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Background: We evaluated the implications of different approaches to characterize the
uncertainty of calibrated parameters of microsimulation decision models (DMs) and
quantified the value of such uncertainty in decision making.

Methods: We calibrated the natural history model of CRC to simulated epidemiological
data with different degrees of uncertainty and obtained the joint posterior distribution of the
parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis
(PSA) on all the model parameters with different characterizations of the uncertainty of the
calibrated parameters. We estimated the value of uncertainty of the various
characterizations with a value of information analysis. We conducted all analyses using
high-performance computing resources running the Extreme-scale Model Exploration with
Swift (EMEWS) framework.

Results: The posterior distribution had a high correlation among some parameters. The
parameters of the Weibull hazard function for the age of onset of adenomas had the
highest posterior correlation of −0.958.When comparing full posterior distributions and the
maximum-a-posteriori estimate of the calibrated parameters, there is little difference in the
spread of the distribution of the CEA outcomes with a similar expected value of perfect
information (EVPI) of $653 and $685, respectively, at a willingness-to-pay (WTP) threshold
of $66,000 per quality-adjusted life year (QALY). Ignoring correlation on the calibrated
parameters’ posterior distribution produced the broadest distribution of CEA outcomes
and the highest EVPI of $809 at the same WTP threshold.

Conclusion: Different characterizations of the uncertainty of calibrated parameters affect
the expected value of eliminating parametric uncertainty on the CEA. Ignoring inherent
correlation among calibrated parameters on a PSA overestimates the value of uncertainty.
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BACKGROUND

Decision models (DMs) are commonly used in cost-effectiveness
analysis where uncertainty in the parameters is inherent (Kuntz
et al., 2017). The impact of parameter uncertainty can be assessed
with a probabilistic sensitivity analysis (PSA) to characterize
decision uncertainty (i.e., the probability of a strategy being
cost-effective) (Briggs et al., 2012; Sculpher et al., 2017) and to
quantify the value of potential future research by determining the
potential consequences of a decision with value of information
(VOI) analysis (Schlaifer, 1959; Raiffa and Schlaifer, 1961).

The parameters of DMs can be split into two categories, those
obtained from the literature or estimated from available data
(i.e., external parameters) and those that need to be estimated
through calibration (i.e., calibrated parameters). External
parameters are estimated either from individual-level or
aggregated data that directly inform the parameters of interest.
There are recommendations on the type of distributions that
characterize their uncertainty based on the characteristics of the
parameters or the statistical model used to estimate them (Briggs
et al., 2012). For example, a probability could be modeled with a
beta distribution and a relative risk with a lognormal distribution
(Briggs et al., 2002). For calibrated parameters, no such data exist
that can directly inform their uncertainty because a research
study hasn’t been conducted or is unfeasible to conduct, or
because the parameters reflect unobservable phenomena, as is
often the case in natural history models of chronic diseases
(Welton and Ades, 2005; Karnon et al., 2007; Rutter et al.,
2009; Rutter et al., 2011) or in infectious disease dynamic
models (Enns et al., 2017). The choice of distribution for these
parameters is often less clear. One option is to define uniform
distributions with wide bounds or generate informed
distributions based on moments of the calibrated parameters,
such as the mean and standard error. However, the impact of
these approaches to characterize the uncertainty of calibrated
parameters on decision uncertainty and the VOI on reducing that
uncertainty has not been studied.

Model calibration is the process of estimating unobserved or
unobservable parameters by matching model outputs to observed
clinical or epidemiological data (known as calibration targets)
(Kennedy and O’Hagan, 2001; Stout et al., 2009; Kuntz et al.,
2017). While there are several approaches for searching the
parameter space in the calibration process, most approaches
are insufficient to characterize the uncertainty in the calibrated
model parameters because they do not provide interval estimates.
For example, direct-search optimization algorithms like Newton-
Raphson Nelder-Mead (Nelder and Mead 1965) simulated
annealing or genetic algorithms (Kong et al., 2009) treat the
calibration targets as if they were known with certainty, so are
primarily useful when identifying a single or a set of parameters
that yield good fit to the targets (Kennedy and O’Hagan, 2001).

