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Abstract Cdc6, a subunit of the pre-replicative complex (pre-RC), contains multiple regulatory 
cyclin-dependent kinase (Cdk1) consensus sites, SP or TP motifs. In Saccharomyces cerevisiae, Cdk1 
phosphorylates Cdc6-T7 to recruit Cks1, the Cdk1 phospho-adaptor in S phase, for subsequent 
multisite phosphorylation and protein degradation. Cdc6 accumulates in mitosis and is tightly 
bound by Clb2 through N-terminal phosphorylation in order to prevent premature origin licensing 
and degradation. It has been extensively studied how Cdc6 phosphorylation is regulated by the 
cyclin–Cdk1 complex. However, a detailed mechanism on how Cdc6 phosphorylation is reversed 
by phosphatases has not been elucidated. Here, we show that PP2ACdc55 dephosphorylates Cdc6 
N-terminal sites to release Clb2. Cdc14 dephosphorylates the C-terminal phospho-degron, leading 
to Cdc6 stabilization in mitosis. In addition, Cdk1 inhibitor Sic1 releases Clb2·Cdk1·Cks1 from Cdc6 
to load Mcm2–7 on the chromatin upon mitotic exit. Thus, pre-RC assembly and origin licensing are 
promoted by phosphatases through the attenuation of distinct Cdk1-dependent Cdc6 inhibitory 
mechanisms.

Editor's evaluation
The work at focus in your manuscript shows that there are three mechanisms that coordinate the 
stability of Cdc6 to allow for the critical DNA replication licensing event that must occur before 
yeast cells enter the G1 phase and is an important contribution to the cell cycle field. How Cdc6 is 
dephosphorylated is complex and the reviewers all applaud the biochemical and molecular biology 
approaches taken. While no new experiments are required for the publication we call your attention 
to the three reviews below where recommendations for revisions are given.

Introduction
Pre-replicative complexes (pre-RCs) are assembled on DNA to license replication origins in M–G1 
phase. The pre-RC components are recruited in a sequential fashion that starts with the origin recog-
nition complex (Orc1–6) followed by Cdc6 then Cdt1, which eventually load the Mcm2–7 helicase on 
DNA (Bell and Stillman, 1992; Santocanale and Diffley, 1996; Newlon, 1997; Labib et al., 2001; 
Tanaka and Diffley, 2002). At the onset of S phase, cyclin-dependent kinase (Cdk1) phosphorylates 
pre-RC components such as Cdc6 which prevents reinitiation of DNA replication through multiple 
mechanisms (Nguyen et  al., 2001; Wilmes et  al., 2004). Cdc6 phospho-degrons are created by 
Cdk1, which directs Cdc6 protein degradation via SCF-mediated ubiquitination in Saccharomyces 
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cerevisiae (Drury et al., 2000; Drury et al., 1997; Perkins et al., 2001). Cdc6 is expressed and stabi-
lized during late mitosis; however, it is not clear how Cdc6 stability is maintained in the presence of 
high Cdk1 activity.

There are eight Cdk1-dependent phosphorylation sites that contain TP or SP motifs in Cdc6, six 
of which have been well characterized (Figure 1A). Cyclin docking motifs facilitate Cdk1-dependent 
phosphorylation at specific cell cycle stages (Wilmes et al., 2004; Cross and Jacobson, 2000; 
Loog and Morgan, 2005; Kõivomägi et al., 2011; Örd et al., 2019). The S-phase cyclin Clb5 and 
M-phase cyclin Clb2 associate with the docking motifs RxL and LxF, respectively (Wilmes et al., 
2004; Kõivomägi et al., 2011; Örd et al., 2019). Clb5 binds to the Cdc6 RxL motif at amino acid 
residues 30–32 to mediate phosphorylation of T7 in the Cdc6 N-terminus (Örd et al., 2019). The 
Cdk1 phospho-adaptor Cks1 docks at phosphorylated T7 to trigger a Cdc6 multiphosphorylation 
cascade in the N- to C-direction (Örd et al., 2019). SCFCdc4 recognizes Cdc6 phospho-degrons at 
T39-S43 and T368-S372 for ubiquitin-mediated degradation under control of the SCFCdc4 ubiquitin 
ligase (Figure 1A; Drury et al., 2000; Drury et al., 1997; Perkins et al., 2001; Al-Zain et al., 
2015).

Following Cdc6 degradation at G1/S, it is expressed again in mitosis and tightly bound to mitotic 
cyclin Clb2 to prevent origin licensing in mitosis (Mimura et  al., 2004). Clb2 interacts with Cdc6 
through the Clb2 hydrophobic patch (hp), a substrate-binding pocket in cyclins (Örd et al., 2019). The 
specific binding of Clb2 to Cdc6 is mediated through the 47LQF49 motif in Cdc6, which is facilitated 
by Cks1 docking at phosphorylated T7 in the Cdc6 N-terminus (Örd et al., 2019). The Cdc6–Clb2 
binding is also enhanced by a 126FQSLP130 motif located in the midregion of Cdc614. Thus, the Clb2·C-
dk1·Cks1 complex interacts with Cdc6 through multiple elements: Cks1 docking at phosphorylated 
T7, and Clb2 binding at the 47LQF49 and 126FQSLP130 motifs (Örd et al., 2019). The tight Cdc6–Clb2 
interaction potentially shields Cdc6 phospho-degrons, leading to Cdc6 stabilization. These mecha-
nisms could accumulate Cdc6 in mitosis without origin licensing.

Mitotic exit requires a complete suppression of Cdk1 activity to reset the cell cycle for G1 entry. 
It has been suggested that Cdc6 acts as a Cdk1 inhibitor together with Sic1 and a coactivator of the 
anaphase-promoting complex (APC), Cdh1 (Calzada et al., 2001). Sic1 and Cdc6 share similarities 
in Cdk1 inhibitory function, as both have been shown to associate to cyclin–Cdk1 complexes with 
low nanomolar affinity, which is partly facilitated by Cks1 docking (Örd et al., 2019; Venta et al., 
2020). Deletion of the Cdc6 N-terminal Cdk1 site (cdc6Δ47) shows elevated Clb2–Cdk1 activity in 
mitosis, indicating that Cdc6 N-terminus plays a role in Clb2–Cdk1 inhibition (Calzada et al., 2001). 
A combination of Δsic1 and cdc6Δ47 leads to defects in mitotic exit, probably due to high Cdk1 
activity (Calzada et al., 2001). Furthermore, Δsic1 Δcdh1 cdc6Δ2–49 triple mutants caused cytokinesis 
defects (Archambault et al., 2003). Altogether, Cdc6, Sic1, and APCCdh1 cooperate to inhibit Clb2–
Cdk1 activity for mitotic exit. This was further supported by an in vitro assay that shows the inhibition 
of Clb2–Cdc28 kinase activity by Cdc6 (Örd et al., 2019).

