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Abstract

The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450

oxidoreductase (POR). The aim of this study was to investigate the activity of the

equine CYP3A94 using a system that allows to regulate the POR protein levels in

mammalian cells. CYP3A94 and the equine POR were heterologously expressed in

V79 cells. In the system used, the POR protein regulation is based on a

destabilizing domain (DD) that transfers its instability to a fused protein. The

resulting fusion protein is therefore degraded by the ubiquitin-proteasome system

(UPS). Addition of ‘‘Shield-1’’ prevents the DD fusion protein from degradation. The

change of POR levels at different Shield-1 concentrations was demonstrated by

cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry.

The alteration of CYP3A94 activity was investigated using a substrate (BFC) known

to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically

active and its activity could be significantly elevated by co-expression of POR.

Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR

cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different

Shield-1 concentrations resulted in a decrease in POR protein shown by Western

immunoblot analysis. Cytochrome c reduction did not change significantly, but the

CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and

1 mM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94

POR cells with and without Shield-1 were compared. The basal activity levels of

V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is

not degraded without Shield-1. Shield-1 decreased POR protein levels and

CYP3A94 activity suggesting that Shield-1 might impair POR activity by an
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unknown mechanism. Although regulation of POR with the pPTuner system could

not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for

further experiments to characterize the equine CYP3A94 since the CYP activity

was significantly enhanced with co-expressed POR.

Introduction

Cytochrome P450 enzymes (CYPs) are accountable for the metabolism of a

variety of endogenous and exogenous substances. These enzymes are involved in

physiological processes such as the biosynthesis and degradation of steroids,

cholesterol, and other endogenous compounds, but they are also responsible for

the biotransformation of drugs and toxins [1, 2].

To date, 18 CYP families have been discovered in humans; the CYP families 1–3

are referred to as the most important enzymes for the biotransformation of drugs

[3]. Since they play a key role in many drug-drug interactions, research on these

CYPs is of prime importance. To predict interactions between two and more

therapeutics detailed knowledge about single CYPs is essential.

Whereas human and laboratory animal CYPs have been investigated thoroughly

[2, 4, 5], little is known about CYPs in companion animals including the horse.

Although complex medical care and multidrug treatment became more important

in equines, knowledge about equine CYPs requires further in depth investigation.

The human CYP3A subfamily is known to be responsible for the metabolism of

more than one-third of all therapeutics. Genes coding for the human CYP3A subfamily

include CYP3A4, CYP3A5, CYP3A7, and CYP3A43 with CYP3A4 and CYP3A5 being

the most important ones for drug metabolism [6]. In equines, the entire CYP3A

subfamily gene cluster has been recently annotated by our group and consists of seven

genes: CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129

[7]. To date, only a few studies are available on equine CYP genes, their expression

levels in equine tissues [7–10], and their functional characterization [11–14]. CYP3A94

is one of the highly expressed equine CYPs in the liver but no functional studies are

available in the literature [9]. To properly characterize equine single CYPs,

heterologous expression of CYPs using an in vitro system is necessary.

The enzyme NADPH P450 oxidoreductase (POR) is crucial for the function of

CYPs [15, 16]. This enzyme is a membrane-bound flavoprotein in the

endoplasmic reticulum (ER) that consists of two domains; one domain contains

the nicotine adenine dinucleotide phosphate (NADPH) binding site and flavin

adenine dinucleotide (FAD), and the other domain includes flavin mononu-

cleotide (FMN), which interacts with CYPs and other enzymes such as heme

oxygenase and enzymes for sterol biosynthesis. POR has been demonstrated to

enhance the catalytic activity of CYPs by supplying electrons to the CYP catalytic

cycle [17]. In addition, it has already been shown that the POR:CYP ratio is

important for optimal CYP activity. Depending on the CYP and the substrate,
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different POR:CYP ratios are necessary to achieve maximal CYP activity [14]. In

order to study different POR:CYP ratios for each CYP, an in vitro system allowing

regulation of POR levels would be an advantage.

Hamster lung fibroblasts (V79 cells) have frequently been used for

characterization of single CYPs because of the absence of endogenous CYP activity

and other advantages such as fast growth and a stable karyotype [12, 18, 19]. Since

it is known that the level of POR in V79 cells is relatively low [20], it is likely that a

low endogenous levels of POR is a limiting factor for the activity of CYPs

heterologously expressed in V79 cells. Schneider et al. and Schmalix et al. reported

that the activity of heterologously expressed CYPs in V79 cells was increased after

POR co-expression [20, 21].

Overall, this cell line is suitable for regulation of POR due to its low background

activity of endogenous POR.