A sample of calibrated parameter sets that correctly
characterizes the uncertainty of the calibration target data is
obtained from their joint distribution, conditional on the
calibrated targets. To obtain the joint distribution, calibration
could be specified as a statistical estimation problem under at
least two different frameworks, through maximum likelihood

(ML) or Bayesian methods. ML can fail in obtaining interval
estimates by not being able to estimate the Hessian matrix when
the likelihood is intractable or computationally intensive to
simulate and when the calibration problem is non-identifiable
(Gustafson, 2005; Alarid-Escudero et al., 2018); thus, we focus on
Bayesian methods (Romanowicz et al., 1994; Kennedy and
O’Hagan, 2001; Oakley and O’Hagan, 2004; Gustafson, 2005;
Kaipio and Somersalo, 2005; Oden et al., 2010; Gustafson, 2015;
Alarid-Escudero et al., 2018).

Despite their suitability to correctly characterize the
uncertainty of calibrated model parameters, Bayesian methods
are generally computationally expensive because they require
evaluating the model thousands and sometimes millions of
times. The computational burden of Bayesian methods does
not seem to be an impediment when calibrating non-
computationally intensive DMs (e.g., Markov cohort models,
difference equations, relatively small systems of differential
equations, etc.) (Whyte et al., 2011; Hawkins-Daarud et al.,
2013; Jackson et al., 2016; Menzies et al., 2017). Still, they
become more challenging to apply to DMs that could be
computationally intensive to solve, such as models that
simulate underlying stochastic processes (Iskandar, 2018) (e.g.,
microsimulation, discrete-event simulation, and agent-based
models), limiting their use to only a few of such models
(Rutter et al., 2009).

However, the increasing availability of high-performance
computing (HPC) systems in an academic, national laboratory
and commercial settings enables such systems for model
calibration and model exploration of microsimulation DMs at
a large scale to a broader audience. HPC resources allow running
large numbers of DMs concurrently, allowing calibration
algorithms to generate large batches of parameters
simultaneously, such as the incremental mixture importance
sampling (IMIS) described below, to be run efficiently. In
many cases, particularly in the academic and national
laboratory settings, computing allocations can be obtained
through proposals with no cost to researchers (e.g., the
Advanced Scientific Computing Research (ASCR) Leadership
Computing Challenge (ALCC), https://science.osti.gov/ascr/
Facilities/Accessing-ASCR-Facilities/ALCC). However,
implementing dynamic calibration algorithms for HPC
resources has generally proved difficult, requiring specialized
knowledge across various disciplines. The Extreme-scale Model
Exploration with Swift (EMEWS) framework was designed to
facilitate large-scale model calibration and exploration on HPC
resources (Ozik et al., 2016a) to a broad community. EMEWS can
run very large, highly concurrent ensembles of microsimulation
DMs of varying types with a broad class of calibration algorithms,
including those increasingly available to the community via.
Python and R libraries, using HPC workflows. EMEWS
workflows provide interfaces for plugging in DMs (and any
other simulation or black box model) and algorithms, through
an inversion of control scheme (Ozik et al., 2018), to control the
dynamic execution of those DMs for calibration and other
heuristics for “model exploration” purposes. These interfaces
help reduce the need for an in-depth understanding of how
task coordination and inter-task dependencies are
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implemented for HPC resources. The general use of EMEWS can
be seen on the EMEWS website (https://emews.github.io), which
includes links to tutorials.

The purpose of our study is threefold. First, to use recently
developed HPC capabilities to characterize the uncertainty of
calibrated parameters of a microsimulation model of the natural
history of colorectal cancer (CRC). Second, to explore the impact
of different approaches to characterize the uncertainty of
calibrated parameters on decision uncertainty, and third, to
use VOI analysis to quantify the value of eliminating
parameter uncertainty when assessing the cost-effectiveness of
CRC screening.

