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Abstract: With the aggravation of air pollution in recent years, a great deal of research on haze episodes
is mainly concentrated on the east-central China. However, fine particulate matter (PM; 5) pollution in
northwest China has rarely been discussed. To fill this gap, based on the standard deviational ellipse
analysis and spatial autocorrelation statistics method, we explored the spatio-temporal variation and
aggregation characteristics of PMj 5 concentrations in Xinjiang from 2001 to 2016. The result showed
that annual average PM; 5 concentration was high both in the north slope of Tianshan Mountain and
the western Tarim Basin. Furthermore, PM,; 5 concentrations on the northern slope of the Tianshan
Mountain increased significantly, while showing an obviously decrease in the western Tarim Basin
during the period of 2001-2016. Based on the result of the geographical detector method (GDM),
population density was the most dominant factor of the spatial distribution of PM; 5 concentrations
(g = 0.550), followed by road network density (g = 0.423) and GDP density (g = 0.413). During the study
period (2001-2016), the driving force of population density on the distribution of PM, 5 concentrations
showed a gradual downward trend. However, other determinants, like DEM (Digital elevation
model), NSL (Nighttime stable light), LCT (Land cover type), and NDVI (Normalized Difference
Vegetation Index), show significant increased trends. Therefore, further effort is required to reveal the
role of landform and vegetation in the spatio-temporal variations of PM, 5 concentrations. Moreover,
the local government should take effective measures to control urban sprawl while accelerating
economic development.

Keywords: PM; 5; spatio-temporal; geographical detector method; Xinjiang

1. Introduction

The atmospheric particulate matter with a diameter of 2.5 um or less (PM;5) is the common
indicator of air quality. Most of PM; 5 is emitted from power plants, industries, automobiles construction
sites, wild fires, and so on. Due to its multitudinous emission sources, PM; 5 pollution has gradually
become a worldwide environmental problem. PM, 5 contains some compounds, such as polycyclic
aromatic hydrocarbons (PAHs), heavy metals, and microorganisms [1]. Meanwhile, because of its tiny
size, PMj 5 has a long residence time in the atmosphere and can penetrate to the lower airways [2,3].
According to World Health Statistics 2016, the World Health Organization (WHO) estimated that more
than 90% people living in cities breathed air containing high levels of PM, 5 in 2014 [4]. One of the
most obvious problems induced by high levels of PM; 5 exposure is premature death [5]. Numerous

Int. . Environ. Res. Public Health 2020, 17, 2157; doi:10.3390/ijerph17062157 www.mdpi.com/journal/ijerph


http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-1813-0551
https://orcid.org/0000-0002-9091-6033
https://orcid.org/0000-0001-8483-1554
http://dx.doi.org/10.3390/ijerph17062157
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/6/2157?type=check_update&version=2

Int. |. Environ. Res. Public Health 2020, 17, 2157 2o0f 24

epidemiological studies have shown the harmful effects of long-term PM, 5 exposure on human
health [1,2,6-9]. Pun et al. [6] found that long-term PM; 5 exposure has a strong relationship with
increased mortality from respiratory disease, lung cancer, and cardiovascular disease in US elderly.
Li and Gao [2] found that particle pollution is significantly related to lung cancer mortality in China.
Hoek et al. [7] demonstrated that PM, 5 pollution has been highly correlated with a few adverse health
effects, such as respiratory and cardiovascular diseases. According to the Global Burden of Disease
(GBD) in 2015, it is generally accepted that the air pollution caused by PM; 5 is the leading cause of
non-communicable diseases [10]. With the rapid industrialization and urbanization process over the
past three decades, atmospheric pollution caused by large energy consumption has become one of
the most ubiquitous and concerning issues in China [11]. The air quality in more than three-quarters
of cities in China exceeded the national air quality standards in 2016 [12]. In order to solve the air
pollution problem, the Chinese government proposed a range of moves to control the air pollution,
such as phase-out of backward production facilities, increasing urban green space, and so on. Although
these moves have gotten some achievements, there also exist many problems [13].

In 2013, the Chinese government proposed “Action Plan on the Prevention and Control of Air
Pollution” to aggressively control PM; 5 emissions from human activities. Meanwhile, the Chinese
National Environmental Monitoring Center (CNEMC) started to establish a nationwide air quality
monitoring network in China until the end of 2013. However, relatively sparse distribution of air
quality monitoring sites and lack of long-term observation data have brought challenges to the study
of the spatio-temporal variations of PM; 5 concentrations, especially in northwest China. Moreover,
due to most of the sites located in densely populated cities, PM, 5 data with spatial continuity
obtained by interpolation based on monitoring data easily have a “bull’s-eye” effect (higher values
near observed location). Additionally, the ground monitoring data are too little to describe the
spatio-temporal variation of PM, 5 concentrations. With the development of remote sensing techniques,
PM, 5 concentration data based on remote sensing techniques have become increasingly popular in
recent years [14-16]. By using the developed high-precision PMj 5 retrieved algorithms and statistical
methods, global estimates of PM, 5 concentrations were calculated based on multi-source remote
sensing data and ground-based sun photometer (AERONET) observations [5,17].

For the past several years, researchers have conducted numerous studies on the spatio-temporal
variations of PM; 5 concentration and the influence of human activities and natural conditions on
it [12,18-20]. For instance, Chu and Bilal [16] used integrated geographically temporally weighted
regression (GTWR) and random sample consensus (RANSAC) models for mapping PM, 5 based
on satellite-derived Aerosol Optical Depth (AOD) data in Taiwan. Wei et al. [20] investigated the
relationships between PMj; 5 and other air pollutants (SO,, NO,, PM;y, CO, and O3) in Heilongjiang
province based on geographically and temporally weighted regression (GTWR) models. Luo et al. [18]
used the method of geographically weighted regression (GWR) to analyze the natural geographical
and socio-economic factors of PM 2.5 concentrations in 343 cities across Mainland China. Lu et al. [21]
employed the grey system correlation analysis method to analysis the main influencing factors of
PMj, 5 concentrations in China. Ji et al. [13] analyzed the correlation between satellite-based nighttime
stable light (NSL) data and statistical PM, 5 emissions at the provincial level in China from 1992 to
2012. Xu et al. [22] investigated the response of the PM; 5 concentration to meteorological, underlying
surface and socio-economic conditions in the Yangtze River Delta by Spearman correlation analysis,
multivariate analysis of variance (MANOVA), and lasso regression.