The system used in this work facilitates the regulation of specific protein levels

in mammalian cells. The protein regulation is based on a protein destabilizing

domain (DD) that transfers its instability to a fused protein of interest and the

resulting fusion protein is therefore degraded by the ubiquitin-proteasome system

(UPS) [22–24]. Addition of a small and specific molecule (Shield-1) prevents the

DD fusion protein from degradation and leads to accumulation of the protein in

the cell [24]. Several reasons led to the decision to use the pPTuner system: its

reversibility, specificity and the fast and easy regulation on protein level.

The goals of this study were to stably express the equine CYP3A94 in V79 cells,

establish an in vitro system enabling the rapid and sensitive regulation of POR-

concentrations in the cell, and to investigate the activity of CYP3A94 at different

POR concentrations.

Materials and Methods

RNA extraction, cDNA synthesis and amplification of equine POR

Liver samples were taken at the abattoir (Horisberger, Burgdorf, Switzerland)

from an 18 year old warmblood mare within 30 minutes after slaughter. Total

mRNA was extracted from small liver samples of about 25 mg using TRIzol

Reagent (Invitrogen, Carlsbad, CA, USA) and RNeasy Kit (Qiagen, Hilden,

Germany). Reverse transcription of 1 mg total RNA to cDNA was performed with

QuantiTect Reverse Transcription (Invitrogen, Carlsbad, CA, USA) according to

the manufacturer’s manual.

Primers located in the ATG (59-ATGGGGGACTCCAACATGG-39) and TAG

(59-CTAGCTCCACACGTCCAGC-39) region were used to amplify the complete

coding sequence (CDS) of the equine POR. The primers were designed manually

or using Primer3 software (http://www.bioinformatics.nl/cgi-bin/primer3plus/

primer3plus.cgi) and compared to the equine RefSeq mRNA data bank using

NCBI BLAST search (http://blast.ncbi.nlm.nih.gov) to avoid unspecific binding.

The primers were synthesized by Microsynth (Balgach, Switzerland). PCR

reactions were performed with TopTaq DNA Polymerase (Qiagen, Hilden,
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Germany) and repeated on the cDNA of the liver of three other horses (two

female, one male, 3–24 years, 2 warmbloods and one Freiberger; tissue samples

were obtained from the abattoir Horisberger (Burgdorf, Switzerland) [25].

Subsequently, the PCR products were sequenced in order to find possible

polymorphisms using an automated ABI 3730 capillary sequencer (Applied

Biosystems, Carslbad, CA, USA). Internal sequencing primers were used in

addition to the PCR primers used for amplification of the gene. The resulting

DNA sequence was compared to the published sequence of equine POR

(NM_001122655) using Sequencher 4.9 (GeneCodes, Ann Arbor, MI, USA).

Construction of expression vectors and cloning

The equine CYP3A94 sequence corresponds to the one published by Schmitz et al.

and is deposited in the EMBL data bank under the reference number

NM_001190939 [7]. The cDNA encoding the CYP3A94 was amplified using

Expand High Fidelity Plus PCR System (Roche Basel, Switzerland). Primers were

designed manually including the sequence of an HA-tag at the 39- end that can be

used for detection since specific antibodies detecting this CYP isoform are not

available. Subsequent sequencing was performed to check the sequence of the

inserts. PCR products were next digested with RsrII and subsequently cloned into

the RsrII-cleaved lentiviral vector pRRL 2xRsrII TD as described elsewhere

[26, 27] (kindly provided by Patrick Salomon, University of Geneva, Switzerland).

The pPTuner system from Clontech (Mountain View, CA, USA) was used to

regulate the expression levels of POR. The equine POR coding sequence was

cloned into the multiple cloning site (MCS) directly behind a destabilizing

domain (DD) to construct a fusion protein. This protein construct named DD/

POR is expected to be unstable and degraded by the ubiquitin-proteasome system.

Addition of the small, synthetic and specific ligand Shield-1 to the cell culture

medium results in binding of Shield-1 to the DD domain of the fusion protein.

Consequently, the DD protein is folded correctly, thus preventing its degradation.

Hence the DD/POR protein accumulates in the cell if Shield-1 is added [24].

To construct the vector with DD/POR as a fusion protein, the complete coding

sequence of the equine POR was cloned into the MCS of the vector pPTuner

IRES2 (Clontech, Mountain View, CA, USA) using the Infusion Dry Down

Cloning Kit (Clontech, Mountain View, CA, USA) according to the manufac-

turer’s recommendations. Afterwards, the sequence DD/POR was cloned into the

lentivirus vector pRRL 2x RsrII TD as described above.

Production of two stable cell lines V79-CYP3A94 and V79-

CYP3A94/DD-POR

HEK T293 cells (CRL-11268, ATCC) were cultivated in Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal calf serum, 4 mM L-glutamine,

100 U/ml penicillin and 100 mg/ml streptomycin.
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V79 cells (a kind gift of J. Buters, TU München, Germany; [28]) were cultivated

in DMEM supplemented with 10% fetal calf serum, 1 mM sodium pyruvate,

4 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin (all reagents

were purchased from Gibco, Carlsbad, CA, USA).