METHODS

We developed a microsimulation model of the natural history of
CRC and calibrated it using a Bayesian approach. We then
overlaid a simple CRC screening strategy onto the natural
history model and conducted a cost-effectiveness analysis
(CEA) of screening, including a PSA. Instead of using the
posterior means to represent the best estimates of each
calibrated parameter, we obtained the posterior distribution
using a Bayesian approach that represents the joint
uncertainty of all the calibrated parameters that can then be
used in a PSA. We then evaluated the impact of different
approaches to characterize the uncertainty of calibrated
parameters on the joint distribution of incremental costs and
incremental effects of the screening strategy compared with no
screening through a PSA while also accounting for the
uncertainty of the external parameters (e.g., test characteristics,
costs, etc.). Finally, we quantified the amount of money that a
decision maker should be willing to spend to eliminate all
parameter uncertainty (i.e., the expected value of perfect
information (EVPI)).

Microsimulation Model of the Natural
History of CRC
We developed a state-transition microsimulation model of the
natural history of CRC implemented in R (Krijkamp et al., 2018)
based on a previously developed model (Alarid-Escudero et al.,
2018). The progression between health states follows a
continuous-time age-dependent Markov process. There are
two age-dependent transition intensities (i.e., transition rates),
λ1(a) and μ(a), that govern the age of onset of adenomas and
non-cancer-specific mortality, respectively. Following Wu et al.
(2006) we specify λ1(a) as a Weibull hazard with the following
specification

λ1(a) � lγaγ−1,

where a is the age of the simulated individuals, and l and γ are the
scale and shape parameters of the Weibull hazard function,
respectively. The model simulates two adenoma categories:
small (adenoma smaller than 1 cm in size) and large
(adenoma larger than or equal to 1 cm in size). All adenomas

start small and can transition to the large size category at a
constant annual rate λ2. Large adenomas may become preclinical
CRC at a constant annual rate λ3. Both small and large adenomas
may progress to preclinical CRC, although most will not in a
simulated individual’s lifetime. Early preclinical cancers
(preclinical stages I and II) progress to late stages (preclinical
stages III and IV) at a constant annual rate λ4 and could become
symptomatic at a constant annual rate λ5. Late preclinical cancer
could become symptomatic at a constant annual rate λ6. After
clinical detection, the model simulates the survival time to early
and late CRC death using cancer-specific constant mortality rates,
λ7 and λ8, respectively. The model has nine health states: normal,
small adenoma, large adenoma, early preclinical CRC, late
preclinical CRC, early clinical CRC, late clinical CRC, CRC
death, and death from other causes. The state-transition
diagram of the continuous-time model is shown in Figure 1.

The continuous-time age-dependent Markov process of this
natural history model of CRC can be represented by an age-
dependent 9 × 9 transition intensity matrix, Q(a). To translate
Q(a) to discrete-time, we compute the annual-cycle age-
dependent transition probability matrix, P(a, t), using the
Kolmogorov differential equations (Kolmogorov, 1963; Cox
and Miller, 1965; Welton and Ades, 2005)

P(a, t) � Exp(tQ(a)),
where t � 1 and Exp() is the matrix exponential. In discrete
time, the natural history model of CRC allows individual
transitions across multiple health states in a single year. Small
and large adenomas may progress to preclinical or clinical
CRC, and preclinical cancers may progress through early and
late stages.

We simulated a hypothetical cohort of 50-year-old women in
the United States over a lifetime. The cohort starts the simulation
with a prevalence of adenoma of padeno, from which a proportion,
psmall, corresponds to small adenomas, and a prevalence of
preclinical early and late CRC of 0.12% (Rutter et al., 2007)
and 0.08% (Wu et al., 2006), respectively. The parameters padeno

and psmall are calibrated parameters. The simulated cohort is at
risk of all-cause mortality, μ(a), from all health states obtained
from 2014 United States life tables (Arias et al., 2017).

Calibration Targets
We used the microsimulation model of the natural history of
CRC to generate synthetic calibration targets by selecting a set
of parameter values based on plausible estimates from the
literature (Table 1) (Wu et al., 2006; Rutter et al., 2007). We
simulated four different age-specific synthetic targets,
including adenoma prevalence, the proportion of small
adenomas, and CRC incidence for early and late stages,
which resemble commonly used calibration targets for this
type of model (Rutter et al., 2009; Whyte et al., 2011; Frazier
et al., 2000; Kuntz et al., 2011). To simulate the calibration
targets, we ran the microsimulation model 100 times to get a
stable estimate of the standard errors (SEs) using the fixed
values in Table 1. We then aggregated each outcome across all
100 model replications to compute their mean and SE. To
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account for different levels of uncertainty across targets given
the amount of data to estimate their summary measures, we
simulated various targets based on cohorts of different sizes
(Rutter et al., 2009). Adenoma-related targets were based on a
cohort of 500 individuals, and cancer incidence targets were
based on 100,000 individuals.