Beside these Cdk1 inhibition mechanisms, Cdc6 phosphorylation needs to be removed by phos-
phatases during late mitosis. It is unknown which phosphatase is responsible for Cdc6 dephosphory-
lation. It has been reported that Cdc6 physically interacts with Cdc55, a regulatory subunit for protein 
phosphatase 2A (PP2A) (Boronat and Campbell, 2007). PP2A belongs to a family of serine/threonine 
phosphatases with a well-conserved role in mitosis from yeast to humans (Janssens and Goris, 2001; 
Mochida et al., 2009). In S. cerevisiae, the PP2A heterotrimeric complex is composed of a scaffold A 
subunit (Tpd3), a regulatory B subunit (Cdc55, Rts1, or Rts3), and two largely interchangeable catalytic 
C subunits (Pph21 and Pph22) (Healy et al., 1991; van Zyl et al., 1992; Shu et al., 1997). Among 
these subunits, the regulatory B subunit primarily dictates cellular localization and PP2A substrate 
specificity (Rossio and Yoshida, 2011). PP2ACdc55 and PP2ARts1 have been implicated in mitotic 
progression. Cytoplasmic PP2ACdc55 dephosphorylates and inhibits Swe1, a Cdk1 inhibitor, to drive 
mitotic entry (Lin and Arndt, 1995; Yang et al., 2000). Nuclear PP2ACdc55 plays a role in the spindle 
assembly checkpoint and inhibits chromosome segregation by dephosphorylating Cdc20 (Minshull 
et al., 1996; Wang and Burke, 1997; Lianga et al., 2013; Rossio et al., 2013). Furthermore, various 
stresses inhibit the cell cycle via PP2ACdc55 (Tang and Wang, 2006; Khondker et al., 2020). PP2ACdc55 
also dephosphorylates Net1, an inhibitor of Cdc14 (Queralt et al., 2006). PP2ARts1 promotes cytoki-
nesis by modulating actin ring phosphorylation (Dobbelaere et al., 2003). It is unclear if PP2A directly 
targets and dephosphorylates Cdc6.

https://doi.org/10.7554/eLife.74437
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Figure 1. Cdc6 is more stabilized in Δcdc55 cells than in Δclb2. (A) Cdc6 contains six functional Cdk1 phosphorylation sites including N- and C-terminal 
phospho-degrons at T39-S43 and S368-T372, respectively (orange bars). RxL and LxF motifs mediate cyclin interaction. (B) CDC6-9MYC (WT), CDC6-
9MYC Δclb2 (Δclb2), or CDC6-9MYC Δcdc55 (Δcdc55) cells were incubated to log phase, or arrested in G1 by α-factor or mitosis by nocodazole. Protein 
was extracted and subjected to western blot analysis to visualize Cdc6-9MYC and Clb2. Pgk1 was used as a loading control. (C) Cdc6 protein levels 
from A were quantified and normalized to WT. Three independent biological replicates were performed. The average of relative Cdc6 band intensity 
compared to WT is shown. Error bars are standard error of the mean (SEM; n = 3; log phase Δclb2 ****p < 0.0001, Δcdc55 ***p = 0.0006, Mitosis Δclb2 

Figure 1 continued on next page
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Cdc14 phosphatase promotes mitotic exit through Net1 dephosphorylation upon Cdc14 release 
from the nucleolus via the FEAR and MEN networks (Visintin et al., 1999; Azzam et al., 2004; Shou 
et al., 1999; Tomson et al., 2009). Cdc14 dephosphorylates cell cycle regulators such as Swi5, Sic1, 
and Cdh1, all which are necessary for mitotic exit and G1 entry (Visintin et al., 1998; Jaspersen 
et al., 1999). It has been reported that Cdc6 is destabilized in cdc14-3 mutant cells, which prompted 
us to study if Cdc14 directly dephosphorylates Cdc6 (Zhai et al., 2010). In this study, we show that 
Cdc6 is directly dephosphorylated by PP2ACdc55 and Cdc14 at distinct Cdk1 sites, which releases Clb2 
and stabilize Cdc6, respectively. Sic1 also releases Clb2 from Cdc6, allowing Mcm2–7 loading on 
chromatin for pre-RC assembly. These results suggest a model in which distinct phosphatases relieve 
Cdk1-dependent Cdc6 inhibition. Finally, a structural insight into Cdc6–Clb2 binding using bioinfor-
matics suggests a role of Cdc6 intrinsically disordered regions (IDRs) for protein–protein interactions.

Results
Clb2 and PP2ACdc55 have contrasting roles in Cdc6 stability
To test the idea that PP2ACdc55 targets Cdc6, we examined Cdc6 protein levels in Δclb2 and Δcdc55 
cells by western blot analysis. The Cdc6 protein level was lower in Δclb2 compared to wild type in 
log-phase cells, which supports previous results of Cdc6 destabilization in the Cdc6-lxf mutant that 
does not bind to Clb2 (Figure 1B, C, Örd et al., 2019). There was low Cdc6 protein expression in G1 
arrested cells, which was not impacted by deletion of CLB2 or CDC55 (Figure 1B, middle). During 
mitosis, we observed less Cdc6 in Δclb2 cells and more in Δcdc55 cells compared to wild type; this 
difference in the Cdc6 protein level was more prominent in mitosis than in log-phase cells (Figure 1B, 
C). These results indicate that PP2ACdc55 and Clb2 regulate Cdc6 protein levels in a contradictory 
manner. An elevated Clb2 protein level and Cdc6 stabilization in wild-type cells confirmed that cells 
were in mitosis (Figure 1B, right). The S-phase cyclin Clb5, as well as another regulatory subunit of 
PP2A, Rts1, did not alter Cdc6 protein levels (Figure 1C). We conclude that Cdc6 is regulated by 
mitotic cyclin Clb2 and PP2ACdc55 in a specific manner.

Next, we analyzed Cdc6 protein levels in Δclb2 and cdc55-101 cells during the cell cycle. The 
cdc55-101 mutant excludes Cdc55 from the nucleus, allowing us to study Cdc55 nuclear function. 
Unlike Δcdc55, cdc55-101 mutant cells do not exhibit morphological defects, which allows us to 
monitor G1 arrest induced by α-factor and cell cycle progression (Sasaki et al., 2000). In wild-type 
cells, Cdc6 protein levels were suppressed throughout S phase, increased in mitosis at 80 min and then 
diminished (Figure 1D, E; Drury et al., 2000; Drury et al., 1997; Piatti et al., 1995). In Δclb2 cells, 
Cdc6 protein levels were suppressed throughout S phase and particularly in mitosis (Figure 1D–F). 
This result suggests a role for Clb2 in Cdc6 stabilization during mitosis possibly by masking the Cdc6 
phospho-degron. In contrast, Cdc6 was more stabilized in cdc55-101 cells during mitosis, with a peak 
accumulation between 60 and 100 min (Figure 1D, E). Flow cytometry analysis did not show a signif-
icant difference in the cell cycle profile between wild-type and Δclb2 cells (Figure  1F). In cdc55-
101 cells, we observed a 20-min S-phase delay, indicating that PP2ACdc55 positively regulates S-phase 
progression (Figure 1F). We conclude that the early Cdc6 accumulation in cdc55-101 cells is not due 
to cell cycle delay.