For virus production HEK T293 cells were grown to 70% confluence in

150 mm dishes (TPP, Trasadingen, Switzerland) and were chemically transfected

with FuGene HD Transfection Reagent (Roche, Basel, Switzerland) at a 3:1 ratio

FuGene:DNA, with 5 mg of the pRRL vector containing the sequence of CYP3A94

or DD/POR, respectively, 3 mg of the packaging protein-expressing vector (pPax2)

and 2 mg of the envelope protein VSV-G-expressing vector (pMD2G). Virus stock

was collected at day 2 and day 3 after transfection. Authorisation for the use of

this cell line has been given by the Federal Office for the Environment, Federal

Coordination Centre for Biotechnology in Bern, Switzerland (#A141301).

To produce the stable cell line V79-CYP3A94, native V79 cells were grown to

30% confluence in 6-well-plates (TTP, Trasadingen, Switzerland) and transduced

three times with 2 ml of virus stock each, containing CYP3A94. Transduction

efficiency was monitored by immunocytochemistry with an antibody against the

HA tag (mouse anti-HA, 1:100, Covance, Princeton, NJ, USA) and a goat anti-

mouse as secondary antibody (Alexa Fluor 488, 1:500, Rockland, Gilbertsville, PA,

USA). To ensure a homogenous cell line, single cell-clones were selected based on

a stable and intense fluorescence signal and were further cultivated. DNA

sequencing was conducted to confirm that the cells contain the new gene.

For production of the stable cell line V79-CYP3A94/DD-POR, one defined

clone of the cell line V79-CYP3A94 was grown to 30% confluence in 6-well-plates

(TTP, Trasadingen, Switzerland) and transduced three times with one passage in

between with 2 ml of virus stock each containing DD/POR. Transduction

efficiency was monitored by immunocytochemistry with an antibody against the

DD protein (mouse anti-DD-antibody, 1:200, Clontech, Mountain View, CA,

USA) and a goat anti-mouse as secondary antibody (Alexa Fluor 488 mouse anti-

HA, 1:500, Rockland, Gilbertsville, PA, USA). Single cell-clones were selected for

this cell line as well, and DNA sequencing was performed to confirm the presence

of DD-POR.

Regulation of POR

To regulate POR in V79-CYP3A94/DD-POR cells, Shield-1 (Clontech, Mountain

View, CA, USA) was added to the cell culture medium for 6 or 24 hours at

100 nM, 500 nM or 1 mM, respectively. In addition, the cells were incubated with

the solvent ethanol using the respective concentrations and incubation times.

Cell viability and total cellular protein

Cell viability was tested after incubation with the different substances using

PrestoBlue (Invitrogen, Carlsbad, CA, USA), a resazurin based cell viability

reagent. Briefly, PrestoBlue was added 1:10 to the cell culture medium at the end
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of the incubation time and incubated for additional 30 minutes at 37 C̊. The

fluorescent signal was measured with a plate reader (HT Synergy, Biotek,

Winooski, VT, USA) using an excitation of 530/25 nm and emission detection of

590/35 nm.

Total cellular protein was measured using o-phthalaldehyde (OPA), a primary

amine-reactive fluorescent detection reagent from Thermo Scientific (Waltham,

MA, USA). OPA (50 ml) was added to 50 ml sample and fluorescence was

measured using a plate reader (HT Synergy, Biotek, Winooski, VT, USA) after

5 minutes incubation time using 360/40 nm for excitation and 460/40 nm for

emission.

POR activity

To measure POR activity, a cytochrome c reductase assay (Sigma-Aldrich, St.

Louis, MO, USA) was performed using a slightly modified protocol compared to

the manufacturer’s instructions. Briefly, cells were grown in 24-well-plates to 80%

confluence at time of incubation with the substances. Total cellular protein was

harvested as described elsewhere [20]. 40 mg of total cellular protein was used for

each reaction performed in 96-well plates (Greiner, Kremsmünster, Austria).

Reduced cytochrome c was detected by measuring the absorption at 550 nm for

5 minutes with a plate reader (HT Synergy, Biotek, Winooski, VT, USA). To

adjust the values to a 1 cm cuvette, path length was corrected using the plate

readers program Gene 5 (Version 2.1., Biotek, Winooski, VT, USA). The

cytochrome c reduction was calculated using a molar extinction coefficient for

reduced cytochrome c of 21 mM21 cm21.