Calibration of the Microsimulation Model of
the Natural History
To state the calibration of the microsimulation model as an
estimation problem (Alarid-Escudero et al., 2018), we define

M as the microsimulation model of the natural history of CRC
with 11 input parameters. Cancer-specific mortality rates from
early and late stages of CRC could be obtained from cancer
population registries (e.g., the Surveillance, Epidemiology and
End Results (SEER) registry in the United States), so
calibration of these rates was unnecessary. That is, θk �
[λ7, λ8] is a set of 2 parameters that are either known or
could be obtained from external data (i.e., are external
parameters). The model has a set of 9 parameters θu �
[padeno, psmall, l, γ, λ2, λ3, λ4, λ5, λ6] that cannot be directly
estimated from sample data and need to be calibrated. M’s
full set of parameters is θ � [θu, θk].

FIGURE 1 | State-transition diagram of the nine-state microsimulation model of the natural history of colorectal cancer. Individuals in all health states face an age-
specific mortality of dying from other causes (state not shown) (Jalal et al., 2021).

TABLE 1 | Description of parameters of the natural history model.

Symbol Description Value Source Prior distribution Calibrated

Initial state of 50-year-old cohort

Proportions

padeno Prevalence of adenoma at age 50 0.25 Rutter et al. (2007) Beta(3, 8) Yes
psmall Proportion adenomas that are small at age 50 0.71 Wu et al. (2006) Beta(6, 3) Yes
— Prevalence of preclinical early CRC at age 50 0.12 Wu et al. (2006) Fixed No
— Prevalence of preclinical late CRC at age 50 0.08 Wu et al. (2006) Fixed No

Disease dynamics

Transition rates (annual)

l Scale parameter of Weibull hazard 2.86e-06 Wu et al. (2006) Log-normal(m = −11.97, s = 0.59) Yes
γ Shape parameter of Weibull hazard 2.78 Wu et al. (2006) Log-normal(m = 1.04, s = 0.18) Yes
λ2 Small adenoma to large adenoma 0.0346 Wu et al. (2006) Log-normal(m = −3.45, s = 0.59) Yes
λ3 Large adenoma to preclinical early CRC 0.0215 Wu et al. (2006) Log-normal(m = −3.91, s = 0.35) Yes
λ4 Preclinical early CRC to preclinical late CRC 0.3697 Wu et al. (2006) Log-normal(m = −1.15, s = 0.23) Yes
λ5 Preclinical early CRC to clinical early CRC 0.2382 Wu et al. (2006) Log-normal(m = −1.41, s = 0.10) Yes
λ6 Preclinical late CRC to clinical late CRC 0.4582 Wu et al. (2006) Log-normal(m = −0.78, s = 0.22) Yes
λ7 CRC mortality in early stage 0.0302 Wu et al. (2006) Fixed No
λ8 CRC mortality in late stage 0.2099 Wu et al. (2006) Fixed No
μ(a) Age-specific mortality Age-specific Arias, (2017) Fixed No
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To calibrateM, we adopted a Bayesian approach that allowed
us to obtain a joint posterior distribution that characterizes the
uncertainty of both the calibration targets and previous
knowledge of the parameters of interest in the form of prior
distributions. Prior distributions can reflect experts’ opinions, or
when little knowledge is available, these could be specified as
uniform distributions. We constructed the likelihood function by
assuming that each type of target t, including adenoma
prevalence, proportion of small adenomas, early clinical CRC
incidence, and late clinical CRC incidence for each age group a,
yta, are normally distributed with mean ϕta and standard
deviation σta (Alarid-Escudero et al., 2018). That is,

yta ~ Normal(ϕta
, σta),

where ϕta� E[M(θ)] is the expected value of the model-predicted
output from parameter set θ. We added the log-likelihoods across
all targets to compute an aggregated likelihood measure. We
defined prior distributions for all θu based on previous knowledge
or the nature of the parameters (Table 1). We defined beta
distributions for the prevalence of adenomas and the
proportion of small adenomas at age 50, bounded between 0
and 1. We assumed that the annual transition rates follow a log-
normal distribution for their priors, defined over positive
numbers. The ranges given in Table 1 are assumed to
represent the 95% equal-tailed interval for the beta and log-
normal distributions.