To examine how PP2ACdc55 impacts Cdc6 localization and protein level, we analyzed Cdc6-Citrine by 
time-lapse microscopy in wild-type and Δcdc55 cells. Whi5 is a Start transcriptional repressor imported 
into the nucleus in M/G1 and exported in late G1. Whi5 nuclear import was used as a cell cycle indi-
cator that was set as time 0 for a temporal framework (Figure 1G; Doncic et al., 2011). Cdc6-Citrine 

**p = 0.0075, Δcdc55 *p = 0.0351 was calculated by unpaired Student’s t-test). (D) CDC6-PrA (WT), CDC6-PrA Δclb2 (Δclb2), and CDC6-PrA cdc55-101 
(cdc55-101) were synchronized in G1 phase by α-factor and released. Samples were collected at indicated times. Cdc6-PrA was visualized by western 
blotting analysis. Pgk1 was used as a loading control. (E) The relative Cdc6 band intensity to time 0 from C is shown. (F) Samples from C were fixed and 
stained with propidium iodide (PI) to show cell cycle profile by flow cytometry. x-Axis is PI and y-axis is cell number. Arrow indicates S-phase entry delay. 
(G) CDC6-Citrine WHI5-mCherry cells were imaged by time-lapse microscopy. Time 0 was set when Whi5-mCherry is imported to the nucleus. Arrow 
marks Whi5 nuclear entry in late mitosis. (H) CDC6-Citrine (WT), CDC6-Citrine cdc55-101 (cdc55-101), or CDC6-Citrine Δcdc55 (Δcdc55) with Whi5-
mCherry were imaged by time-lapse microscopy. Shown is the average Cdc6-Citrine fluorescence intensities of 100 cells per time point. Error bars are 
SEM (n = 100). (I) CDC6-GFP (WT) or CDC6-GFP cdc55-101 (cdc55-101) cells were grown to log phase and imaged using a fluorescence microscope.

Figure 1 continued

https://doi.org/10.7554/eLife.74437
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began accumulating in the nucleus after Whi5 nuclear import and reached maximum accumulation 
at 9 min after Whi5 nuclear import in wild-type cells (Figure 1H). In Δcdc55 and cdc55-101 cells, we 
observed more Cdc6-Citrine accumulation (Figure 1H). The timing of Cdc6-Citrine expression and 
degradation remained unchanged, as it started dropping around 15 min after Whi5 nuclear import 
in all strains (Figure 1H). These data suggest that PP2ACdc55 negatively regulates Cdc6 stability in the 
nucleus during mitosis. We also observed Cdc6-GFP nuclear localization in early mitosis in asynchro-
nous cdc55-101 cells (Figure 1I, arrow). The similar Cdc6 protein accumulation patterns observed in 
Δcdc55 and cdc55-101 support the idea that Cdc6 is solely regulated by nuclear PP2ACdc55 function.
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Figure 2. Cdc6 and Clb2 are more tightly bound in Δcdc55 cells. (A) CDC6-PrA (WT), CDC6-T368A-PrA, or Δclb2 CDC6-T368A-PrA cells were incubated 
to log phase or arrested in mitosis by nocodazole. Protein extracts were subjected to western blot analysis to visualize Cdc6-PrA. Pgk1 was used as 
a loading control. (B) Cdc6 protein levels in A were quantified and normalized to WT. Three independent biological replicates were performed. An 
average of the relative Cdc6 band intensity is shown. Error bars are standard error of the mean (SEM; n = 3; Δclb2 CDC6-T368A-PrA *p = 0.0442 was 
calculated using unpaired Student’s t-test). (C) Δclb2 strain was crossed with CDC6-T39A-T368A and tetrad analysis was performed. The genotype for 
each haploid progeny is shown. + is wild type and m is mutant. Top letter is for Δclb2 and bottom letter is for CDC6-T39A-T368A. (D) CDC6-9MYC (WT) 
or CDC6-9MYC Δcdc55 (Δcdc55) cells were arrested in mitosis by nocodazole. Samples were collected and protein was extracted (INPUT). Cdc6-9MYC 
was pulled down by anti-MYC agarose beads. Supernatant (Sup) or pull-down samples (IP) were analyzed by western blot to visualize Cdc6-9MYC and 
Clb2. Pgk1 was used as a loading control. (E) Band intensities from E were quantified. Cdc6 and Clb2 levels in Δcdc55 were normalized to those in WT. 
Three independent biological replicates of the experiment in E were performed. An average of the relative Cdc6 and Clb2 band intensities are shown. 
The ratio between Clb2 to Cdc6 was obtained and normalized to WT. Error bars are SEM (n = 3; Cdc6 Δcdc55 *p = 0.0205, Clb2 Δcdc55 ***p = 0.0003, 
and Clb2:Cdc6 Δcdc55 ****p = 0.0001 were calculated using unpaired Student’s t-test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cdc6 suppression in Δclb2 is through Cdc6 N-terminal phospho-degron.

https://doi.org/10.7554/eLife.74437
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Clb2 stabilizes Cdc6 through its N-terminus
Clb2 binds to the Cdc6 N-terminus through a conserved LxF motif (Örd et al., 2019). We tested if 
low Cdc6 protein levels in Δclb2 cells are mediated through the Cdc6 N-terminus. The CDC6-T368A 
mutant contains an alanine substitution in the C-terminal phospho-degron, stabilizing Cdc6 in mitosis 
(Figure 2A, lanes 4 + 5, Figure 2B; Perkins et al., 2001). This mutant retains the N-terminal Cdc6 
phospho-degron at T39-S43. Cdc6-T368A was unstable in Δclb2 log-phase cells (Figure 2A, lanes 2 
+ 3) and was more prominent in mitotic-arrested cells, supporting the idea that Clb2 shields the Cdc6 
N-terminal phospho-degron (Figure 2A, lanes 5 + 6, Figure 2B; Örd et al., 2019). The CDC6-T39A-
T368A double mutant, containing mutations at both the N- and C-terminal phospho-degron, was 
synthetically lethal in Δclb2 cells (Figure 2C). When Cdc6 is overexpressed and controlled under the 
GAL promoter, we observed stabilized Cdc6-T39A-T368A in Δclb2 cells during mitosis, suggesting 
that stabilized Cdc6 is lethal when Clb2’s inhibitory role in origin licensing is abolished (Figure 2—
figure supplement 1). In contrast, GAL-Cdc6 and GAL-Cdc6-T368A were degraded in Δclb2 cells, 
which suggest the importance of the N-terminal phospho-degron in Cdc6 degradation when Clb2 is 
abolished (Figure 2—figure supplement 1).

