAP, there are other parameters, such as the learn-

ing rate and the distance metric; these were left to the default values.

We tested different choices for perplexity in t-SNE. The default value of 30 provided com-

parable performance to other parameter choices. Similarly, we tested different parameter

choices for UMAP, with the clearest results generated by specifying 15 nearest neighbours (the

default value) and a “minimum distance” between points in low dimensions of 0.5. UMAP

developers described “sensible” values for nearest neighbours as between 5 and 50 and mini-

mum distance between 0.5 and 0.001. Tuning these parameters will not change qualitative

results much but may make patterns easier to identify. Increasing the number of neighbours

will increase the computational load, and a smaller minimum distance can break the connec-

tivity between clusters, though the same individuals will continue to group together.

UMAP and t-SNE projections were carried out on an iMac with a 3.5GhZ Intel Core i7 pro-

cessor, 32 GB 1600 MHz DDR3 of RAM, and an NVIDIA GeForce GTX 775M 2048 MB

graphics card.

Colours for maps in Fig 5A and 5B, S19, S20, and S21 Figs were determined by projecting

data to 3D and using each 3D coordinate as an RGB coordinate. For the world map, countries

were determined using the country of birth variable, with a country’s colour being determined

by the mean x, y, and z values of all individuals born in that country. Because many self-identi-

fied White British individuals were born abroad, including them everywhere would skew the

colour scheme; they were included only if they were born in the UK, Europe, Australia, Can-

ada, or the United States. This approach to colouring is sensitive to sample sizes as UMAP will

give more space to larger populations.

To reduce the potential risks for re-identification from results in this publication, data has

been randomly permuted so that the population characteristics are preserved but individual-

level data is not presented directly in the figures. We rounded each attribute to an attribute-

specific number of bins, and then permuted the data in the following way: For each point (i.e.

each individual) in UMAP visualizations, and each attribute, we identified the 9 nearest neigh-

bouring points, and copied the attribute from a randomly selected neighbour (thus allowing

for the possibility of one value being printed twice). Because this process is done independently

for each visualization, a given point shown on the figure will copy values from different ran-

domly selected individuals. Projections coloured by participants’ spatial coordinates have ran-

dom noise added (normally distributed about 0 with a standard deviation of 50km) before

binning to the nearest 50km. Projections coloured by participants’ distance from London have

random noise added (normally distributed about 0 with a standard deviation of 5km) before

binning to the nearest km. For each point in Fig 5A we identified the nearest 50 neighbouring

individuals and copied the colour value from a randomly selected neighbour.

Supporting information

S1 Fig. Montage of t-SNE and UMAP on up to 9 PCs of 1KGP data. UMAP (left two col-

umns) and t-SNE (right two columns) applied to the top principal components of the 1KGP

labelled by the number of components used. Adding more components results in progressively

finer population clusters using both methods.

(PDF)

S2 Fig. Montage of t-SNE and UMAP on 10 to 50 PCs of 1KGP data. UMAP (left two col-

umns) and t-SNE (right two columns) applied to the top principal components of the 1KGP

labelled by the number of components used. Results are similar until approximately 11
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components, where t-SNE breaks apart clusters of South Asian (in green) and Central and

South American populations (in pink) while UMAP preserves them. At approximately 30

components populations begin to drift together with UMAP and disperse with t-SNE.

(PDF)

S3 Fig. Montage of UMAP on progressively more PCs of 1KGP data. UMAP applied to

the first few hundred principal components of the 1KGP data with the amount of variance

explained in parentheses. As more components are added, the figure begins to resemble that of

UMAP carried out on the full genotype dataset.

(JPEG)

S4 Fig. UMAP on PCs 100 to 3350 of 1KGP data. UMAP applied the last 3350 principal com-

ponents of the 1KGP, which explain 78.7% of the variation. The colour scheme is the same as

in Fig 1.

(JPEG)

S5 Fig. Number of neighbours and families forming disjoint clusters. UMAP applied to the

first 15 principal components of the 1KGP, with the number of neighbours set to 5 (top) and

15 (bottom). Six members of one Southern Han Chinese family are highlighted: HG00656

(grandfather), HG00657 (grandmother), HG00658 (uncle, mother’s brother), HG00701

(mother), HG00702 (father), HG00703 (child). When using UMAP with five neighbours, the

father (in blue) is projected to the cluster of the Southern Han Chinese population while the

rest of the family members (in red) form their own disjoint cluster. Using 15 neighbours, the

family still clusters together, but as part of the Southern Han Chinese population rather than a

separate cluster.