To conduct the Bayesian calibration, we used the incremental
mixture importance sampling (IMIS) algorithm (Steele et al.,
2006; Raftery and Bao, 2009), which has been previously used to
calibrate health policy models (Menzies et al., 2017; Ryckman
et al., 2020). We ran the IMIS algorithm on the Midway2 cluster
at the University of Chicago Research Computing Center (https://
rcc.uchicago.edu/resources/high-performance-computing).
Midway2 is a hybrid cluster, including both central processing
unit (CPU) and graphics processing unit (GPU) resources. For
this work, we used the CPU resources. Midway2 consists of 370
nodes of Intel E5-2680v4 processors, each with 28 cores and
64 GB of RAM. Using EMEWS, we developed a workflow that
parallelized the likelihood evaluations over 1,008 processes using
36 compute nodes. In other words, we reduced the computation
time approximately by 250 had the analysis been conducted in a
laptop with four processing cores.

Consistent with previous analyses, we deemed that
convergence had occurred when the target effective sample
size (ESS) got as close as 5,000 (Rutter et al., 2019; DeYoreo
et al., 2022). An advantage of IMIS over other Monte Carlo
methods, such as Markov chain Monte Carlo, is that with IMIS,
we parallelize the evaluation of the likelihood for different
sampled parameter sets, making its implementation perfectly
suitable for an HPC environment using EMEWS. IMIS
requires defining and computing the likelihood, which we
could do with our model. However, when computing the
likelihood is intractable, modelers could use the incremental
mixture approximate Bayesian computation (IMABC)
algorithm (Rutter et al., 2019), which an approximate Bayesian
version of IMIS.

Propagation of Uncertainty
We sampled 5,000 parameter sets from the IMIS joint posterior
distribution for the nine calibrated model parameters. To
compare the outputs of the calibrated model against the
calibration targets, we propagated the uncertainty of the
calibrated parameters through the microsimulation model of
the natural history of CRC. We simulated a cohort of 100,000
(i.e., the largest cohort size used to generate the targets). We
generated themodel-predicted adenoma and cancer outcomes for
each of the 5,000 calibrated parameter sets drawn from their joint
posterior distribution. We computed the 95% posterior predicted
interval (PI), defined as the estimated range between the 2.5th and
97.5th percentiles of the model-predicted posterior outputs to
quantify the uncertainty limit model outputs.

Cost-Effectiveness Analysis of Screening
for CRC
With the calibrated microsimulation model of the natural history
of CRC, we assessed the cost-effectiveness of 10-yearly
colonoscopy screening starting at age 50 years compared to no
screening. For adenomas detected with colonoscopy, a
polypectomy was performed during the procedure. Individuals
diagnosed with a small or large adenoma underwent surveillance
with colonoscopy every 5 or 3 years, respectively. We assumed
screening or surveillance continued until 85 years of age.
Individuals with a history of polyp diagnosis had higher
recurrence rates after polypectomy, that is, a higher transition
rate from normal to small adenoma (i.e., λ1(a)). We assumed a
hazard ratio of 2 for small adenomas and 3 for the large
adenomas. The costs and utilities of CRC care varied by stage,
and individuals without clinical CRC had a utility of 1. Table 2
shows the parameters used in the CEA with their corresponding
distributions.

Uncertainty Quantification
We performed four different approaches to quantify the
uncertainty of the two types of parameters—calibrated
parameters and external (i.e., CEA) parameters. The first
approach for uncertainty quantification considers uncertainty
in both types of parameters, with uncertainty of the calibrated
parameters characterized by their joint posterior distribution
obtained from the IMIS algorithm. The second approach only
considers uncertainty in the external parameters while fixing the
calibrated parameters at the maximum-a-posteriori (MAP)
estimate, defined as the parameter with the highest posterior
density. The third approach considers uncertainty only in the
calibrated parameters characterized by their joint posterior
distribution and no uncertainty in the external parameters,
fixed at their mean values. The fourth approach considers
uncertainty in both types of parameters, but instead of using
the IMIS posterior distribution of the calibrated parameters, we
constructed distributions based solely on the IMIS posterior
moments (i.e., means and standard deviations) and the type of
calibrated parameters ignoring correlations.