However, few studies could quantify the contribution of natural driving factors and socio-economic
driving factors to PM; 5 concentrations from the spatial heterogeneity perspective. Furthermore, because
the formation of PM, 5 pollution is a very complex process, there exist the interaction effects among
multiple driving factors [21]. Thus, it is of interest to find a quantitative model or method that describes
this spatio-temporal relationship between PM; 5 concentrations and its driving factors. A method
based on spatial heterogeneity named the geographical detector method (GDM) may be a preferable
method for exploring the factors influencing the spatio-temporal distribution of PM; 5 concentrations.
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GDM is a new statistical method to analyze the driving factors controlling the spatial patterns of
various geographical phenomena [23]. According to the literature, GDM can not only quantitatively
determine the relative importance of each driving factor both in spatial and temporal variation, but also
address the joint effects of these factors on the spatio-temporal variation of PM; 5 concentrations.
Therefore, GDM has attracted wide attention of the application from various fields with proven
advantages [24-26].

Growing research in China has dedicated enormous effort focused on PMj; 5 concentrations and
its driving factors in developed regions, such as Beijing, Tianjin, Hebei, Nanjing, Shanghai [27-29].
Most of these regions are located in east-central China which has a higher population density and
economic growth. However, with the awareness campaigns of environment protection over recent
years, the central and eastern regions of China are paying more and more attention to the prevention
and control of air pollution. Meanwhile, due to huge differences in the natural environment and
socio-economic conditions between east and west regions, some pollution emitting industries located in
eastern regions were moved to the west regions where there are more liberal environmental policies [14].
While promoting regional economic development and increasing employment, this kind of transfer
changed the regional industrial structure and increased the enterprise pollution emissions. On the
other hand, urban population density and the urban agglomeration scale experienced a rapid growth
period [24]. Additionally, from the prospect of natural factors, frequent sandstorm activity and the
long winter heating period significantly aggravate the air pollution in Xinjiang.

According to the first quarter 2016 air quality readings downloaded from the website of the China
National Environmental Monitoring Center (CNEMC), 7 of the 20 worst cities in the country come
from Xinjiang: Kashgar, Wujiaqu, Urumgqji, Hetian, Kizilsu, Shihezi, and Aksu. In a recent Greenspace
survey, government enacted many pollution limiting guidelines in the eastern China, but not in west.
This regional policy difference had an unintended effect of encouraging polluting enterprises to move
their investments to western provinces, such as Xinjiang. In the northern part of the Tianshan Mountain
and the western margin of the Tarim Basin, about 10 million people have suffered from serious air
pollution in the past decade [30]. Meanwhile, the North Tianshan Mountain Economic Zone (NTMEZ),
the largest and the most comprehensive economic belt of China, is located in this region [31]. Xinjiang
is also the core area of the ‘Belt and Road Initiative’. However, few studies explored the spatio-temporal
variations of PM, 5 concentrations and its driving factors in northwest China, especially Xinjiang.
Existing research mainly focuses on chemical characteristics analysis and source apportionment of
PM; 5 pollutants in individual cities of Xinjiang. For example, Chen et al. [32] investigated the sources
of heavy metals (HMs) and per fluorinated compounds (PFCs) in PM, 5 in Urumgi and Shihezi, two of
the major industrial cities in northern Xinjiang. Turap et al. [30] measured the major components of
ambient PM; 5 in four seasons in Dushanzi, finding that the mixing of anthropogenic aerosol sources
and dust were the main sources of PMy s.

Unfortunately, to the best of our knowledge, almost no research has been done to analyze PM; 5
spatial distribution and its driving factors from a regional perspective in Xinjiang [32-34]. Xinjiang
is the largest administrative region as well as the largest arid land in China, where there are less
precipitation and vegetation distributions. More than 26% of the land is covered by deserts where
the main sources of dust storms are located. Recent studies have indicated that satellite-based PM, 5
concentration data can be used to understand the spatio-temporal variability of atmospheric pollutants
in arid region [35-39]. For example, Munir et al. [39] used satellite-derived PM, 5 concentration data to
analyze the spatial and temporal variability of PM, 5 in Saudi Arabia, finding that remote sensing can
help better understand the spatial variability of atmospheric pollutants, especially on a large scale.
In Xinjiang, the harsh environment and increasing city size are more likely to cause or enhance the
accumulation of atmospheric pollutants. Meanwhile, most of people in Xinjiang lived in the oasis,
which is a specific landscape in arid land. Although oasis accounts for 4-5% of the total area in
Xinjiang, more than 90% of cultivated land, population, and 95% of GDP are concentrated within
the oasis [40]. Therefore, oasis-intensive industrial activities and urban agglomerations are also the



Int. ]. Environ. Res. Public Health 2020, 17, 2157 40f24

reasons for the rapid increase in air PM; 5 concentrations in the past decade. On the other hand,
the increasing number of automobiles is one factor that should not be neglected. According to the
China Statistical Yearbook 2019, private car ownership in Xinjiang was more than 3.29 million by the
end of 2018, especially concentrated in big cities like Urumgqi [41]. Accordingly, the spatio-temporal
variation of PM; 5 concentrations is worth studying in Xinjiang. Meanwhile, identifying the natural
and socio-economic determinants of PM; 5 concentrations will contribute to effectively solving air
pollution problems in this region.

Therefore, based on global annual average surface PM; 5 concentration data in the long-time series
(2001-2016), the purposes of this study were (1) exploring the spatio-temporal characteristics of PM; 5
concentrations by spatial autocorrelation analysis; (2) identifying the dominant factors responsible
for spatio-temporal variations, especially the socio-economic factors; (3) quantitatively analyzing the
interannual variations of the dominant power of PM; 5 driving factors. The main conclusions could be
beneficial for developing environmental policy and constituting a regional development plan.