(PNG)

S6 Fig. UMAP on HRS data coloured by ethnicity. UMAP applied to the first 10 principal

components of HRS data. Points coloured by self-identified race, Hispanic status, and Mexi-

can-American status. The cluster on the left is mostly people who identify as neither Black nor

White and were born outside the contiguous United States or in the Pacific census region.

Clustering with the 1KGP data places them with Asian-identified populations. BNH, Black

(not Hispanic); BHO, Black (Hispanic, Other); WNH, White (not Hispanic); WHM, White

(Hispanic, Mexican-American); WHO, White Hispanic (Other); ONH, Other (not Hispanic);

OHM, Other (Hispanic, Mexican-American); OHO, Other (Hispanic, Other).

(PDF)

S7 Fig. UMAP on HRS data coloured by admixture. UMAP on the first 10 principal compo-

nents of HRS data. colouring individuals by estimated admixture from three ancestral popula-

tions reveals considerable diversity in the Hispanic population. This projection coloured by

self-identified race and Hispanic status is presented in S6 Fig. Admixture proportions for each

individual were estimated in (Baharian 2016) by assuming ancestral African, Asian, and Euro-

pean populations using RFMIX. We have scaled each of the three proportions to values

between 0 and 255 (with 100% corresponding to 255), to colour individual points by their esti-

mated admixture represented by RGB where red, green, and blue respectively correspond to

African, European, and Asian/Native American ancestry. An alternate colouring is provided

in S63 Fig.

(JPEG)

S8 Fig. UMAP on HRS data coloured by birth region. UMAP on the top 10 principal compo-

nents of the HRS dataset, coloured by Census Bureau birth region. Each colour represents one
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of the 10 birth regions. There is no obvious pattern in the clusters of majority “White Not His-

panic” individuals.

(JPEG)

S9 Fig. UMAP on HRS data with 1KGP data overlaid. UMAP on the top 10 principal com-

ponents of the HRS data, with 1KGP data projected onto the embedding. Individuals from the

HRS are grey. British (GBR) and other European (CEU) individuals are scattered throughout

the “White Not Hispanic” clusters. Finns (FIN) form clear groupings. Spanish (IBS) and Italian

(TSI) individuals cluster near the Hispanic grouping. There are sub-groups in the Hispanic

cluster formed of Puerto Ricans (PUR), Colombians (CLM), Mexicans (MXL), and Peruvians

(PEL). Populations with African ancestry (AFR) appear with Black individuals. East Asian

(EAS) populations comprising Chinese, Kinh, and Japanese individuals cluster together with

what appears in S7 Fig as a population of mostly Asian ancestry. South Asian (SAS) popula-

tions with Indian, Pakistani, and Sri Lankan ancestry cluster in a separate area. One “White

Not Hispanic” cluster at the bottom does not cluster with any 1KGP populations.

(PDF)

S10 Fig. Pairwise plots of PCs of Hispanic HRS data. Pairwise plots of the first 8 principal

components of the Hispanic subset of the HRS. Those born in the Mountain region are col-

oured green.

(PDF)

S11 Fig. UMAP on Hispanic HRS data coloured by admixture. UMAP of the first 7 principal

components of the Hispanic population of the HRS, coloured by estimated admixture propor-

tions. Admixture proportions for each individual were estimated in (Baharian, 2016) by

assuming ancestral African, Asian, and European populations using RFMIX. We have scaled

each of the three proportions to values between 0 and 255 (with 100% corresponding to 255),

to colour individual points by their estimated admixture represented by RGB where red,

green, and blue respectively correspond to African, European, and Asian/Native American

ancestry. An alternate colouring is provided in S64 Fig.

(JPEG)

S12 Fig. UMAP on Hispanic HRS data coloured by birth region. UMAP of the first 7 princi-

pal components of the Hispanic population of the HRS, coloured region of birth.