We conducted a PSA to evaluate the impact of uncertainty in
model parameters on the cost-effectiveness of 10-years
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colonoscopy screening vs. no screening for CRC. A separate PSA
was performed for the four different approaches to quantify the
uncertainty of the two types of parameters. We used EMEWS to
distribute the samples of each PSA across HPC resources.

Value of Information Analysis
We quantified the theoretical value of eliminating uncertainty in
the external and calibrated model parameters using VOI analysis.
VOI measures the losses (i.e., foregone benefits) from choosing a
strategy given imperfect information (Raiffa and Schlaifer, 1961),
providing the amount of resources a decision maker should be
willing to spend to obtain information that would reduce the
uncertainty. Specifically, we estimated the value of eliminating
parametric uncertainty (i.e., the EVPI) in the cost-effectiveness of
a 10-years colonoscopy screening strategy. This entailed
computing the difference in net benefit between perfect

information and current information (Oostenbrink et al.,
2008). The EVPI was calculated across a wide range of
willingness-to-pay (WTP) thresholds (Eckermann et al., 2010).
We repeated this VOI analysis for the different approaches to
characterize the uncertainty of the calibrated and external
parameters.

RESULTS

We sampled 5,000 parameter sets from the posterior distribution
using IMIS, including 3,241 unique parameter sets with an
expected sample size (ESS) of 2,098. With the sample from the
posterior distribution, we estimated posterior means and
standard deviations, MAP estimates, and 95% credible
intervals (CrI) for all calibrated parameters (Table 3). The
posterior means of the calibrated parameter were similar to
the prior means (Table 3). Still, the major contrast is that the
width of the posterior distributions shrunk, meaning that the
calibration targets informed the calibrated parameters through a
Bayesian updating (Figure 2).

The Bayesian calibration also correlated the parameters, showing
the dependency among some of them (Figure 3). There are pairs of
parameters with high correlation. The scale and shape parameters of
theWeibull hazard function for the age of onset of adenomas, l, and
γ, respectively, have the highest negative correlation of −0.958. The
high correlation results from the calibration of the microsimulation
model of the natural history of CRC being non-identifiable when
calibrating all 9 parameters to all the targets. The transition rates
from early preclinical CRC to late preclinical and early clinical have a
correlation of 0.784. The prevalence of adenomas and the proportion
of small adenomas at age 50, which inform the initial distribution of

TABLE 2 | Description of cost-effectiveness analysis parameters.

Parameter Value (range) Distribution Source

Screening test characteristics (location-specific)

Small adenomas
Sensitivity 0.773 (0.734–0.808) Beta Van Rijn et al. (2006)
Specificity 0.868 (0.855–0.880) Beta Schroy et al. (2013)
Large adenomas and CRC
Sensitivity 0.950 (0.920–0.990) Beta Van Rijn et al. (2006)
Specificity 0.868 (0.855–0.880) Beta Schroy et al. (2013)

Increased rates after polypectomy (hazard ratio)

Low risk 2 (1–3) Log-normal Assumed
High risk 3 (2–4) Log-normal Assumed

Costs ($)

Colonoscopy 10,000 (9,000–11,000) Log-normal Assumed
Early clinical CRC, annual costs 21,524 (20,000–23,000) Log-normal Assumed
Late clinical CRC, annual costs 37,000 (35,000–39,000) Log-normal Assumed

Utilities

Preclinical CRC 1.000 (0.980–1.000) Log-normal Assumed
Early clinical CRC 0.855 (0.700–0.900) Log-normal Ness et al. (1999)
Late clinical CRC 0.300 (0.200–0.400) Log-normal Ness et al. (1999)

TABLE 3 | Posterior means, standard deviations, maximum-a-posteriori (MAP)
estimate and 95% credible interval (CrI) of calibrated parameters of the
microsimulation model of the natural history of CRC.