CYP3A94 activity

To determine the activity of equine CYP3A94, a fluorescence-based assay with 7-

benzyloxy-4-trifluoromethylcoumarin (BFC), purchased from BD Gentest

(Franklin Lakes, NJ, USA), was performed as described previously [29]. Cells were

seeded in 24-well plates to 80% confluence at the time of incubation with BFC and

the additional substances, e.g. Shield-1. 100 mM BFC was directly added to the cell

culture medium and incubated for 24 hours, unless indicated otherwise.

Afterwards, the supernatant was diluted 1:2 with a quenching solution (0.25 M

Tris in 60% (v/v) acetonitrile). The metabolism from BFC to the fluorescent

metabolite 7-hydroxy-4-trifluoromethylcoumarin (HFC) was measured with a

plate reader (HT Synergy, Biotek, Winooski, VT, USA) using excitation at 400/

30 nm and emission at 530/25 nm.

Substances interacting with the UPS and ERAD

Substances interacting with the UPS and ER-associated protein degradation

(ERAD) were tested in V79-CYP3A94/DD-POR cells to investigate the

degradation of the DD/POR protein and its behavior after Shield-1 incubation.

Tunicamycin, an ER stress inducer activating the ER UPS (1 mM), brefeldin A, an
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inhibitor of the ER- to-Golgi transport (3.57 mM) and MG132, a chemical

inhibitor of proteasomes (1 mM, purchased from Sigma-Aldrich, St. Louis, MO,

USA) were incubated for 6 hours. Simultaneously, the cells were incubated with

BFC and with or without Shield-1 (1 mM) for 6 hours or with ethanol as vehicle

control. At the end of the incubation time, CYP3A94 activity and cell viability

were measured as described above. Concentrations of tunicamycin, brefeldin A,

and MG132 are based on preliminary tests in our laboratory and literature data to

minimize effects on cell viability and guarantee an effective concentration of the

compounds used [30–32].

Western immunoblot analysis

V79-CYP3A94/DD-POR cells were cultured in 24-well plates incubated with

Shield-1 for 24 hours at concentrations of 100 nM, 500 nM, and 1 mM,

respectively. V79-CYP3A94 cells were used as negative control. Total cellular

protein was extracted as described elsewhere [20]. Briefly, the cells were scraped

from the wells and centrifuged at 1500 g. The resulting cell pellet was shock-

frozen in liquid nitrogen and stored at 280 C̊. Protein from a 7.5% SDS-PAGE

gel was transferred to a PVDF membrane (Millipore, Billerica, MA, USA).

Membranes were blocked with 1% casein in PBS (Biorad, Hercules, CA, USA) for

1 hour at RT and incubated over night at 4 C̊ with three antibodies: mouse anti-

DD antibody (1:1000, Clontech, Mountain View, CA, USA), mouse anti-HA

antibody to mark CYP3A94 (1:1000, Covance, Princeton, NJ, USA), and mouse

anti-actin antibody (1:16’000, DSHB, University of Iowa) for normalization to a

housekeeping gene. The membranes were washed with TBST buffer and exposed

to the secondary antibody IRDye 800 goat anti-mouse (Rockland, Gilbertsville,

PA, USA) at a dilution of 1:10’000 for 1 hour at room temperature. For signal

detection and densitometric analysis Odyssey CLx infrared imaging system (LI-

COR, Lincoln, NE, USA) and the Odyssey analysis software version 2.1 (LI-COR,

Lincoln, NE, USA) were used.

Immunocytochemistry

V79-CYP3A94/DD-POR and V79-CYP3A94 cells (control) were cultured on

12 mm coverslips (Menzel GmbH, Braunschweig, Germany), in 24 well plates

(TPP, Trasadingen, Switzerland) as described above. Shield-1 was added to obtain

a final concentration of 1 mM and incubated for 24 hours. The cells were fixed

with 4% paraformaldehyde for 20 minutes and permeabilized with 2% Triton-X-

100 for 20 minutes at room temperature. Subsequently, the cells were incubated

simultaneously with primary antibodies (mouse anti-DD-antibody 1:500

(Clontech, Mountain View, CA, USA and either with an endoplasmic reticulum

marker, rabbit anti-calnexin-antibody 1:500 (Novus Biologicals, Cambridge, UK)

or a Golgi complex marker, rabbit anti-giantin-antibody 1:1000 (Abcam,

Cambridge, UK)) for 2 hours at room temperature. To detect the anti-DD-

antibody a goat anti-mouse antibody with Alexa Fluor 555 as a fluorochrome was
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used. A goat anti-rabbit antibody with Alexa Fluor 488 as a fluorochrome was

used to detect the anti-calnexin-antibody and anti-giantin-antibody (all secondary

antibodies: 1: 500, Rockland, Gilbertsville, PA, USA). All secondary antibodies

were incubated together with Hoechst 33342 (1:10000, Invitrogen, Carlsbad, CA,

USA) for 1 hour at room temperature. All washing steps were performed with

PBS. Finally, coverslips were mounted onto microscope slides with fluorescence

mounting medium (Dako, Glostrup, Denmark) and dried for 1 hour at room

temperature. Subsequently, the staining was observed, and images were captured

with a fluorescence microscope (Zeiss Axio Imager Z.1 equipped with an

AxioCam MRm digital camera, Carl-Zeiss AG, Feldbach, Switzerland). All

experimental and corresponding control images were obtained with identical

camera settings. Computer software (ImageJ, version 1.4.3, National Institutes of

Health, Bethesda, Md. Available at: rsbweb.nih.gov/ij/index.html.) was used to

adjust the contrast equally for experimental and control images.