Cdc6–Clb2 interaction is enhanced in Δcdc55 cells
Cdc6 stabilization in Δcdc55 cells indicates that PP2ACdc55 inhibits Cdc6 protein accumulation. 
Therefore, we excluded the possibility that PP2ACdc55 targets neither Cdc6 phospho-degron. We 
hypothesized that PP2ACdc55 releases Clb2 from Cdc6, exposing the Cdc6 phospho-degrons, which 
subsequently leads to Cdc6 degradation. To test this possibility, we compared the Clb2:Cdc6 protein-
binding ratio between wild-type and Δcdc55 cells during mitosis by co-immunoprecipitation (co-
IP). Cdc6 was stabilized in Δcdc55 cells, confirming the results in Figure 1B (Figure 2D, lanes 3 + 
6, Figure  2E). There was more Clb2 bound to Cdc6 in Δcdc55 cells compared to wild-type cells 
(Figure 2D, lanes 3 + 6). The relative ratio between Clb2 to Cdc6 was reproducibly higher in Δcdc55 
cells, suggesting that PP2ACdc55 disrupts Cdc6–Clb2 binding (Figure 2E). From this result, we conclude 
that Clb2 binds tighter to a fraction of Cdc6 in Δcdc55 cells, which may mask the Cdc6 N-terminal 
phospho-degron, and thereby contribute to Cdc6 stability in Δcdc55 cells.

PP2ACdc55 targets the Cdc6 phosphorylation site T7
Our finding supports a scenario in which PP2ACdc55 dephosphorylates Cdc6 at the N-terminus and 
disrupts Cdc6–Clb2 binding. We hypothesized that PP2ACdc55 dephosphorylates Cdc6 at residue T7, 
which removes the Cks1 docking site, thus inhibiting Clb2 binding. We generated two CDC6-9MYC 
constructs that contain alanine mutations at the Cdk1 phosphorylation sites to test if Cdc6-T7 site is 
dephosphorylated by PP2ACdc55. The CDC6-6A mutant strain contains six alanine mutations at T7A, 
T23A, T39A, S43A, T368A, and S372A, serving as a negative control. The CDC6-T7 mutant strain 
only retains the T7 phosphorylation site while all other Cdk1 phosphorylation sites are mutated to 
alanine (T23A, T39A, S43A, T368A, and S372A) (Figure 3A). Thus, the CDC6 constructs eliminate the 
function of both phospho-degrons. We raised a custom Cdc6-T7 phospho-specific antibody to detect 
T7 phosphorylation (Cdc6-T7p). Cdc6-T7 phosphorylation was not detected in the CDC6-6A mutant, 
confirming the specificity of the custom-made Cdc6-T7 phospho-specific antibody (Figure  3B). 
The Cdc6-6A protein level did not differ between CDC55 and Δcdc55 cells (Figure 3B). Cdc6-T7 
phosphorylation was detected in the Cdc6-T7 construct and was slightly enhanced in Δcdc55 cells, 
supporting the idea that PP2ACdc55 dephosphorylates the Cdc6-T7 site (Figure 3B, C). Cdc6-6A did 
not interact with Clb2, supporting a role for Cdc6 phosphorylation in protein binding (Figure 3B). 
Cdc6-T7 associated with Clb2, supporting our previous results that Cks1 docking to T7 is crucial for 
the Cdc6–Clb2 interaction (Figure 3B). The Cdc6-T7 and Clb2 interaction was enhanced in Δcdc55 
cells (Figure 3B, C).

The CDC6-T7 mutant contains mutations on phospho-degrons. Why is the Cdc6-T7 protein level 
slightly stabilized in the absence of Cdc55? (Figure 3B). There is a possibility that the T7 site serves 
as a phospho-degron, because Clb2 may bind and mask phosphorylated Cdc6-T7 in Δcdc55. Inter-
estingly, the Cdc6-6A protein level was noticeably less stable than Cdc6-T7 (Figure 3B). In order to 
understand the mechanism of these observations, we examined endogenous Cdc6, and the mutants 
Cdc6-6A and Cdc6-T7 protein levels in cdc4-1 cells (Figure 3—figure supplement 1). Endogenous 
Cdc6 was stabilized after 1–2 hr at 37°C as reported previously (Drury et al., 1997; Figure 3—figure 

https://doi.org/10.7554/eLife.74437
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supplement 1). In contrast, Cdc6-6A was still degraded in cdc4-1 cells, indicating that Cdc6 has 
another degradation mechanism rather than SCF-mediated degradation. The Cdc6-T7 protein level 
stayed the same in cdc4-1 cells, which indicates the SCFCdc4 does not target T7 for degradation 
(Figure 3—figure supplement 1).

Next, we examined Cdc6-T7 phosphorylation during the cell cycle by α-factor block and release. 
Cdc6 was expressed during mitosis at 80 minutes in wild type and was more stabilized in cdc55-101 
cells (Figures 3D and 1D). Cdc6-T7 phosphorylation was suppressed in wild-type cells (Figure 3D) 
throughout the cell cycle. In contrast, there was a spike of T7 phosphorylation in cdc55-101 mutant 
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Figure 3. Cdc6-T7 is hyperphosphorylated in Δcdc55 cells. (A) A schematic of Cdc6 phosphorylation mutants is shown. Alanine mutations are indicated 
as A with amino acid positions. P indicates CDK sites accessible for phosphorylation. (B) The indicated Cdc6 mutants were immunoprecipitated 
using anti-MYC agarose beads. A total Cdc6 and Cdc6-T7 phosphorylation were analyzed by western blot with anti-MYC and Cdc6-T7p antibodies, 
respectively. Clb2 was detected by anti-Clb2. (C) Bands from B were quantified and the ratio between Cdc6-T7p:Cdc6 and Clb2:Cdc6 are shown. Error 
bars are standard error of the mean (SEM; n = 3; Cdc6-T7p:Cdc6 *p = 0.0468 and Clb2:Cdc6 **p = 0.0034 were calculated using unpaired Student’s 
t-test). (D) CDC6-9MYC (WT) or CDC6-9MYC cdc55-101 (cdc55-101) cells were arrested in G1 by α-factor and released. Cdc6 was visualized by anti-MYC 
antibody. Cdc6-T7 phosphorylation was detected by T7p phospho-specific antibody. (E) Band intensities from D were quantified.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cdc6-6A is not targeted by SCFCdc4.