Parameter Mean SD MAP 95% CrI

LB UB

padeno 0.264 0.008 0.264 0.248 0.281
psmall 0.706 0.019 0.711 0.667 0.741
l 6.24E−06 3.16E−06 4.52E−06 1.92E−06 1.41E−05
γ 2.639 0.112 2.635 2.432 2.877
λ2 0.035 0.002 0.035 0.031 0.039
λ3 0.021 0.001 0.021 0.020 0.023
λ4 0.374 0.036 0.368 0.310 0.448
λ5 0.247 0.021 0.251 0.209 0.288
λ6 0.457 0.076 0.435 0.345 0.664
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the cohort across the adenoma health states, also have a high
correlation of 0.482. These high correlations result from the
model calibration being non-identifiable. In a previous study, we
found that the estimation of the 9 parameters of this model structure
is non-identifiable via. calibration because the relationship between
the parameters is highly colinear when using the current four
calibration targets (Alarid-Escudero et al., 2018).

The calibrated model accurately predicted the calibration
targets for both the means and the uncertainty intervals.
Figure 4 shows the internal validation of the calibrated model
by comparing calibration targets with their 95% confidence
interval (CI) and the model-predicted posterior means
together with their 95% posterior PI.

The joint distribution of the incremental quality-adjusted life
years (QALYs) and incremental costs of the 10 years colonoscopy
screening strategy vs. the no-screening strategy resulting from the
PSA for the four uncertainty quantification approaches of the
calibrated parameters are shown in Figure 5. When accounting
for the uncertainty on the external parameters, there is little
difference in the spread of the CEA outcomes when considering
the joint distribution of the calibrated parameters vs. using only
the MAP estimates (approaches 1 and 2 on the top row of
Figure 5, respectively). The joint distribution of the outcomes
is slightly wider when considering uncertainty on all parameters
compared to when fixing the calibrated parameters at their MAP
estimate. The third approach reflects the impact of only varying
the calibrated parameters on the joint distribution of incremental
QALYS and incremental costs, which is much narrower than
approaches 1 and 2. The fourth approach, which characterizes

uncertainty of the calibrated parameters using the method of
moments without accounting for correlation, has the widest
spread on the distribution of the outcomes.

For the VOI analysis, we found value in eliminating
uncertainty by having a positive EVPI in the parameters of the
CEA of the 10-years colonoscopy screening strategy (Figure 6).
However, the value varies by uncertainty quantification andWTP
threshold. The first and second approaches to uncertainty
quantification had similar EVPI, reaching their maximum of
$653 and $685, respectively, at a $66,000/QALY WTP threshold.
For WTP thresholds greater than $66,000/QALY, the first
approach had a higher EVPI than the second approach. When
we consider only the uncertainty for the calibrated parameters
(approach 3), the EVPI is the lowest across all WTP thresholds
with an EVPI of $0.1 at a WTP threshold of $66,000/QALY and
reaching its highest of $212 at a WTP threshold of $71,000/
QALY. The fourth approach reaches a maximum of $809 at a
WTP threshold of $66,000/QALY and is the highest compared to
the other approaches up to aWTP threshold of $81,000/QALY, at
which the first approach has the highest EVPI.

DISCUSSION

In this study, we characterized the uncertainty of a realistic
microsimulation model of the natural history of CRC by
calibrating its parameters to different targets with varying degrees
of uncertainty using a Bayesian approach on an HPC environment
using EMEWS.We also quantified the value of the uncertainty of the

FIGURE 2 | Prior and posterior marginal distributions of calibrated parameters of the microsimulation model of the natural history of CRC.
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calibrated parameters on the cost-effectiveness of a 10-year
colonoscopy screening strategy with a VOI analysis. EMEWS has
been previously used to calibrate other microsimulation DMs
(Rutter et al., 2019; Rutter et al., 2019) but has not been
previously used to conduct a PSA with the calibrated parameters
and calculate the VOI. Although Bayesian calibration can be a
computationally intensive task, we reduce the computation time
by evaluating the likelihood of different parameter sets in multiple
cores simultaneously on an HPC setup, which IMIS allows.