Statistical analysis

Data from experiments comparing POR and CYP activity in V79-CYP3A94 and

V79-CYP3A94/DD-POR cells without or with Shield-1 incubation were analyzed

using one-way analysis of variance (ANOVA). The comparisons were made using

the Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn’s Test). Data were

analyzed with NCSS statistical software (version 2007, Kaysville, UT, USA). P

values ,0.05 were considered significant.

A flowchart of the experimental procedure is shown in Figure 1.

Results

Amplification, sequencing and cloning of the equine POR gene

Amplification and subsequent sequencing of the obtained equine POR genes

revealed one variation (c.569G .A) in liver samples of all four horses and another

variation in two out of four liver samples (c.112C .G) when compared with the

annotated equine POR gene at the EMBL data bank (NM_001122655 Both

variants resulted in one amino acid change, but none of them are located in

known functional domains of the POR. For further experiments, cDNA of one

horse with both variants was used. The complete CDS of the DD sequence and

equine POR was successfully cloned into the vector pRRL 2x RsrII TD. Colony

PCR confirmed the insertion of the equine POR with a band of approximately

2037 bp. Sequencing revealed no further mutations. The CDS of equine CYP3A94

was also successfully cloned and subsequent sequencing revealed no further

mutations.

Tuning of POR Levels in Heterologously Expressed CYP3A94

PLOS ONE | DOI:10.1371/journal.pone.0113540 November 21, 2014 8 / 20

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi


Production of two stable cell lines V79-CYP3A94 and V79-

CYP3A94/DD-POR

Native V79 cells were successfully and stably transduced with the corresponding

lentivirus vectors. Transduction efficiency of CYP3A94 and POR was tested by

immunocytochemistry using a specific antibody against the HA-tag and against

the DD protein, respectively. For both recombinant cell lines, single clones

showing a stable and strong fluorescence were selected for further experiments. To

prove the presence of CYP3A94 and POR in the recombinant V79 cells, gDNA

was extracted and analyzed. The complete CDS of both, CYP3A94 and POR, was

successfully amplified by PCR and sequencing revealed no further mutations.

POR protein expression

A specific antibody against the DD protein detected the DD/POR fusion protein

showing the expected band corresponding to a relative molecular mass of about

90 kDa. This is in agreement with the calculated molecular mass of the POR

(78 kDa) in addition to the DD protein (12 kDa). Actin was used as housekeeping

Figure 1. Flowchart of the experimental procedure. RNA was extracted from equine liver cells and equine POR and CYP3A94 were amplified and
sequenced. In order to regulate the enzyme POR, it was first cloned behind a destabilization domain (DD) into the vector pPTuner IRES2 to construct a DD/
POR fusion protein. Addition of the ligand Shield-1 results in binding to the DD domain prevents degradation; hence the DD/POR protein accumulates in the
cell. The DD/POR and CYP3A94 were cloned into the lentivirus vector pRRL and HEK T293 were transfected for virus production. To produce the stable
cells lines V79-CYP3A94 and V79-CYP3A94/DD-POR, V97 cells were transduced three times. POR and CYP3A94 were assessed for activity, localization,
ER-associated degradation (ERAD) and ubiquitin-proteasome system (UPS).

doi:10.1371/journal.pone.0113540.g001
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protein to assure the same amount of protein in each slot. Shield-1 is supposed to

protect the DD/POR protein from degradation and consequently, an increase in

DD/POR should be detected in samples with increasing Shield-1 concentrations.

However, the amount of POR protein decreased concentration-dependently as

depicted in Figure 2. At Shield-1 concentrations of 500 nM and 1 mM only about

half of the DD/POR protein remained.

POR activity

Cytochrome c reduction was significantly increased (p,0.05) in V79-CYP3A94/

DD-POR cells compared to V79-CYP3A94 cells as shown in Figure 3. Incubation

with increasing Shield-1 concentrations did not result in an increase of

cytochrome c reduction. No significant change in POR activity in V79-CYP3A94/

DD-POR cells was observed after incubation with Shield-1 compared to V79-

CYP3A94/DD-POR cells without Shield-1. To support these results, the cells were

incubated with 30 mM paraquat and cell viability was measured. POR is known to

catalyze the reduction of paraquat, which subsequently initiates the redox cycle

generating reactive oxygen species [33, 34]. No change in cell viability could be

detected after incubation with paraquat together with increasing Shield-1

concentrations (data not shown) confirming the results of the cytochrome c

reductase assay.