2. Materials and Methods

2.1. Study Area

Xinjiang (34°22’-49°33" N, 73°22’-96°21" E) which is located in northwestern China is the largest
province in this country (Figure 1). Situated at the hinterland of the Eurasia continent, the total land
area of Xinjiang is approximately 1.66 x 10° km?, accounting for about 1/6 of China. Due to the
influence of continental climate, the annual precipitation in Xinjiang is about 145 mm [42]. In addition,
most of the effective precipitation is mainly concentrated in winter. Divided by three high-elevation
mountain areas (Altai Mountain, Tianshan Mountain, Kunlun Mountain), Xinjiang has formed a
unique mountain-oasis—desert landscape ecosystem (Figure 1). Affected by the spatial allocation
of water resources, most cities in Xinjiang are surrounded by two deserts (Gurbantunggut Desert
and Taklimakan Desert). Thus, the urban agglomerations in this area are mostly distributed by
strips or rings. Although cities and urban agglomeration are playing key roles in regional economic
development, various environmental problems begin to emerge under the influence of their intense
human activities and fragile ecological environment. The air pollution caused by mixtures of industrial
emission, vehicle emission, and fine dust particles has become an urgent problem in this region [30].

Figure 1. Study area.
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2.2. Data Source

The global annual average surface PM; 5 concentrations grids, which is estimated by Aerosol
Optical Depth (AOD) retrievals from multiple satellite products (MISR, MODIS-DT, MODIS-DB,
MODIS-MAIAC, and SeaWiFS-DB), was used in this study [5]. The satellite-based gridded PM, 5 dataset
has a spatial resolution of 0.01 x 0.01 degree, and it was combined with simulation (GEOS-Chem model)
and calibration (geographically weighted regression) based on the ground photometer (AERONET)
observations from 1998 to 2016. This PM, 5 concentration dataset, which is provided by the Atmospheric
Composition Analysis Group (ACAG) at Dalhousie University, has been used in numerous studies
at the regional and national scale [18,21,39,43]. Although the accuracy of the global annual average
surface PMj; 5 concentrations grid data has been validated by using the 210 global mean ground-level
PM, 5 measurements collected from the literature, few measurements are located in the arid region,
especially in Xinjiang. Considering the unique spatial heterogeneity of PM, s, it was still necessary to
evaluate the reliability of the dataset in this study area. In order to ensure continuity and integrity
of PM; 5 concentration data, we collected the hourly official PM; 5 site monitoring data in Xinjiang
provided by the China National Environmental Monitoring Center (CNEMC) from Jan 1st, 2015.
We calculated the annual average PM, 5 ground-based observations based on 8 sites which are mainly
concentrated in north Xinjiang (Urumgi, Changji, Bole, Yili, Wujiaqu, Tacheng, Shihezi, and Altay) from
2015 to 2016. Thus, the uncertainty of corresponding PMj 5 satellite-derived values in Xinjiang was
evaluated (Figure 2). Linear regression of PM; 5 satellite-derived values and ground-based observation
values had an acceptable correlation coefficient (R) of 0.830 (p < 0.05). And the satellite-derived values
were lower than observation values in Xinjiang. As a whole, the satellite-derived PM, 5 concentrations
were reliable in this study area.

60

—~ A -,
4] 7
E40 A
2 na
3 -
= -’ N A
G 7
> -,
- 7
2 -
£ >
< 7
2 P R?=0.689
El D
3 20 - A a
N A 2
g e
7
= y - A
o
s A
7
b
7
< A y=1.587x-41.214

R=0.830 p <0.05

30 40 50
PM2.5 Ground-based Observation Values (1g/m3)

Figure 2. Linear correlation between PM,; 5 ground-based observation values and satellite-derived

values.

Besides, the driving factor data were mainly obtained from remote sensing data, reanalysis data,
and government statistics (Table 1).
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Table 1. Summary information on the used datasets.

Dataset Data Sources Spatial Resolution Temporal Resolution
LCT MODIS MCD12Q1 (2001-2016) 500 m 1 year
LST MODIS MOD11A2 (2001-2016) 1000 m 8 day
NDVI MODIS MOD13Q1 (2001-2016) 250 m 16 day
Albedo MODIS MCD43A3 (2001-2016) 500 m 1 day

DMSP-OLS (2001-2013) /NPP-VIIRS
NSL (2013-2016) 1000 m/500 m 1 year/ 1 month

DEM  NASA Shuttle Radar Topographic Mission 90 m -
Koppen-Geiger climate classification maps

cz (2000-2015) 1km i
Asia Continental Population Dataset
POP (2000-2015) and 2017 Xinjiang Statistical 1km 5 year
Year book

GDP 2017 Xinjiang Statistical Year book - -
INGDP 2017 Xinjiang Statistical Year book - -
Road_L OpenStreetMap historical dataset - -
River_L OpenStreetMap historical dataset - -

The land cover type at yearly intervals (2001-2016) data was provided by MODIS-MCD12Q1
Version 6 data (Land Processes Distributed Active Archive Center, Sioux Falls, United States) [44].
According to the land cover characteristics in Xinjiang and the guide of International Geosphere-
Biosphere Programme (IGBP) classification, this study reclassified the land cover types into 8 categories
(Forestland, Shrubland, Grassland, Cropland, Urban and Built-Up Land, Snow and Ice, Bare land,
Water Bodies). The daytime land surface temperature (LST) derived from MODIS-MCD11A2 were
used to identify the spatio-temporal variation of land surface temperature [45]. Vegetation condition
was quantified by NDVI provided by MODIS-MOD13Q1 [46]. Additionally, based on black-sky albedo
(BSA) and white-sky albedo (WSA) provided by MODIS-MCD43A3 at 500 m spatial resolution and
16-days temporal resolution, we calculate actual albedo, which is interpolated between these two as a
function of the fraction of diffuse skylight [47,48]:

Qactual(0s) = 1(0s)awsa + [1 —1(0s)agsal, 1)

#(65) = 0.122 + 0.85 x =48k, "

where a4 is the actual albedo; awsy is the white-sky albedo; aps4 is the black-sky albedo; 0; is the
solar zenith angle which derived from MOD09A1; py is the cosine of the solar zenith angle; r(0;) is the
fraction of diffuse skylight.