Figure supplement 2. WT and cdc55-101 cells progress through the cell cycle.

https://doi.org/10.7554/eLife.74437
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cells at 80 minutes during mitosis (Figure 3D). The Cdc6-T7 phosphorylation peak coincides with 
Cdc6 stabilization (Figure 3D, E). Flow cytometry analysis showed that both wild-type and cdc55-
101 mutant cells are in mitosis at 80 min (Figure 3—figure supplement 2). From these results, we 
conclude that Cdc6-T7 phosphorylation is reversed by PP2ACdc55, which releases Clb2.

Cdc14 stabilizes Cdc6 in late mitosis
It has been reported that Cdc14 targets Cdc6 and other pre-RC proteins (Zhai et al., 2010). Conse-
quently, we examined Cdc6 protein levels in cdc14-3 mutant cells. Cdc14 was inactivated at the 
nonpermissive temperature upon α-factor release. We show that Cdc6 accumulation was consistently 
lower in cdc14-3 compared to cdc15-1, an alternative mitotic mutant (Figure 4—figure supplement 
1A). This result was especially prominent during mitosis at 120–180 minutes. The cell cycle profiles 
between cdc14-3 and cdc15-1 were the same, confirming that the observed difference in Cdc6 
protein levels was not caused by cell cycle progression defects (Figure 4—figure supplement 1B). 
From these data, we conclude that Cdc14 stabilizes Cdc6 during late mitosis.

PP2ACdc55 and Cdc14 dephosphorylate Cdc6 at distinct sites
PP2ACdc55 and Cdc14 exhibited opposite effects on Cdc6 stability (Figure 1 and Figure 4—figure 
supplement 1A). We hypothesized that Cdc14 may target a Cdc6 phospho-degron, leading to Cdc6 
stabilization. PP2ACdc55 and Cdc14 specificity toward Cdc6 was examined by in vitro phosphatase 
assays. Recombinant Cdc6 was preincubated with Clb5–Cdk1 in the presence of [γ-32P]-ATP. The reac-
tion mixture was further incubated with purified Cdc14 or PP2ACdc55 for dephosphorylation. Purified 
Sic1 was also added to the mixture in order to inhibit further phosphorylation of Cdc6 by Clb5–
Cdk1 after addition of the phosphatases. The intensity of [32P]-label on Cdc6 was measured by auto-
radiography. Full-length wild-type Cdc6 was moderately dephosphorylated by both PP2ACdc55 and 
Cdc14 (Figure 4A), indicating that Cdc6 is directly targeted by these phosphatases. The phosphate 
on Cdc6-T7 was efficiently removed by PP2ACdc55 when T7 was the only phosphorylation site available, 
but not by Cdc14 (Figure 4B). The same trend was observed with Cdc6-T23, but to a lesser extent 
(Figure  4C). When the Cdc6 C-terminal phospho-degron was the only phosphorylation site avail-
able, it was dephosphorylated by Cdc14, but not by PP2ACdc55 (Figure 4D). N-Swe1 and Csa1 were 
used as positive controls to show PP2ACdc55 Harvey et al., 2011 and Cdc14 specificity (Örd et al., 
2020), respectively (Figure 4E, F). Neither Cdc6-T39 nor -S43 was dephosphorylated by PP2ACdc55 or 
Cdc14, indicating that the Cdc6 N-terminal phospho-degron is not controlled by these phosphatases 
(Figure  4—figure supplement 2). These results suggest that PP2ACdc55 directly dephosphorylates 
Cdc6-T7 and -T23, while Cdc14 dephosphorylates the Cdc6 C-terminal phospho-degron at T368-
S372. Thus, PP2ACdc55 and Cdc14 showed sequence specificity toward Cdc6.

Sic1 releases Clb2 from Cdc6
Deletion of CDC55 slows down S-phase progression. However, cells were still capable of completing 
S phase (Figure 1F). The key regulator of Clb2–Cdk1 inhibition, Sic1, is a promoter of origin licensing 
in G1 in conjunction with APCCdh1 (Lengronne and Schwob, 2002; Wäsch and Cross, 2002). It is 
possible that Sic1 also drives origin licensing through Cdc6. Both Cdh1 and Sic1 act in overlapping 
mechanisms that promote mitotic exit, which is potentially coupled to origin licensing (Visintin et al., 
1998). We hypothesized that this is due to high level of Clb2 binding to Cdc6. A CDC6-T39A-T368A 
Δcdh1 strain was used to obtain stable Cdc6 expression. Transient Sic1 expression was induced in 
a GAL-SIC1 strain using galactose. Overexpression of Sic1 released Clb2 from Cdc6 in mitotic cells 
arrested by nocodazole (Figure 5A, B).

Next, we tested if Sic1 promotes Mcm2–7 DNA loading using a biochemical approach with purified 
proteins (Ayuda-Durán et al., 2014; Remus et al., 2009; Seki and Diffley, 2000). The stringent regu-
lation of intracellular Cdc6 protein levels by proteolytic degradation in both G1 and S phase severely 
hampers the purification of endogenous Cdc6 from these cell cycle stages even after galactose-
induced overexpression. However, we observed that extended overexpression of TAPTCP-tagged Cdc6 
upon release from α-factor arrest induces a mitotic arrest phenotype in yeast cells, characterized 
by a 2C DNA content and the presence of a large elongated bud (data not shown). Intriguingly, 
Cdc6 isolated from whole-cell extracts of such mitotically arrested cells exists in a stable stoichio-
metric complex with three additional proteins that we identified as Clb2, Cdk1, and Cks1 by mass 

https://doi.org/10.7554/eLife.74437
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Figure 4. PP2A and Cdc14 dephosphorylate Cdc6-T7, -T23, and T368-S372, respectively. Full-length Cdc6 (A), Cdc6-T23A-T39A-S43A-T368A-S372A 
(Cdc6-T7) (B), Cdc6-T7A-T39A-S43A-T368A-S372A (Cdc6-T23) (C), and Cdc6-T7A-T23A-T39A-S43A (Cdc6-T368-S372) (D) were phosphorylated for 
60 min at room temperature using purified Clb5–Cdk1 in the presence of [γ-32P]-ATP. At time 0, Sic1 and phosphatase Cdc14 or PP2ACdc55 were added 
to the reactions to inhibit Clb5–Cdk1. A time course was taken, and samples were measured for dephosphorylation. N-Swe1 was used as a positive 
control for PP2ACdc55 (E), and Csa1 for Cdc14 (F). The samples were loaded on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) 
and following electrophoresis, the gels were stained using Coomassie Brilliant Blue. Signals were quantified using ImageQuant TL. Three independent 
biological replicates of the phosphatase assays were performed. Error bars are standard error of the mean (SEM; n = 3).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cdc6 is unstable in cdc14-3 mutant.