CYP3A94 activity

Equine CYP3A94 without POR metabolized BFC to the fluorescent product HFC

and thus was demonstrated to be active. Furthermore, CYP3A94 activity was

significantly increased in V79-CYP3A94/DD-POR cells compared to V79-

CYP3A94 cells without additional POR. CYP3A94 activity was shown to be more

than four-fold higher in V79-CYP3A94/DD-POR cells without incubation of

Shield-1. However, incubation with increasing Shield-1 concentrations resulted in

decreased CYP3A94 activity. After incubation with 1 mM Shield-1 for 24 hours,

the CYP3A94 activity was reduced by almost half (Figure 4).

Figure 5 shows the effect of tunicamycin, brefeldin-A, and MG132 on CYP3A94

activity in V79-CYP3A94/DD-POR cells. All three substances reduced the

CYP3A94 activity to approximately half of V79-CYP3A94/DD-POR activity

without Shield-1 incubation. The effect of the substances on cell viability is

illustrated in Figure 6.

Immunocytochemistry

Immunocytochemistry was performed to investigate the possibility of POR

transport from the ER to the Golgi apparatus. Simultaneous labeling of POR and

the ER or the Golgi apparatus in presence or absence of Shield-1 did not

demonstrate differences in co-localization of POR with both cell organelles

(Figure 7).
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Discussion

In this study, we demonstrated that heterologously expressed equine CYP3A94 is

metabolically active and co-expression of POR in V79 cells enhances its activity.

This finding indicates that the activity of CYP3A94 is dependent on an adequate

POR level. However, the regulation of POR levels through the fused DD motif

remained unsuccessful.

CYP3A94 metabolized BFC to the fluorescent product HFC as reported for

human CYP3A4 [29] and equine CYPs of the 3A subfamily. We have recently

demonstrated that metabolic reactions and effects of known CYP3A inhibitors

differed between the equine CYP3A isoforms investigated [25].

BFC is a suitable substance for screening the activity of CYPs because of its fast

and simple application and detection.

Western immunoblot analysis of V79-CYP3A94/DD-POR cell homogenates

revealed a protein with a molecular mass of about 90 kDa, thereby confirming

that POR fused to the DD motif was properly expressed. Accordingly, the POR

Figure 2. Incubation of V79-CYP3A94/DD-POR cells with Shield-1 leads to a decrease of POR protein.
(A) V79-CYP3A94/DD-POR cells (POR) were incubated with 100 nM, 500 nM, or 1 mM Shield-1 (Shld) for
24 hours. Total cell homogenates were used for Western immunoblot analysis with anti-DD antibody, anti-HA
antibody, and anti-actin antibody as a housekeeping protein. (B) Densitometric analysis of Western
immunoblot bands normalized to actin; all values are presented in percent AU per mg total cellular protein;
density of V79-CYP3A94/DD-POR cells without Shield-1 was set as 100%. Data are mean ¡ SD of 3
independent experiments.

doi:10.1371/journal.pone.0113540.g002
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activity in V79-CYP3A94/DD-POR cells was significantly higher compared to

V79-CYP3A94 cells. This result thus demonstrates that fusing the DD domain to

POR did not lead to gross folding defects, since the POR was metabolically active.

Apparently, the two DNA variants detected in the POR sequence expressed in our

experiment do not interrupt the function of POR. Importantly, a 4.5 fold higher

CYP3A94 activity was seen in V79-CYP3A94/DD-POR cells (without Shield-1)

when compared to V79-CYP3A94 cells, thus demonstrating that CYP3A94 activity

is dependent on an adequate POR level. These results also provide evidence that

co-expressed POR is able to transfer electrons to the CYP3A94 in our system.

Unexpectedly, the basal POR and CYP3A94 activity levels in V79-CYP3A94/

DD-POR cells without Shield-1 were higher than anticipated. The DD/POR

fusion protein was expected to be degraded with only marginal amount of POR

present in the cells [24, 35]. Our results indicate that the DD/POR protein is not

degraded as expected. As the UPS is located in the cytosol, degradation of the

fusion protein is dependent on its localization in the different cell compartments

[22]. In our case, POR is an enzyme attached N-terminally to the ER membrane

and degradation of DD/POR is dependent on the ER-associated degradation

system and the ER-unfolded protein response (UPR) [36, 37]. There is evidence

that degradation of DD is impaired if localized in the ER lumen [22], but no

previous studies on the fusion of DD with a membrane-bound enzyme in the ER

like the POR are available in the literature. The N-terminal end of POR serves as

Figure 3. POR activity is significantly increased in V79-CYP3A94/DD-POR cells. V79-CYP3A94/DD-
POR cells (POR) were incubated with 100 nM, 500 nM, or 1 mM Shield-1 for 24 hours. All values are
presented in percent reduced cytochrome c/min/mg total cellular protein; activity in V79-CYP3A94/DD-POR
cells without Shield-1 was set as 100%. Data are mean ¡ SD of 5 or more independent experiments;
significant differences to the control V79-CYP3A94 are marked by asterisks; * 5p,0.05.

doi:10.1371/journal.pone.0113540.g003
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an anchor to the membrane of the ER and its end appears to be flexible [38, 39].