A great deal of research has demonstrated that nightlight data can be used to measure urbanization,
economic development, and other socio-economic activities [49-51]. Hence, the Defense Meteorological
Satellite Program’s Operational Line-Scan System (DMSP-OLS) and the Suomi National Polar-Orbiting
Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime stable light (NSL) data
were used to indicate socio-economic activates in this study. NSL contains the lights from cities,
towns, and other sites with persistent lighting, including gas flares. Ephemeral events, such as fires,
have been discarded. The National Aeronautics and Space Administration Shuttle Radar Topographic
Mission (NASA-SRTM) provided digital elevation model (DEM) data [52]. Based on recent data sets
from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation
Climatology Center (GPCC) at the German Weather Service, Koppen-Geiger climate classification
maps (2000-2015) were generated [53]. Climate Zone can reflect the regional difference on PM; 5
from the prospect of long-term climate characteristics. Two kinds of population (POP) data, which
included Asia Continental Population Dataset (2000-2015) and statistical data from the Xinjiang
Statistical Yearbook (2017), were used in this research [54]. The socio-economic statistical data included
gross domestic product (GDP), and industrial GDP (INGDP) at the county level in Xinjiang was also
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collected from the Xinjiang Statistical Yearbook (2017). We also downloaded the 2016 OpenStreetMap
(OSM) historical dataset from Geofabrik website. OSM road length (Road_L) data and river length
(River_L) data in Xinjiang were extracted from the dataset. Based the POP data and areas of counties in
Xinjiang, the POP density (POP_D), GDP density (GDP_D), GDP per capita (GDPPC), INGDP density
(INGDP_D), INGDP per capita (INGDPPC). Road density (Road_D) and river density (River_D) of
each county were calculated. The administrative boundaries of provinces and counties were collected
from National Geomatics Centre of China. The acronyms with corresponding full names that are used
in this paper were provided in Table 2.

Table 2. Complete list of acronyms with corresponding full names used in this paper.

Acronyms Full Name Acronyms Full Name
ACAG AtmosPherlc Composition LST Land surface temperature
Analysis Group
AERONET  Aerosol Robotic Network MAE Mean Absolute Error
AOD Aerosol Optical Depth MAIAC Multi—a.ngle implementation of atmospheric
correction
BSA Black-sky albedo MISR Multiangle Imaging Spectroradiometer
Chinese National
CNEMC Environmental Monitoring LISA Local Indicators of Spatial Association
Center
CRU Climatic Research Unit MODIS Moderate Resolution Imaging
Spectroradiometer
National Aeronautics and Space
Ccz Climate Zone NASA-SRTM  Administration Shuttle Radar Topographic
Mission
DB Deep Blue NDVI Normalized Difference Vegetation Index
DEM Digital elevation model NGDC National Geophysical Data Center

Defense Meteorological

Satellite Program’s Suomi National Polar-Orbiting Partnership

DMSP-OLS Operational Line-Scan NPP-VIIRS Visible Infrared Imaging Radiometer Suite
System
DT Dark Target NSL Nighttime stable light
GBD Global Burden of Disease NTMEZ North Tianshan Mountain Economic Zone
GDM iz(gﬁgzphlcal detector OSM OpenStreetMap
GDP Gross Domestic Product PECs Per fluorinated compounds
GDP_D GDP density PM, 5 Particulate matter with a diameter of 2.5
um or less
GDPPC GDP per capita POP Population
Global Inventory Modelling .
GIMMS and Mapping Studies POP_D POP density
GPCC Glpbal Precipitation RMSE Root Mean Square Error
Climatology Center
Geographically and
GTWR Temporally Weighted Road_L Road length
Regression
GWR GeograPhically Weighted Road_D Road density
Regression
HMs Heavy metals River_L River length
International
IGBP Geosphere-Biosphere River_D River density
Programme
INGDP Industrial GDP SDE Standard deviational ellipse
INGDP_D INGDP density SeaWiFS Sea-Viewing Wide Field-of-View Sensor
INGDPPC INGDP per capita WHO World Health Organization

LCT Land cover type WSA White-sky albedo
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2.3. Method

2.3.1. Standard Deviational Ellipse Analysis

The standard deviational ellipse (SDE), which was first proposed by Lefever, can delineate
the geographical distribution trend of concerned features [55]. SDE is calculated based on average
center of discrete points and the standard distance of other points away from the mean center. Thus,
SDE depends on the average location, dispersion, and orientation of spatial points data. The calculated
major and minor axes of the ellipse indicate the direction and data distribution range. Based on
these theories, SDE is also known as the directional distribution analysis. In this study, the spatial
characteristics and the annual moving trace of PM; 5 concentrations can reveal the spatial extent, spatial
orientation, spatial shape, and spatial center of SDE [15]. As a versatile GIS model for delineating the
geographic distribution of spatial points, SDE was calculated by Spatial Statistics Tools in ArcGIS10.6
(ESRI, Redlands, United States).

2.3.2. Spatial Autocorrelation Statistics

Spatial autocorrelation statistics included global spatial autocorrelation and local spatial
autocorrelation. Based on the Tobler’s first law of geography, Patrick Moran invented the global
Moran’s I which can examine the global spatial autocorrelation patterns of PM; 5 concentration and its
spatial lag [56]. The Z;-score can indicate significant clustering or dispersion of features statistically.
Thus, the reliability of Moran’s I (existence of spatial autocorrelation) is tested by using the standardized
statistic Zj-score. The global Moran’s I and Z-score were calculated by using the below formula:

n o n
L L wijzizj
n i=1j=1
I=— ) )
SO n 2
Yz
i=1
I-E|I
A @
E[12] - E[I?

where 7 is the number of sample regions; z; is the deviation of an attribute for feature i from its mean
(xl- - X); X is the mean of corresponding attribute; w; j is the spatial weight matrix; Sy is the aggregate
of all the spatial weights. E[I] is computed as —1/(n—1). The value of global Moran’s I range from —1 to
1. The value less than 0, greater than 0, equal to 0 indicates negative correlation, positive correlation,
no correlation, respectively.