Figure supplement 2. PP2A and Cdc14 do not target Cdc6-T39 and S43.

https://doi.org/10.7554/eLife.74437
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ns, not significant; Galactose ****p < 0.0001, **p = 0.0090 was calculated using unpaired Student’s t-test). (C) Cdc6 was expressed and purified from M-
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complex and Sic1 were analyzed by gel filtration. Fractions were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) 
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with purified ORC, Cdc6·Clb2·Cdk1·Cks1, Cdt1·Mcm2–7, and Sic1 on origin DNA immobilized on paramagnetic beads. Loading was performed in the 
presence or absence of Sic1 and the presence of either a salt wash (left) or ATP and ATP analog, ATPγS (γS) (right).
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spectrometry (Figure 5C). The formation of this complex after Cdc6 overexpression is consistent with 
the previous observation of a Cdc6·Clb2·Cdk1 complex in G2/M cells (Mimura et al., 2004). Impor-
tantly, using gel-filtration analysis, we find that Cdc6 is released from the Clb2–Cdk1 complex in the 
presence of the Cdk1 inhibitor Sic1, which itself forms a stable complex with Clb2–Cdk1 (Figure 5D).

Clb2–Cdk1 binding to Cdc6 has been proposed to inhibit the origin licensing activity of Cdc6 
as part of cellular re-replication control mechanisms (Mimura et  al., 2004). We tested the ability 
of Cdc6·Clb2·Cdk1·Cks1 to promote Mcm2–7 loading onto DNA in conjunction with purified ORC 
and Cdt1·Mcm2–7, analogous to experiments described previously with purified Cdc652. Using this 
approach, we find that Cdc6·Clb2·Cdk1·Cks1 does not support the formation of salt-stable MCM 
complexes on DNA, indicating that Cdc6 in complex with Clb2·Cdk1·Cks1 is inactive for Mcm2–7 
loading (Figure  5E, lanes 1 + 2). Importantly, normal Mcm2–7 loading was observed in reactions 
containing both purified Sic1 and Cdc6·Clb2·Cdk1·Cks1 (Figure  5E, lanes 3 + 4), indicating that 
Clb2·Cdk1·Cks1 sequesters Cdc6 and that this form of Cdc6 inhibition can be reversed by release 
of Cdc6 from the Cdc6·Clb2·Cdk1·Cks1 complex by Sic1. However, we noted that Orc6 is efficiently 
phosphorylated in the presence of Cdc6·Clb2·Cdk1·Cks1, as indicated by the pronounced gel-
mobility shift of Orc6 (Figure 5E, compare lanes 1 + 3). This Orc6 phosphorylation is inhibited in the 
presence of Sic1, indicating that Clb2–Cdk1 retains partial kinase activity in the Cdc6·Clb2·Cdk1·Cks1 
complex. It is known that Cdk1 phosphorylation inhibits the Mcm2–7 loading function of ORC (Frigola 
et al., 2013). It was possible that the inhibition of Mcm2–7 loading in the presence of Cdc6·Clb2·C-
dk1·Cks1 was due to ORC phosphorylation and not Cdc6 sequestration. However, we noted that not 
only Mcm2–7 loading, but even Mcm2–7 recruitment to ORC/Cdc6, which can be monitored in the 
presence of ATPγS, is inhibited in the presence of Cdc6·Clb2·Cdk1·Cks1 (Figure 5E, lanes 5 + 6), 
and this inhibition is again reversed in the presence of Sic1 (Figure 5E, lanes 7 + 8). Since ORC phos-
phorylation specifically inhibits Mcm2–7 loading but not Mcm2–7 recruitment (Frigola et al., 2013), 
these data demonstrate that the mechanism of licensing inhibition by Cdc6·Clb2·Cdk1·Cks1 complex 
formation is distinct from that by Cdk1 phosphorylation of ORC. In summary, we conclude that Clb2–
Cdk1 inhibits Cdc6 by physical sequestration and this inhibition is reversible by the Sic1-mediated 
release of Cdc6 from the Cdc6·Clb2·Cdk1·Cks1 complex.

Key functional residues/motifs of Cdc6 and Clb2 are located within 
regions of intrinsic disorder
The necessary structural elements in Cdc6 responsible for protein binding are not well understood. 
Protein-binding motifs often fall in IDRs, which are not well characterized structurally due to the limita-
tions of crystal structure analysis (Wright and Dyson, 2015; Fuxreiter et al., 2007). IDRs in Cdc6 
were identified by several programs including IUPred (Mészáros et al., 2018) and Anchor (Mészáros 
et al., 2009), which include: (1) Cdc6-N terminus residues 1–59 and (2) Cdc6 C-terminus residues 
350–378 (Figure 6A and Figure 6—figure supplement 1A). Next, we constructed a full-length Cdc6 
structure model by extracting the known structure from Protein Data Bank (PDB ID: 5V8F) (Yuan et al., 
2017), which was lacking some of the key functional residues and regions, for example, 1–59, 68–80, 
129–163, and 349–387. Indeed, these regions fall into the IDRs identified in Figure 6A. We generated 
a complete structural representation of Cdc6 through predictions of both IDRs and secondary struc-
ture combined with template-based modeling and ab initio approaches (see Methods). The missing 
regions modeled in the Cdc6 N-terminus span residues 1–59 (Figure 6B, left) as well as the centrally 
located residues 350–378 (Figure 6B, right), which correspond to the predicted IDRs (Figure 6A). 
The Cdc6 N-terminal IDR comprises four Cdk1 consensus sites (T7, T23, T39, and S43) and two cyclin-
binding motifs RxL (30–32) and LxF (47–49), all of which are critical for Cdc6 phospho-regulation 
(Figure  6B, left). The Cdc6 C-terminal IDR (residues 350–378) contains phospho-degron 368–372 
(Figure 6B, right). We also compared our Cdc6 structural model with the recently released AlphaFold 
and evaluated the model quality using Verify 3D software (Figure 6—figure supplement 1B). The 
3D-1D profiles from Verify 3D measure the compatibility of the primary structure of a protein with its 
three-dimensional structural environment in the model. An average 3D-1D score of 0.2 (shown by the 
green line in the plots) denotes the threshold of acceptable model quality, that is, scores around this 
threshold or above are inferred as correctly modeled regions (Figure 6—figure supplement 1C). The 
phospho-degrons (red boxes) scored close to or at the 0.2 threshold in our model, while both regions 
score well below the threshold in the AlphaFold model (Figure 6—figure supplement 1C). This is 
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also consistent with low confidence scores (less than 70) generated by AlphaFold’s internal confidence 
rating (Figure 6—figure supplement 1B, yellow and orange). The scores in the structured regions of 
both models are comparable. Thus, our model outperforms the AlphaFold model in the region of the 
modeled IDRs (Figure 6—figure supplement 1C).