Thus, it is possible that the DD protein reaches into the ER lumen and is not

recognized for degradation. The ERAD can be divided in four steps: substrate

recognition, dislocation across the lipid bilayer, addition of polyubiquitin adducts,

and degradation by the 26S proteasome. It is likely that the first or the second step

failed because the POR in our experiment is still functional and capable of

transferring electrons to the CYP. This would not be possible if the POR had

already been dislocated from the ER membrane by the ERAD (step 2) since the

POR is no longer able to transfer electrons to the CYPs if it is not attached to the

ER membrane [37, 39]. Alternatively, it is possible that the ER is less sensitive to

elevated DD levels and therefore the UPR is not activated, which would be

necessary for the ERAD to function efficiently [40].

To investigate some of these possibilities in our system, the effects of

tunicamycin, an ER stressor and the proteasome inhibitor MG132 were

investigated. Tunicamycin is known to activate the ER UPR. Indeed, incubation of

V79-CYP3A94/DD-POR cells with tunicamycin (1 mM, 6 hours) led to a

reduction of CYP3A94 activity indicating that the DD/POR protein is transported

into the cytosol and is degraded by the ubiquitin-proteasome system, thus

supporting the results of Sellmyer et al. [22]. Addition of the proteasome inhibitor

MG132 was expected to result in no change in CYP3A94 activity because DD/POR

without Shield-1 did not seem to be degraded as expected. The reduced CYP3A94

Figure 4. CYP3A94 activity is significantly increased in V79-CYP3A94/DD-POR cells, but decreases
after incubation with Shield-1. V79-CYP3A94/DD-POR cells (POR) were incubated with 100 nM, 500 nM,
or 1 mM Shield-1 for 24 hours. All values are presented in percent nmol HFC per mg total cellular protein;
activity in V79-CYP3A94/DD-POR cells without Shield-1 was set as 100%. Data are mean ¡ SD of 6 or more
independent experiments; significant differences to V79-CYP3A94 cells are marked by asterisks; significant
differences to V79-CYP3A94/DD-POR without Shield-1 are marked by plus; significant differences to V79-
CYP3A94/DD-POR with 100 nM Shield-1 are marked by pound key; */ + /# 5p,0.05.

doi:10.1371/journal.pone.0113540.g004
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activity monitored after administration of the proteasome inhibitor can be

explained by reduced cell viability but nevertheless supports our data showing that

DD/POR is not degraded in the absence of Shield-1.

Further studies are needed to investigate the detailed degradation mechanism of

DD localized in the ER and possible impairment of processes such as ERAD or

UPR should be examined. Fusing the DD motif to the C-terminal part of the POR

protein located at the cytosolic side of the ER membrane could be tested in order

to avoid the DD protein reaching into the ER lumen. However, key functional

domains, like the NADPH binding site, are present C-terminally, thereby possibly

leading to the generation of non-functional POR proteins [41, 42].

A higher POR expression in presence of Shield-1 was expected. In contrast,

addition of Shield-1 to V79-CYP3A94/DD-POR cells showed no increase in POR

activity as measured by cytochrome c reduction. It is possible that the cytochrome

c reductase assay was not sensitive enough to register the changes in POR activity

Figure 5. Activity of V79-CYP3A94/DD-POR cells after incubation with tunicamycin, brefeldin A or
MG132. V79-CYP3A94/DD-POR cells (POR) were incubated with tunicamycin (Tc, 1 mM), brefeldin A (BFA,
3.57 mM) and MG132 (MG, 1 mM) for 6 hours, with and without simultaneous incubation with Shield-1 (1 mM,
6 hours) and BFC (100 nM, 6 hours). All values are presented in percent activity per mg total cellular protein;
activity in V79-CYP3A94/DD-POR cells without Shield-1 was set as 100%. Data are shown as mean ¡ SD of
six independent experiments; significant differences to the control V79-CYP3A94 are marked by asterisks;
significant differences to V79-CYP3A94/DD-POR without Shield-1 are marked by plus; * / +5p,0.05.

doi:10.1371/journal.pone.0113540.g005
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after incubation with Shield-1. Thus, we used paraquat as an alternative method

to monitor POR levels. POR is known to catalyze the reduction of paraquat that

initiates the redox cycle resulting in the generation of reactive oxygen species

[33, 34]. If Shield-1 would increase the amount of POR, a decrease in cell viability

would result. Paraquat did not change cell viability supporting the results of the

cytochrome c reductase assay.