The global Moran’s I is the global measurement of the spatial association without identifying the
spatial autocorrelation differences among individual region. Therefore, Local Indicators of Spatial
Association (LISA) was introduced to interpret the local pockets of nonstationary and location of hot
spots [57]. It can also be used to assess the impact of the individual region on global statistics. Here,
we use local Moran’s I which is computed as:

n

I = xiS_gX Y il -X) ©)
i j=1j#x
n —\2
i—X
2 — j:>1:,‘j¢i(x] ) —?2 6
i n—1 ’ ( )

where x; is an attribute for feature I; X and wj; are the same as in Equation (3).
The Z;1-score was also used to indicate the significance level of the LISA model. Generally, the LISA
map, which consists of four types of spatial autocorrelation (“High-High”, “Low-Low”, “High-Low”,
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“Low-High”), was divided by local Moran’s I, Zj-score and p value of local Moran’s I. Regions whose
Zj-scores were not statistically significant at the 5% level (p < 0.5) will show as “Not Significant”.
The relationships between them are as follows (Table 3).

Table 3. Spatial autocorrelation types of LISA map.

Local Moran’s I p Value  Zj-Score Spatial Autocorrelation Types

Positive p>0.05 Z1>0 High-High Cluster
Positive p>0.05 71 <0 Low-Low Cluster
Negative p > 0.05 Z1 >0 High-Low Outlier
Negative p > 0.05 Z1 <0 Low-High Outlier

The ArcGIS10.6 and GeoDal.12 software was implemented to calculate the global and local
Moran’s I in this research.

2.3.3. Geographical Detector Method

Based on the spatially stratified heterogeneity, which refers to the phenomena that within strata
are more similar than between strata, the fundamental theory of the geographical detector method was
first proposed by Wang in 2010 [23]. The geographical detector method applies g value to quantitatively
measure the heterogeneity and autocorrelation of the dependent variable, and detects the association
between the dependent variable and its influencing factors. In this research, GDM was used to assess
the non-linear associations between PM; 5 concentration and its natural and social-economic factors.
The g value of GDM was calculated as follows:

Z Nh(f}zl
=1
q=1- NoZ @)
1 -
o =52, (Ri=R)?, ®)
i1
1 L Nh 2
o; = ITIZ Z(Rh,j —Rh) / 9
=1 j=1

where N refers to the total number of samples in the entire study area, and o2 represents the global
variance of response variable Y in the entire study area. In this study, Y means the PM; 5 concentration.
The study area was stratified into L zones (h = 1, ..., L), and the stratification depends on the
characteristics of the explanatory variables (X). In the study, X means the driving factor, such as LCT,
albedo, NDVI. Nj, and oi represent the number of samples and the stratified variance of Y within i-th
zone, respectively. R; and R, ; refer to the value of the i-th and j-th samples from the whole study area
and h-th zone, respectively. R and Ry, stand for the mean value of samples in all the regions and h-th
zone, respectively.

From Equation (5), we can see that the g value lies between 0 and 1. It means that the g value is 1
only when X completely determines Y. Otherwise, if X is completely unrelated to Y, the g value will
be 0.

According to the introduction of GDM [58], the model consists of the following four modules:

(1) The factor detector calculates the determinant power of an explanatory variable X of Y, which is
the g value we mentioned above.

(2) The risk detector maps the average value of response variable in each stratum (zone). It can be
used to compare the difference of average PM; 5 concentration values between sub-regions.
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(3) The interaction detector can reveal the interactive effect of X1 and X2 on Y. In other words, that is
the relationship among g(X1), q(X2), and g(X1NX2).

(4) The ecological detector identifies the statistic difference of the impacts between X1 and X2. It can
show the relative importance between these two factors.

By means of the relationship among q(X1), q(X2), and g(X1NX2), the interactive effect was
catalogued as the following Table 4.

Table 4. Types of interaction relationships between two factors.

Interaction Type Description
Weaken, univariate Min(gq(X1), 9(X2)) < ¢(X1nX2) < Max(q(X1)), 9(X2))
Weaken, non-linear q(X1INX2) < Min(q(X1), 9(X2))
Enhance, bivariate g(X1nX2)> Max(q(X1), (X2))
Enhance, non-linear q(X1INnX2) > q(X1) + q(X2)
Independent q(XINX2) = q(X1) + q(X2)

2.3.4. Technical Flowchart of This Study

Based on the objective of this study, this manuscript is organized as presented in the technical
flowchart (Figure 3). The research consists of three main steps: First, we validated the accuracy
of annual PM, 5 concentrations grid data with ground-based observation values downloaded from
the CNEMC website. Second, based on the linear regression method, SDE analysis and spatial
autocorrelation statistics, we explored the spatio-temporal characteristics of PM; 5 concentrations.
Finally, we applied geographic detector method to quantitatively evaluate the effects of socio-economic
factors on PMj; 5 concentrations in 2016. Moreover, interannual variation of other potential driving
factors for PM, 5 concentration was explored during 2001-2016.