Finally, we predicted a potential scenario of Cdc6–Clb2 interaction, where Cdc6 E45 interacts 
with Clb2 K270 in hp via a salt bridge (Figure 6C, D) that highlights the importance of the IDR in this 
interaction. We speculate that a transiently structured helix adopted by the PEKLQF motif in our Cdc6 
model may be important for its interaction with the hp in Clb2. The N-terminus of Clb2 located from 
residues 1–210 (data not shown) contained an IDR which includes the KEN box (residues 85 and 100) 
and the destruction box (D-box) (residues 25–33), which are both necessary for Clb2 degradation 
via APC (Pfleger and Kirschner, 2000; Schwab et al., 1997; Glotzer et al., 1991; Figure 6C). The 
ordered regions of Clb2 include the hp (N260, L264, Y267, and K270) that facilitates protein binding 
to its substrate such as Cdc6 (Örd et al., 2019; Hunt, 1991; Figure 6C). Importantly, our Cdc6–Clb2 
protein interaction model also captured the Cdc6 N-terminal phospho-degron protected by Clb2, 
thereby inhibiting Cdc6 degradation.

Discussion
Cdc6 regulation by PP2ACdc55

In this study, we show that PP2ACdc55 dephosphorylates Cdc6 at T7 and T23 to disrupt the Cdc6–Clb2 
complex in mitosis. As cells progress into late mitosis, Sic1 releases Clb2·Cdk1·Cks1 from Cdc6 to 
promote origin licensing. Following this, Cdc14 dephosphorylates Cdc6 at T368-S372 to stabilize 
Cdc6 before origin licensing. Our bioinformatical analyses demonstrate that highly adaptable IDRs 
in the Cdc6-N terminus are critical for Cdc6-binding dynamics. The data provide a temporal model 
of origin licensing control by Clb2·Cdk1·Cks1 release and sequential dephosphorylation of Cdc6 
(Figure 7A).

Neither PP2ACdc55 nor Cdc14 dephosphorylated the Cdc6 N-terminal phospho-degron, suggesting 
that there are additional mechanisms involved (Figure 4—figure supplement 2). The Cdc6-T7 site 
is located in an IDR, where PP2ACdc55 and Cks1 might gain easier access for docking (Figure 6A, B), 
which may trigger a cascade of Cdc6 dephosphorylation in early mitosis (Touati et al., 2019). Our 
study also supports a model in which PP2ACdc55 prefers phospho-threonines over phospho-serines 
(Godfrey et al., 2017).

Previous work in Xenopus egg extracts indicated that immunodepletion of the trimeric PP2A 
complex inhibits replication initiation without regulating pre-RC assembly (Lin et  al., 1998). A 
follow-up study suggested that PP2A targets proteins required for DNA replication initiation but not 
elongation proteins, for example, Cdc45 (Chou et al., 2002). Sld2 and Sld3 are potential substrates 
for PP2A (Bloom and Cross, 2007). Therefore, PP2A might regulate multiple replication proteins at 
different steps. Mammalian PP2A is regulated by a diverse group of regulatory subunits, termed, B, 
B’, B’’, and B’’’ (Janssens and Goris, 2001). B55 is a mammalian homolog of Cdc55 which plays a role 
in mitosis (Schmitz et al., 2010). PP2AB55 also selectively targets phospho-threonines over phospho-
serines in vitro (Cundell et al., 2016; Agostinis et al., 1990). PR48 (B’’ family) has been identified as 
a Cdc6-binding partner through yeast two-hybrid screening (Yan et al., 2000). PR48 mediates protein 
interaction with the Cdk1 phosphorylation site-containing Cdc6 N-terminus (Yan et al., 2000). PR70, 
another B’’ family subunit, has also been implicated in Cdc6 regulation by enhancing phosphatase 
activity toward Cdc6 (Yan et al., 2000; Wlodarchak et al., 2013; Davis et al., 2008). Thus, our data 
define Cdc6 dephosphorylation by PP2A in a simple system, which might be a conserved mechanism 
in eukaryotes.

(C) Cdc6–Clb2-binding structure with Cdc6 IDR (orange), Cdc6 LQF motif (purple), Cdc6 N-terminal phospho-degron (blue), Cdc6 C-terminal phospho-
degron (pink), Clb2 D-box (yellow), Clb2 KEN Box (light blue), and Clb2 hydrophobic patch (green). (D) Cdc6–Clb2 interaction through Cdc6 E45 (purple) 
and Clb2 K270 (green). Red bar shows salt bridge.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. A prediction of intrinsically disordered regions (IDRs) in Cdc6.

Figure 6 continued

https://doi.org/10.7554/eLife.74437
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Figure 7. A model of Cdc6 regulation by Clb2, PP2ACdc55, Sic1, and Cdc14. (A) In mitosis, the Clb2·Cdk1·Cks1 complex binds to phosphorylated 
Cdc6 N-terminus to mask the phospho-degron and prohibit Cdc6 loading on DNA, which is mediated by the LxF motif and FQSLP enhancer region. 
PP2ACdc55 dephosphorylates Cdc6-T7 and -T23 sites to disrupt Cdc6·Clb2·Cdk1·Cks1 complex. Sic1 releases Clb2·Cdk1·Cks1 from Cdc6 to promote 
origin licensing. Cdc14 dephosphorylates Cdc6 C-terminal phospho-degron for stabilization. Cks1 docking sites T7 and T23 are colored blue whereas 

Figure 7 continued on next page
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Cdc14 and DNA replication
The Cdc6 C-terminal phospho-degron is targeted by SCFCdc4 for protein degradation in mitosis (Drury 
et  al., 2000). Here, we show that the Cdc6 C-terminal phospho-degron is dephosphorylated by 
Cdc14 to stabilize Cdc6 (Figure 4). Cdc14 is inhibited by PP2ACdc55 through Net1 dephosphoryla-
tion (Queralt et al., 2006), which indicates that Cdc14-dependent Cdc6 dephosphorylation is not 
triggered until Clb2–Cdk1 activity overrides PP2ACdc55 activity. Elevated Clb2–Cdk1 activity phos-
phorylates Net1 to release Cdc14 from nucleolus (Figure 7B). PP2ACdc55-dependent Cdc6-T7 dephos-
phorylation releases Clb2, which may enhance Net1 phosphorylation because Clb2 is free from its 
inhibitor Cdc6 (Figure 7B, left). Once Cdc14 is released from Net1, Cdc14 dephosphorylates Cdc6, 
Cdh1, and Sic1 to license the origin (Figure 7B, right). This temporal regulation of Cdc14 ensure that 
Cdk1 substrates are sequentially dephosphorylated (Kataria et al., 2018). Such a temporal regulation 
is also achieved by cell cycle-dependent Cdc55 localization; nuclear Cdc55 inhibits the metaphase–
anaphase transition through APC inhibition (Rossio et al., 2013; Queralt and Uhlmann, 2008).