(JPEG)

S13 Fig. UMAP on Asian UKBB data coloured by self-identified ethnicity. UMAP of the

first 8 principal components of the Asian population in the UKBB coloured by self-identified

ethnicity. This is an alternate colouring of Fig 2B.

(JPEG)

S14 Fig. UMAP on UKBB data with some countries of birth identified. Using country

of birth data, some of the larger unidentified groups from Fig 3B were identified as being

born mostly in Japan, the Philippines, North Africa, the Middle East, and Central and

South America. The large cluster of “Any other Asian Background” were mostly born in Sri

Lanka.

(JPEG)

S15 Fig. UMAP on UKBB data coloured by distance from London. UMAP on UKBB data,

coloured by distance from London, with red representing those living closer to London and

blue representing those living farther from London. A 200km radius extends roughly to Car-

diff, and a 100km radius extends roughly to cities such as Leicester and Bath, and contains
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cities such as Oxford, Cambridge, and Peterborough. Data has been randomized as explained

in the materials and methods section.

(JPEG)

S16 Fig. Montage of UMAP on top 40 PCs of UKBB data coloured by ethnicity. UMAP on

UKBB data, coloured by self-identified ethnic background. Images are labelled by the number

of components included.

(JPEG)

S17 Fig. Montage of UMAP on top 40 PCs of UKBB data coloured by northing. UMAP on

UKBB data, coloured by northing values, with more blue representing more northern coordi-

nates and more red representing more southern coordinates. Images are labelled by the num-

ber of components included. Data has been randomized as explained in the materials and

methods section.

(JPEG)

S18 Fig. Montage of UMAP on top 40 PCs of UKBB data coloured by easting. UMAP on

UKBB data, coloured by easting values, with more yellow representing more eastern coordi-

nates and more pink representing more western coordinates. Images are labelled by the num-

ber of components included. Data has been randomized as explained in the materials and

methods section.

(JPEG)

S19 Fig. Map of Asia coloured by 3D UMAP coordinates of UKBB data. Fig 5b, zoomed in

on Asia. Geographic distribution of UMAP coordinates. Using the country of birth of individ-

uals in the UKBB, we colour countries by the closeness in 3D UMAP space of those born

there. Broad patterns of similarity appear in East Asia, South Asia, North African and the Mid-

dle East, West Africa, and South America. Differences between neighbouring countries can

reflect both ancient population structure and recent differences in migration history. Evidence

of migrations related to colonialism are visible with, e.g., European ancestry in South Africa

and South Asian ancestry in Kenya and Tanzania. Because of the large number of White Brit-

ish individuals born abroad, to avoid skewing the colour scale they were not included unless

they were born in the UK, Europe, Australia, Canada, or the United States, where UKBB par-

ticipants already tended to have European ancestry.

(JPG)

S20 Fig. Map of Caribbean coloured by 3D UMAP coordinates of UKBB data. Fig 5b,

zoomed in on the Caribbean. Geographic distribution of UMAP coordinates. Using the coun-

try of birth of individuals in the UKBB, we colour countries by the closeness in 3D UMAP

space of those born there. Broad patterns of similarity appear in East Asia, South Asia, North

African and the Middle East, West Africa, and South America. Differences between neigh-

bouring countries can reflect both ancient population structure and recent differences in

migration history. Evidence of migrations related to colonialism are visible with, e.g., Euro-

pean ancestry in South Africa and South Asian ancestry in Kenya and Tanzania. Because of

the large number of White British individuals born abroad, to avoid skewing the colour scale

they were not included unless they were born in the UK, Europe, Australia, Canada, or the

United States, where UKBB participants already tended to have European ancestry.

(JPG)

S21 Fig. Map of Europe coloured by 3D UMAP coordinates of UKBB data. Fig 5b, zoomed

in on Europe. Geographic distribution of UMAP coordinates. Using the country of birth of

individuals in the UKBB, we colour countries by the closeness in 3D UMAP space of those
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born there. Broad patterns of similarity appear in East Asia, South Asia, North African and the

Middle East, West Africa, and South America. Differences between neighbouring countries

can reflect both ancient population structure and recent differences in migration history. Evi-

dence of migrations related to colonialism are visible with, e.g., European ancestry in South

Africa and South Asian ancestry in Kenya and Tanzania. Because of the large number of

White British individuals born abroad, to avoid skewing the colour scale they were not

included unless they were born in the UK, Europe, Australia, Canada, or the United States,

where UKBB participants already tended to have European ancestry.