3. Results
3.1. The Spatio-Temporal Characteristics of PM; 5 Concentrations

3.1.1. The Spatio-Temporal Pattern and Variation of PM; 5 Concentrations

Based on annual average satellite-based PM; 5 concentration data (2001-2016) and the Xinjiang
political districts map, average annual PM, 5 concentration in the whole region (a) and different
county (c) were calculated. As Figure 4a,c shows, there exists a significant spatial difference of
PM, 5 concentration exited in Xinjiang. PM; 5 concentrations were higher in urban agglomeration
located in the northern Tianshan Mountain and western Tarim Basin, especially in Shihezi (19.96
ug/m3), Kashgar (19.67 ug/m3), Shule (18.09 ug/m?’), Yining (17.51 ug/m3), Kuitun (17.42 ug/m3),
Dushanzi (16.50 ug/m3). The PM, 5 concentration in 33 cities or counties exceeds the 10 ug/m3 which
is the WHO average annual limit of primary PM; 5 standards. However, PM; 5 concentrations were
lower in the sparsely-populated area in eastern and southern Xinjiang. Furthermore, based on linear
regression analysis, PM; 5 concentration interannual trends were calculated. Figure 4b,d shows a
finding in northern Tianshan, where PMj; 5 concentrations were increased at an annual rate of 1.1-1.7
ug/m3/yr. PM, 5 concentrations in several counties surrounded by Urumgi and Changji were increased
significantly from 2001-2016. While in the western Tarim Basin, PMj, 5 concentrations were decreased
with the rates ranging from —0.1-0.07 pg/m>/yr, especially in Kashgar.
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Figure 4. Spatial distributions of (a,b) average annual PM; 5 concentrations (ug/m3), (c,d) linear trends
of annual PM, 5 concentrations (pg/m3/yr) in Xinjiang from 2001 to 2016. Figure 4b,d represents
the average annual PM; 5 concentrations (ug/m3) and linear trends of annual PM, 5 concentrations
(ng/m3/yr) at the county level.

Based on SDE analysis and the PM; 5 concentrations in 106 populated places of Xinjiang (more than
200 persons per square kilometers), Figure 5 shows that the main distribution of PM; 5 concentrations
was aligned in the southwest-northeast direction. Additionally, the median center made a clear but
gradual move from southwest to northeast. This movement mainly caused by the rapid increase of
the high PMj; 5 concentrations in the northern slope of the Tianshan Mountain. Moreover, the area of
standard deviational ellipse increased at first and then decreased during the study period. The spatial
distribution of PM; 5 concentrations presented a trend of gradual concentration after dispersion from
2005. Additionally, the ratios of standard deviational ellipse principal and auxiliary axis lengths
showed the decrease from 2001 to 2011 and the increase from 2011-2015. The accumulation degree of
PMj; 5 concentrations associated with the northwest-southeast direction was higher from 20012011,
whereas those associated with the northeast-southwest direction became higher in 2011.
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Figure 5. Spatial changes of the median center and standard deviation ellipses of PM; 5 concentrations.

3.1.2. The Spatial Agglomeration Law of PM, 5 Concentrations

Spatial autocorrelation analysis, including the global Moran’s I scatter plot and LISA agglomeration
analysis, was used to quantitatively analyze the spatial agglomeration laws of PM; 5 concentrations
from 2001 to 2016. Figure 6 shows the global Moran’s I scatter plots of PM; 5 concentrations in
Xinjiang from 2001 to 2016. In the scatterplots, the horizontal axis represents the standardized PM; 5
concentration in each country, and the vertical axis represents the neighboring PM; 5 concentration
value calculated by the spatial weight matrix based on the Euclidean distance, also called lagged PM; 5
concentrations. It is worth noting that the Moran’s I values show a trend of decline, with maximum
value of 0.5733 and minimum of 0.4719, which are all positive and significant (p < 0.01) within the
study period. Most of the dots concentrated in the first and third quadrants, meaning that most
counties show the positive spatial autocorrelations of PM, 5 concentrations. This can be explained
by the High-High cluster and Low-Low cluster in the LISA map (Figure 7). Similarity, the country
which showed the Low-High cluster and High-Low cluster should appear in the second and fourth
quadrants. As shown in Figure 7, there exists a slight increase among counties which showed as the
High-High cluster from 2001 to 2015. Ruoqgiang, Hami, Yiwu, and Barkol manifest as the Low-Low
cluster every year, whereas no counties manifest as the High-High cluster in each year. Overall,
High-High clusters mainly distributed in the northern slope of the Tianshan Mountain and western
Tarim Basin, while Low-Low clusters mainly distributed in southern and eastern Xinjiang.
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Figure 6. Global Moran’s I scatterplots of PM; 5 concentrations (2001-2016).

[ vosirom [ v coser [ ov-iow ciser [ ov-sieh o [ i o ot

Figure 7. Spatial agglomeration diagram (LISA map) of PMj 5 concentrations (2001-2016).

3.2. The Effect of Socio-Economic Factors on PM, 5 Concentations

Due to the input variables of GDM that must be the categorial variable, here we used the quantile
method as the discretization method to transform the numerical variables into categorial variables
(Figure 8). The dependent variable are as follows, GDP_D, GDP, GDPPC, INGDP_D, INGDPPC, POP,
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POP_D, Road_L, Road_D, River_D. As shown in Figure 9a, the factor detector showed that population
density was the dominant factor on the spatial distribution of PM; 5 concentrations (g = 0.550), followed
by road network density (g = 0.423), GDP density (g = 0.413), INGDP density (g = 0.212), GDP per
capita (g = 0.161). The results of other factors were not significant at the p <0.05 level. According
to the risk detector module of GDM, the average PMj; 5 concentrations in each stratum of different
factors was calculated (Figure 9b). The counties with higher GDP_D, INGDP_D, Road_D, POP, and
POP_D have more serious air pollution problem. This illustrates that there exists a positive correlation
between these factors and PMj; 5 concentrations. As shown in Figure 9c, the interaction between any
two factors can enhance their explanatory power for the spatial distribution in PM; 5 concentrations.
The dominant interactions between GDPPC and Road_D show the highest g values (g = 0.785), followed
by GDPPCNPOP_D (g = 0.753), GDPPCNGDP_D (g = 0.718), and INGDPPCNRoad_D (g = 0.710).
In addition, these interactions all belonged to the bivariate enhancement interaction (g(X1NX2) >
q(X1) + g(X2)). Although GDPPC was not the strongest explanatory power for the spatial pattern of
PMj; 5 concentrations, the interactive explanatory power between GDPPC and other socio-economic
factors were surprisingly high. Additionally, the ecological detector result shows that the POP_D has a
significantly stronger effect on PM; 5 than other socio-economic factors, except GDP_D (Figure 9d).
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Figure 8. Spatial distributions of socio-economic factors. (a) GDP density (GDP_D), (b) GDP per
capita (GDPPC), (c) industrial GDP density (INGDP_D), (d) industrial GDP per capita (INGDPPC),
(e) population (POP), (f) population density (POP_D), (g) river density (River_D), (h) road length
(Road_L), (i) road density (Road_D). All factors are discretized from continuous variables to categorical
variables by quantile method.
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Figure 9. The result of GDM: (a) factor detector, (b) risk detector, (c) interaction detector, (d) ecological
detector. Note: In Figure 9b, the orange bar means the maximum value in the sub-histogram and the
blue bar means the minimum value in the sub-histogram.