Intriguingly, CYP3A94 activity even decreased significantly after incubation of

V79-CYP3A94/DD-POR cells with Shield-1. Only half of the basal activity could

be measured after incubation with 500 nM and 1 mM Shield-1. Shield-1 is

supposed to have a high affinity to DD and therefore, unspecific binding to POR

or another structure is extremely unlikely [43–45]. Alternatively, proper binding

of Shield-1 to DD may generate long-range effects and hence disturb the

conformational changes in POR that are required to allow electron transfer to the

CYP. Thus, inhibition or modulation of these conformational changes will have a

Figure 6. Viability of V79-CYP3A94/DD-POR cells after incubation with tunicamycin, brefeldin A or
MG132. V79-CYP3A94/DD-POR cells (POR) were incubated with tunicamycin (Tc, 1 mM), brefeldin A (BFA,
3.57 mM) and MG132 (MG, 1 mM) for 6 hours, with and without simultaneous incubation with Shield-1 (1 mM,
6 hours). All values are presented in percent AFU per mg total cellular protein; viability of V79-CYP3A94/DD-
POR cells without Shield-1 was set as 100%. Data are mean ¡ SD of 6 independent experiments; significant
differences to the control V79-CYP3A94 are marked by asterisks; significant differences to V79-CYP3A94/
DD-POR with 1 mM Shield-1 are marked by plus; +/ *5p,0.05.

doi:10.1371/journal.pone.0113540.g006
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Figure 7. Immunofluorescence staining of DD-POR, Golgi apparatus, and ER. V79-CYP3A94/DD-POR
cells (POR) and V79-CYP3A94 were incubated with or without Shield-1 (1 mM), 1 mM) for 6 hours. The anti-
DD antibody (red) was used as marker for POR, calnexin and gigantin were used as specific marker for ER
(A) and Golgi apparatus (B) (green), respectively. Nuclei were stained with Hoechst 33342 (bottom row).
Scale bar 10 mm for all images.

doi:10.1371/journal.pone.0113540.g007
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direct impact on CYP3A94 activity [39, 41, 46]. It has been reported that the N-

terminal end of POR is flexible and susceptible to proteolytic cleavage. Thus, it is

tempting to speculate that the C-terminal end is released from the membrane

anchor due to conformational changes after Shield-1 binding. Cytochrome c is

not a natural electron acceptor, in contrast to CYP molecules, and it does not need

membrane-bound POR. In fact, it was reported that cytochrome c reduction can

be increased even if POR is present in soluble form [39, 46]. If that would be the

case, POR may remain functional for the cytochrome c, while being defective for

CYPs [39] thus explaining the decreased CYP3A94 yet constant POR activity.

The quantitative protein analysis of POR showed a concentration-dependent

decrease of POR after Shield-1 incubation, supporting the findings of decreased

CYP3A94 activity through Shield-1. Possible explanations include a diminished binding

of the antibody to the DD/POR protein after Shield-1 incubation due to structural

changes, or degradation of the DD/POR protein due to the misfolded protein. For

further investigation, molecular modeling of POR in the presence or absence of Shield-1

might help to understand the effect of Shield-1 on the POR structure.

It has been reported that Shield-1 might induce the transport of the protein out

of the ER to the Golgi apparatus [22]. Incubation of brefeldin A, an inhibitor of

the transport from ER to the Golgi apparatus resulted in a decrease in CYP3A94

activity. It is likely that this is due to the reduced viability after incubation with

3.57 mM brefeldin A for 6 hours. If the transport would be inhibited, an increase

in POR and hence an increase in CYP3A94 would be expected. The results from

our immunocytochemical experiments support these results since no differences

were obtained in presence or absence of Shield-1. Therefore, a transport of POR

from the ER to the Golgi apparatus seems unlikely.

Conclusions

We could demonstrate that equine CYP3A94 is metabolically active and its

activity is dependent on an adequate level of POR.

POR could not be regulated with the pPTuner system. On the one hand, the

DD/POR protein without Shield-1 was not degraded as intended and on the other

hand, incubation of Shield-1 led to a decrease of POR protein and CYP3A94

activity.

Although the regulation of POR was not successful, the cell line V79-CYP3A94/

DD-POR can be used for further experiments to characterize the equine CYP3A94

since the CYP activity was significantly enhanced with co-expressed POR.

To further investigate the optimal CYP:POR ratio, other tunable systems like

tet-on and tet-off or si-RNA [47-50] need to be explored.
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