We found that different characterizations of the uncertainty of
calibrated parameters affect the expected value of reducing
uncertainty on the CEA. Ignoring inherent correlation among
calibrated parameters on a PSA overestimates the value of
uncertainty. When the full posterior distribution of the
calibrated parameters is not readily available, the MAP could be
considered the best parameter set. In our example, not considering
the uncertainty of calibrated parameters on the PSA did not seem
to have a meaningful impact on the uncertainty of the CEA
outcomes and the EVPI of the screening strategy. The
uncertainty associated with the natural history was less valuable
than the uncertainty of the external parameters. However, these
results should be taken with caution because this analysis is
conducted on a fictitious model with simulated calibrated
targets. Modelers should analyze the impact of a well-conducted
characterization of the uncertainty of calibrated parameters on
CEA outcomes and VOI measures on a case-by-case basis.

There are examples of calibrated parameters being included in
a PSA. For instance, by taking a certain number of good-fitting
parameter sets (Kim et al., 2007; Kim et al., 2009), bootstrapping
with equal probability good-fitting parameter sets obtained
through directed search algorithms (e.g., Nelder-Mead) (Taylor
et al., 2012), or conducting a Bayesian calibration, which
produces the joint posterior distribution of the calibrated
parameters (Menzies et al., 2017). However, this is the first
manuscript to conduct a PSA and VOI analysis using
distributions of calibrated microsimulation DM parameters
that accurately characterize their uncertainty.

Currently, Bayesian calibration of microsimulation DMs
might not be feasible on regular desktops or laptops. To
circumvent current computational limitations from using
Bayesian methods in calibrating microsimulation models,
surrogate models -often called metamodels or emulators-have
been proposed (O’Hagan et al., 1999; O’Hagan, 2006; Oakley and
Youngman, 2017). Surrogate models are statistical models like
Gaussian processes (Sacks et al., 1989a; Sacks et al., 1989b; Oakley
and O’Hagan, 2002) or neural networks (Hauser et al., 2012; Jalal
et al., 2021) that aim to replace the relationship between inputs
and outputs of the original microsimulation DM (Barton et al.,
1992; Kleijnen, 2015), which, once fitted, are computationally
more efficient to run than the microsimulation DM. Constructing
an emulator might not be a straightforward task because the
microsimulation DM still needs to be evaluated at different

FIGURE 3 | Scatter plot of pairs of deep model parameters with correlation coefficient and posterior marginal distributions.
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FIGURE 4 | Comparison between posterior model-predicted outputs and calibration targets. Calibration targets with their 95% CI are shown in black. The shaded
area shows the 95% posterior model-predictive interval of the outcomes and colored lines shows the posterior model-predicted mean based on 5,000 simulations using
samples from the posterior distribution. Upper panel refers to adenoma-related targets and lower panel refers to CRC incidence targets by stage.

FIGURE 5 | Incremental costs and incremental QALYs of 10-years colonoscopy screening vs. no screening under different assumptions of characterization of the
uncertainty of both calibrated and external parameters. The red star corresponds to the incremental costs and incremental QALYs evaluated at the maximum-a-
posteriori estimate of the calibrated parameters and the mean values of the external parameters.
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parameter sets, which could also be computationally expensive.
Furthermore, the statistical routines to build the emulator may
not be readily available in the programming language in which
the microsimulation DM is coded. These are situations where
EMEWS can be used to construct metamodels efficiently;
however, this is a topic for further research.

Researchers might actively avoid questions that would require
HPC due to the perceived difficulties involved or make do with less-
than-ideal smaller-scale analyses (e.g., choosing the maximum
likelihood estimate or a small set of parameters instead of the
posterior distribution for uncertainty quantification) and the
robustness of the conclusions can suffer as a result.

In this article, we showed that EMEWS could facilitate the use of
HPC to implement computationally demanding Bayesian
calibration routines to correctly characterize the uncertainty of
the calibrated parameters of microsimulation DMs and propagate
it in the evaluation of CEA of screening strategies and quantify their
value of information. This study’s methodology and results could
guide a similar VOI analysis on CEAs using microsimulation DMs
to determine where more research is needed and guide research
prioritization.
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