3.3. Interannual Variation of Potential Driving Factors for PM, 5 Concentrations

As described in the Section 3.1, PM; 5 concentrations gradually changed in terms of spatio-temporal
distribution. In addition, the spatial aggregation pattern of regional PM; 5 concentrations was easily
affected by socio-economic and natural factors. In order to identify the determinant power and its
interannual variation of potential driving factors more comprehensively, the total 9 potential driving
factors of PM; 5 concentrations, including LCT, CZ, Albedo, POP_D, NSL, LST, NDVI, and DEM,
were selected. The g-value in GDM was used to describe the interannual variation of PM; 5 potential
driving factors during 2001-2016.

Due to the absence of spatial continuous and reliable long time series of socio-economic data,
nighttime stable light (NSL) data with high spatial resolution data were used to provide a proxy to the
infrastructure and economic development in this study area. However, National Geophysical Data
Center (NGDC) stopped producing monthly composites of DMSP_OLS data after February 2013, while
NPP/VIIRS data, which has supplied from April 2012, is a follow-up to DMSP_OLS data. In this study,
an exponential model was used to fit the two data sources which were desaturated and resampled to 1
km. The mean absolute error (MAE), root mean square error (RMSE), determination coefficient (R?),
and the Pearson correlation coefficient R between two data sources were calculated to evaluate model
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fitting effects (Figure 10b), and a good fit was shown (R? = 0.712). The more intuitive NSL fitting results
are shown in Figure 10cd. Based on the exponential model, long-term (2001-2016) annual average
NSL data were generated as shown in Figure 11. The NSL in all major cities of Xinjiang is gradually
brightening and the NSL coverage area is gradually increasing. The expansion of city size was easy to
identify in Xinjiang, especially in NTMEZ. But in the western Tarim Basin, the growth trend of city size
was less obvious.
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Figure 10. The relationship between DMSP_OLS NSL and before and after NPP_VIIRS NSL fitted in
2013 (a,b), and the spatial distribution of DMSP_OLS NSL (c) and NPP_VIIRS NSL fitted in 2013 (d).
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Figure 11. Spatial distributions of annual average NSL in Xinjiang from 2001-2016.

Based on the continuous grid data, we explored the variations of driving forces on PM; 5 spatial
distribution by using GDM from 2001-2016. The driving factors are mainly divided into two parts:
social-economic factors and natural factors, both of which can affect the formation, distribution
maintenance, and change of PM, 5 concentrations [21]. All the driving factors passed the significance
test at a significance level of 0.01 (p < 0.01). As shown in Figure 12, the driving factors are sorted by
average g values during the study period (2001-2016) as follows: POP_D (0.483) > ST (0.256) > DEM
(0.229) > NSL (0.167) > LCT (0.122) > NDVI (0.112) > CZ (0.050) > Albedo (0.029). Although the POP_D
was still the most important driving factor, the explanatory power decreased significantly, especially
from 2007. Conversely, DEM, NSL, LCT, and NDVI showed the increased trend on the driving forces of
PM,; 5 concentrations during the study period. The g value of NSL showed the most rapid increase of
all the driving factors. Moreover, the q value of ST, CZ and Albedo showed stable and vibration path.
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Figure 12. Trend analysis of g value of each driving factors during 2001-2016 for Xinjiang.
4. Discussion

Given the paucity of comprehensive studies about the spatio-temporal variations in PM; 5
concentrations in the whole Xinjiang, we have systematically analyzed spatio-temporal characteristics
of PM; 5 concentrations and its natural social economy determinants. First of all, an overall agreement
was estimated between satellite-based and ground observed PM, 5 concentration data in Xinjiang, with
an acceptable correlation coefficient of 0.830. This result reveals the fitness of satellite-based PM; 5
concentration data, especially in north Xinjiang. However, due to the short set-up time of the current
ground PM; 5 monitoring station, we only used the data from the two complete ground observation
years of 2015 and 2016 to compare with the satellite-based PM; 5 concentration data.

From the analysis results of this study, we can see that the north slope of the Tianshan Mountain
and the western Tarim Basin are the major source areas of PMj; 5 in Xinjiang. Coincidentally, these two
areas are the most densely populated places, as well as most economically prosperous regions in
Xinjiang [59,60]. From 2001 to 2015, the mean center of PM; 5 concentrations in Xinjiang showed a
notable move to the northeast by reason of the rise of PM; 5 concentrations in the north slope of the
Tianshan Mountain. In the north slope of the Tianshan Mountain, with the increasing numbers of
backward industries, such as labor-intensive and energy-intensive industries, the PM; 5 concentrations
went obviously higher in recent years. The Zhundong Coalfield is China’s largest intact coalfield,
located in Changji (Figure 1). Exploited since 2006, the Zhundong Coalfield has become one of the
main thermal power and coal chemical industrial bases of Xinjiang [61]. The gradual concentration
trend of PM; 5 concentrations in the north slope of the Tianshan Mountain from 2005 indicated some
environment effects of Zhundong Coalfield mining activities. With collecting and analyzing daily
PM, 5 samples in Dushanzi, Tura, et al. [30] found that coal combustion and soil dust contributions
accounts for nearly half of PM;5 sources. A great deal of research shows that the coal mining
operations, coal transport, coal processing, and coal burning would all generate significant atmospheric
pollution [62,63]. Therefore, we have sufficient reason to believe that the increase oin heavy energy
consumption enterprises and mining enterprises are one of the main reasons for the increase in PM; 5
concentrations on the northern slope of Tianshan. Although these industries are the main source of
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local tax income and the main provider of employment, the government should focus on rectifying
exhaust emissions from these factories. Environmental protection supervision and punishment of
mining companies should be increased, especially for dust-prone industries such as open-pit coal
mines. While controlling pollution at the source, the Ecological Environment Bureau should strengthen
supervision during coal transportation, storage, and processing. Most importantly, government should
accelerate wind and solar power development, which can reduce the proportion of coal in electricity
generation. Meanwhile, the construction of eco-industrial parks should be promoted in Xinjiang,
which could be an effective way to realize green economic growth and sustainable development [31].