(JPG)

S22 Fig. t-SNE on UKBB data coloured by self-identified ethinicity. t-SNE applied to the

top 10 principal components of the UKBB, coloured by ethnic background. The unbalanced

populations resulted in many individuals and populations being orphaned along the periphery

of the main cluster.

(PDF)

S23 Fig. UMAP on UKBB data coloured by basophil count (female). UMAP on the top 10

principal components of the UKBB coloured by basophil count (female). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S24 Fig. UMAP on UKBB data coloured by basophil count (male). UMAP on the top 10

principal components of the UKBB coloured by basophil count (male). Data has been random-

ized as explained in the materials and methods section.

(PDF)

S25 Fig. UMAP on UKBB data coloured by eosinphil count (female). UMAP on the top 10

principal components of the UKBB coloured by eosinophil count (female). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S26 Fig. UMAP on UKBB data coloured by eosinphil count (male). UMAP on the top 10

principal components of the UKBB coloured by eosinophil count (male). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S27 Fig. UMAP on UKBB data coloured by FEV1 (female). UMAP on the top 10 principal

components of the UKBB coloured by FEV1 (female). Data has been randomized as explained

in the materials and methods section.

(PDF)

S28 Fig. UMAP on UKBB data coloured by FEV1 (male). UMAP on the top 10 principal

components of the UKBB coloured by FEV1 (male). Data has been randomized as explained

in the materials and methods section.

(PDF)

S29 Fig. UMAP on UKBB data coloured by height (female). UMAP on the top 10 principal

components of the UKBB coloured by height (female). Data has been randomized as explained

in the materials and methods section.

(PDF)

S30 Fig. UMAP on UKBB data coloured by height (male). UMAP on the top 10 principal

components of the UKBB coloured by height (male). Data has been randomized as explained
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in the materials and methods section.

(PDF)

S31 Fig. UMAP on UKBB data coloured by leukocyte count (female). UMAP on the top 10

principal components of the UKBB coloured by leukocyte count (female). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S32 Fig. UMAP on UKBB data coloured by leukocyte count (male). UMAP on the top 10

principal components of the UKBB coloured by leukocyte count (male). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S33 Fig. UMAP on UKBB data coloured by neutrophil count (female). UMAP on the top 10

principal components of the UKBB coloured by neutrophil count (female). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S34 Fig. UMAP on UKBB data coloured by neutrophil count (male). UMAP on the top 10

principal components of the UKBB coloured by neutrophil count (male). Data has been ran-

domized as explained in the materials and methods section.

(PDF)

S35 Fig. Box plots of height in the UKBB by self-identified ethnicity (female). Height by sex

and ethnic group, annotated with p-values. Asterisks indicate significant difference from the

White British group with a Bonferroni correction for 12 groups.

(PDF)

S36 Fig. Box plots of height in the UKBB by self-identified ethnicity (male). Height by sex

and ethnic group, annotated with p-values. Asterisks indicate significant difference from the

White British group with a Bonferroni correction for 12 groups.

(PDF)

S37 Fig. Box plots of FEV1 in the UKBB by self-identified ethnicity (female). FEV1 by sex

and ethnic group, annotated with p-values. Asterisks indicate significant difference from the

White British group with a Bonferroni correction for 12 groups.

(PDF)

S38 Fig. Box plots of FEV1 in the UKBB by self-identified ethnicity (male). FEV1 by sex

and ethnic group, annotated with p-values. Asterisks indicate significant difference from the

White British group with a Bonferroni correction for 12 groups.

(PDF)

S39 Fig. Subset (left) of UKBB UMAP projection coloured by height, FEV1, and self-iden-

tified ethnicity. Individuals of Black African, Black Caribbean, and mixed backgrounds (pri-

marily White and Black Caribbean/African) coloured by self-identified ethnic background

(left, from Fig 3B), FEV1 (middle), and age-adjusted height (right). An arrow points to an area

where the FEV1 distribution appears to change, corresponding to where the clusters contain

more people with self-identified mixed backgrounds.