In order to further explore the driving factors of PM, 5 concentrations, we used the geographic
detector method (GDM) to quantify the interannual change of driving forces. The results show that
population was still the greatest power of determinant (g = 0.550) on the spatial distribution of PM; 5
concentrations in Xinjiang. This is basically consistent with the results of previous studies on attribution
of PM, 5 in eastern China or throughout China [21,64-66]. This suggests that PM, 5 mainly comes
from human activities, which includes more motor vehicles and coal burned for heating in winter.
Due to rapid urbanization and development of heavy industry, the contribution of the single factor like
population density has become less influential in Xinjiang. Therefore, as shown in Figure 12, the impact
of population density on PM; 5 concentrations shows a falling trend since 2008. Even so, population
is still the most important driving factor affecting the spatial distribution of PM, 5 concentrations.
Moreover, GDP per capita and road network density show the strongest interaction (g = 0.785) on
the explanatory power of the spatial distribution of PM; 5 concentration. From the perspective of
social and economic development, the combination of GDP and road network density can represent
economic activity to a certain degree. Consequently, Xinjiang’s environment has been sacrificed to
achieve rapid economic growth in recent years, especially the air quality. Considering that nighttime
stable light (NSL) can describe social and economic activity more effectively, long time series NSL data
was reconstructed as one of driving factors for PM, 5 concentration distribution [13]. Liu et al. [67]
found the effectiveness and potential values of using NSL, NDVI, and elevation on improving the
accuracy and spatial resolution of the satellite-based PM, 5 concentration dataset.

Indeed, as shown in Figure 12, some factors, like NSL and LCT, which can represent the city size
and the level of economic activity, play a more and more important role along the study period. In the
past nearly twenty years, the social and economic situation of Xinjiang has undergone tremendous
changes. According to the China Statistical Yearbooks in 2001 and 2019, Xinjiang’s private car
ownership has increased from 0.135 million to 3.2921 million, and the annual electricity consumption
increased from 18.3 billion kWh to 213.8 billion kWh [41,68]. Hence these findings suggest that the
rapid expansion of the urban area should slow down and new energy vehicles should be promoted
in the future, especially in NTMEZ. Furthermore, the explanatory power of the natural factor, like
DEM NDVI, also plays an increasingly important role in controlling the formation of PM; 5 (Figure 12).
X, et al. [69] found that the diversity of the complex landforms of Xinjiang is the main cause of the
spatial complexity of the precipitation distribution. It is generally accepted that rainfall has a significant
inhibitory effect on the formation of PM; 5. On the other hand, due to the popularity of agricultural
mechanized production and the overuse of water resources, a large amount of bare land has been
converted into cropland in Xinjiang [70,71]. By analyzing the MODIS land cover data, we conclude
that the cropland area was about 4.76 x 10* km? in 2001, while in 2016, the cropland area increased to
7.18 x 10* km?. In addition, the bare land area has been reduced more than 3.49 x 10* km? in Xinjiang.
Based on the GIMMS NDVI3g and MODIS NDVI data, there exists an increasing trend of vegetation
greenness in Xinjiang from 2001 to 2015 [42,72]. The regions with higher vegetation coverage and
greenness have the strong removal and absorption capacity for PM, 5. With the increase in the artificial
oasis area along the edge of the Tarim desert for the last 16 years, the ecological environment of the
desert edge cities has improved, and the absorption capacity of farmland on PM; 5 has also increased.
Considering that vegetation can accelerate the settlement rate of PM; 5, under the premise of effective
use of limited water resources, the area of urban green space should be increased through afforestation
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in barren mountains. Green land can reduce the PM; 5 concentrations of cities while preventing the
spread of sand and dust in the suburbs and deserts.

5. Conclusions

Based on standard deviation ellipse analysis and spatial autocorrelation statistics, this study
analyzed the spatio-temporal variation of satellite-based PM, 5 concentrations in Xinjiang from 2001 to
2016. We investigated the socio-economic and natural factors affecting PM; 5 concentration by using
the geographic detector method (GDM). Based on our findings, the main conclusions are as follows.
From 2001 to 2016, almost 40% of cities or counties in Xinjiang exceeded the WHO's annual standard
value of 10 ug/m3. The PMj; 5 concentration was higher in the northern slope of the Tianshan Mountains
and the western Tarim Basin. Due to the rapid development of the North Tianshan Mountain Economic
Zone (NTMEZ) in the past ten years, the PM; 5 concentration has gradually increased along the
northern slopes of the Tianshan Mountains, while it has decreased significantly in the western Tarim
Basin. Population density is the dominant factor affecting the spatio-temporal variation of PM; 5
concentration, followed by road network density and GDP density. The city size and its economic
development will increasingly affect the spatial distribution of PM; 5 concentrations in the future,
while the effect of population density will gradually decrease. Another interesting finding is that the
complex landforms and vegetation conditions have a potential relationship with the spatio-temporal
variation of PM; 5 concentration in Xinjiang. This is an interesting topic for future work, and more
detailed research should be conducted.

This study, for the first time, reveals spatio-temporal variability and its attribution of PM; 5
concentration in northwest China. The results of the study will help the local government to formulate
new and effective environmental policies.
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