(PDF)

S40 Fig. Subset (top) of UKBB UMAP projection coloured by height, FEV1, and self-iden-

tified ethnicity. Zoomed in section of Fig 3B, focused on individuals with Chinese (CHI),

White British (GBR), any other white background, or any other ethnic group (OEG) coloured
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by ethnicity (left), FEV1 (middle), and age-adjusted height (right). The OEG cluster next to

the Chinese cluster appears redder on the middle panel, suggesting higher levels of FEV1.

(PNG)

S41 Fig. East Asian individuals from UKBB UMAP projection selected for FEV1 investiga-

tion. Individuals from the zoomed in section in S40 Fig used in statistical testing, coloured the

same as in S42 Fig. Brown, blue, and green represent those born in the Philippines, Malaysia,

and Japan; pink represents those who self-identify as Chinese. The Chinese individuals were

those who self-identified their ethnic background as Chinese, and the remaining populations

were determined based on country of birth; the categorizations are mutually exclusive.

(PNG)

S42 Fig. Ridge plots of East Asian individuals from UKBB UMAP projection selected for

FEV1 investigation. Plots of the distributions of residual FEV1 by sex for East Asian popula-

tions, after adjusting for height, age, age2, and sex through linear regression. Individuals were

limited to those in the “Chinese/Other Ethnic Group” cluster from S40 Fig. The Chinese indi-

viduals were those who self-identified their ethnic background as Chinese, and the remaining

populations were determined based on country of birth; the categorizations are mutually

exclusive. Asterisks indicate significant difference from the Japanese population, using Welch’s

unpaired t-test with a Bonferroni correction for 3 groups. The dashed lines are the means of

the distributions, and Japanese populations have consistently higher means.

(PNG)

S43 Fig. Comparison of t-SNE error by initialization on UKBB data. Comparing the error

terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exag-

geration. Done on the UKBB dataset with 20000 iterations. The UMAP-initialized graph has

been shifted by 230 iterations to approximate the 230 epochs UMAP uses for large datasets

(n> 10, 000).

(JPEG)

S44 Fig. Comparing visualizations of t-SNE and UMAP of UKBB data by initialization.

Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP

projection, on the top 10 principal components of the UKBB. t-SNE used 20000 iterations.

(JPEG)

S45 Fig. PCs 1 and 2 of the UKBB coloured by height (female). Principal components 1 and

2 from the UKBB, coloured by age-adjusted residual height (female). Data has been random-

ized as explained in the materials and methods section.

(JPEG)

S46 Fig. PCs 1 and 2 of the UKBB coloured by FEV1 (female). Principal components 1 and

2 from the UKBB, coloured by FEV1 (female). Data has been randomized as explained in the

materials and methods section.

(JPEG)

S47 Fig. t-SNE projection of UKBB data coloured by height (female). t-SNE on the first 10

principal components from the UKBB, coloured by age-adjusted residual height (female).

Data has been randomized as explained in the materials and methods section.

(JPEG)

S48 Fig. t-SNE projection of UKBB data coloured by FEV1 (female). t-SNE on the first 10

principal components from the UKBB, coloured by FEV1 (female). Data has been randomized

UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008432 November 1, 2019 19 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s041
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s042
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s043
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s044
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s045
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s046
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s047
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008432.s048
https://doi.org/10.1371/journal.pgen.1008432


as explained in the materials and methods section.

(JPEG)

S49 Fig. Zoomed in views of UMAP projection of UKBB data, coloured by self-identified

ethnicity. Zoomed in areas of Fig 3B. Sections (i) and (ii) respectively focus on the African and

Asian superpopulations, and section (iii) focuses on an area with individuals from many ethnic

backgrounds. Noticeable clusters of unidentified ethnic backgrounds appear and are labelled

“OEG” (“Other Ethnic Group”).

(PDF)

S50 Fig. Comparing visualizations of t-SNE and UMAP of 1KGP data by initializaiton.

Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP

projection, on the top 10 principal components of the 1KGP. t-SNE used 5000 iterations. Ini-

tializing t-SNE with UMAP breaks the continuous structure of the projection and instead

forms many small clusters.

(JPEG)

S51 Fig. Comparing visualizations of t-SNE and UMAP of HRS data by initialization.

Comparing the visualizations of UMAP, standard t-SNE, and t-SNE initialized with a UMAP

projection, on the top 10 principal components of the HRS. t-SNE used 5000 iterations.

(JPEG)

S52 Fig. Comparison of t-SNE error by initialization on 1KGP data. Comparing the error

terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exag-

geration. Done on the 1KGP dataset with 5000 iterations. The UMAP-initialized graph has

been shifted by 600 iterations to approximate the 600 epochs UMAP uses for small datasets

(n<= 10, 000).

(JPEG)

S53 Fig. Comparison of t-SNE error by initialization on HRS data. Comparing the error

terms of standard t-SNE versus t-SNE initialized with a UMAP embedding and no early exag-

geration. Done on the HRS dataset with 5000 iterations. The UMAP-initialized graph has been

shifted by 230 iterations to approximate the 230 epochs UMAP uses for large datasets

(n> 10,000).

(JPEG)

S54 Fig. Box plots of basophil count in the UKBB by self-identified ethnicity (female).

Basophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate signifi-

cant difference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S55 Fig. Box plots of basophil count in the UKBB by self-identified ethnicity (male). Baso-

phil counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant dif-

ference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S56 Fig. Box plots of eosinophil count in the UKBB by self-identified ethnicity (female).

Eeosinophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate signif-

icant difference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S57 Fig. Box plots of eosinophil count in the UKBB by self-identified ethnicity (male).

Eosinophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate
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significant difference from the White British group with a Bonferroni correction for 12

groups.

(PDF)

S58 Fig. Box plots of leukocyte count in the UKBB by self-identified ethnicity (female).

Leukocyte counts by sex and ethnic group, annotated with p-values. Asterisks indicate signifi-

cant difference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S59 Fig. Box plots of leukocyte count in the UKBB by self-identified ethnicity (male). Leu-

kocyte counts by sex and ethnic group, annotated with p-values. Asterisks indicate significant

difference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S60 Fig. Box plots of neutrophil count in the UKBB by self-identified ethnicity (female).

Neutrophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate signifi-

cant difference from the White British group with a Bonferroni correction for 12 groups.

(PDF)

S61 Fig. Box plots of neutrophil count in the UKBB by self-identified ethnicity (male).

Neutrophil counts by sex and ethnic group, annotated with p-values. Asterisks indicate

significant difference from the White British group with a Bonferroni correction for 12

groups.

(PDF)

S62 Fig. UMAP projection of combined HRS and 1KGP data. UMAP projection of the top

10 principal components of the combined HRS and 1KGP datasets. One cluster (in the box)

does not group with any of the 1KGP populations. A cluster of Finnish (FIN) individuals con-

sistently appears in the “White Not Hispanic” (WNH) group. Groups of Central and South

American populations from the 1KGP (CLM, Colombian; MXL, Mexican; PEL, Peruvian;

PUR, Puerto Rican) form nearby or within the HRS Hispanic cluster (HIS). Iberian individuals

(IBS) cluster near the Hispanic population. Toscani individuals (TSI) form some small clusters

and sometimes appear near the Iberian and Hispanic populations. Individuals with British/

Scottish (GBR) or Northern/Western European ancestry (CEU) are scattered throughout the

WNH clusters. Individuals with African ancestry from the 1KGP group with Black Americans

from the HRS (AFR). Similar population groupings occur with South Asian (SAS) and East

Asian (EAS) individuals.

(PDF)

S63 Fig. Alternate colouring of S7 Fig. An alternate colouring of S7 Fig. Here red, green, and

blue correspond to African, Asian/Native American, and European ancestry, respectively.

(JPEG)

S64 Fig. Alternate colouring of S11 Fig. An alternate colouring of S11 Fig. Here red, green,

and blue correspond to African, Asian/Native American, and European ancestry, respec-

tively.

(JPEG)

S65 Fig. Admixture plot of Hispanic individuals in the HRS. Admixture plot of Hispanic

individuals in the HRS. Individuals born in the Mountain census region fall between the white

lines (indices 48 to 184).

(PDF)
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S1 Table. Variance explained by the PCs of the 1KGP. Variance explained in the 1KGP data

by the number of principal components used.

(PDF)
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