There is evidence that Cdc14 is a key regulator for promoting DNA replication. When Cdc14 is 
not properly sequestered in CDC14-TAB6 mutant, cells show DNA replication defects when CLB5 
is deleted (Bloom and Cross, 2007). Cdc14 dephosphorylates replication initiation proteins Orc2, 
Orc6, Cdc6, and Mcm3 (Zhai et al., 2010). Ectopic Cdc14 expression induces DNA re-replication, 
supporting the idea that Cdc14-dependent dephosphorylation of pre-RC components is a require-
ment for origin licensing (Zhai et al., 2010). Thus, Cdc14 is a key component to assemble pre-RCs in 
late mitosis.

Clb2 function in Cdc6
Our results show that Clb2·Cdk1·Cks1 binding to Cdc6 may hinder SCFCdc4 recognition of the N-ter-
minal phospho-degron and consequently leads to Cdc6 stabilization (Figures 2 and 6C). This indi-
cates that the Cdc6 C-terminal phospho-degron is the key element for Cdc6 degradation until Clb2 is 
released. We have previously shown that the Cdc6 C-terminal phospho-degron is targeted by Mck1, 
a yeast homolog of GSK3, for protein degradation (Al-Zain et al., 2015; Ikui et al., 2012). Despite 
high Clb2–Cdk1 activity and an exposed phospho-degron, Cdc6 can be partially stabilized in mitosis 
until Mck1 phosphorylates Cdc6-T368. It is of interest to study how Mck1 is activated during the cell 
cycle. Mck1 is involved in DNA damage signaling (Al-Zain et al., 2015; Li et al., 2019), therefore the 
Cdc6 C-terminus, which is available throughout the cell cycle, plays a role in controlling the timing 
of licensing under stress conditions. We also showed evidence that Cdc6 is degraded in SCFCdc4-
independent manner; for example, Cdc6-6A mutant is unstable despite the mutations at phospho-
degrons (Figure 3—figure supplement 1).

APC Cdh1 targets Clb2 for degradation via the KEN- and D-boxes (Pfleger and Kirschner, 2000; 
Schwab et al., 1997; Glotzer et al., 1991). Cdh1 is inhibited until it is dephosphorylated by Cdc14. 
The KEN- and D-boxes in Clb2 are located in IDRs, which may also enhance interaction with the APC 
to facilitate Clb2 degradation upon mitotic exit (Figure 6C; Radivojac et al., 2010).

Sic1 regulation
We showed that Sic1 releases Clb2 from Cdc6 which supports origin licensing (Figure 5). Sic1 contains 
multiple Cdk1 phosphorylation sites, which includes a phospho-threonine Cks1 docking site in the 
N-terminus (Kõivomägi et al., 2011; Venta et al., 2020). Cks1 docking triggers an N- to C-directed 
multisite phosphorylation cascade both in Sic1 and Cdc6, which results in the creation of phospho-
degrons targeted by SCFCdc4 14,18. Thus, Cdc6 and Sic1 share a functional similarity in their phosphory-
lation patterns. Since PP2ACdc55 dephosphorylates Cks1 docking site T7 in Cdc6, it is worth examining 
if PP2ACdc55 dephosphorylates Sic1 at the N-terminal Cks1 docking site. Sic1, Cdh1, and Cdc6 are 
Clb2–Cdk1 inhibitors as well as Cdc14 substrates and SCFCdc4 targets (Örd et  al., 2019; Calzada 
et al., 2001; Visintin et al., 1998; Verma et al., 1997). Cdc14-dependent Swi5 dephosphorylation 

phospho-degrons are colored orange. Red arrows show sites and motifs where Clb2–Cdk1 inhibits Cdc6 loading. Dashed lines indicate reduced 
binding. (B) In early mitosis, PP2ACdc55 inhibits Cdc14 release and promotes a rise in Clb2–Cdk1 activity by dephosphorylating Cdc6. During late mitosis, 
Clb2–Cdk1 initiates Cdc14 release from inhibitory binding by Net1. Cdc14 targets Swi5, Sic1, Cdh1, and Cdc6, contributing to full suppression of Clb2–
Cdk1 activity and origin licensing.

Figure 7 continued

https://doi.org/10.7554/eLife.74437
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also activates Sic1 nuclear import and transcription at the end of mitosis (Visintin et al., 1998). Thus, 
Cdc14 release from the nucleolus targets at least four components to achieve a complete inhibition of 
Clb2–Cdk1 activity during mitotic exit, leading to origin licensing (Figure 7B).

Short linear motifs and IDRs
Recent studies have expanded the role of cyclin-specific short linear motifs (SLiMs), which are short 
functional sequence motifs often found in IDRs. SLiMs such as RxL and LxF motifs dictate Cdk1 
substrate specificity and control cell cycle progression (Örd et al., 2019; Örd et al., 2020; Faus-
tova et al., 2021; Bhaduri and Pryciak, 2011). This is also conserved in mammalian cells (Takeda 
et al., 2001; Allan et al., 2020; Topacio et al., 2019). Phosphatases also utilize SLiMs for substrate 
docking. In yeast, Cdc14 scaffolds to a PxL motif in substrates to mediate dephosphorylation events 
(Kataria et al., 2018). Currently, there is no identified docking motif for PP2ACdc55 in yeast. Mamma-
lian homolog PP2AB55 recognizes a polybasic docking sequence that flanks CDK phosphorylation sites 
(Cundell et al., 2016). PP2AB56-specific SLiMs are defined as LSPIxE in humans (Wang et al., 2016). 
Future research should focus on docking motifs for phosphatases and their regulatory subunits to 
understand phosphatase specificity in yeast.

Our data illustrate multiple IDRs in Cdc6 (Figure 6A). Notably, the N-terminal Cdc6 IDR includes 
SLiMs such as RxL and LxF motifs, which supports a model that depicts the Cdc6 N-terminus as a 
hub for multiple protein–protein interactions (Figure 6B). Cdc6 IDRs are readily available for protein 
binding in G1/S, during which Cdc6 disengages from ORC and is subjected to SCF-dependent 
degradation (Drury et al., 1997; Piatti et al., 1995). Cdc6 is then shifted toward an origin licensing 
preparation period where Cdc6 is stabilized but not licensed via Clb2 binding. This temporal mode is 
released when Cdc14 outcompetes with Clb2–Cdk1 activity at the end of mitosis.

In humans, cyclin A–CDK2 was shown to utilize SLiMs to promote interaction with Cdc6 and ORC 
(Hossain et al., 2021). Our studies on Cdc6 regulation shed light on the dynamics of phosphoryla-
tion and dephosphorylation that drive DNA replication initiation upon mitotic exit. In this study, we 
showed first evidence to link PP2A with DNA replication. This study also provided a stepwise origin 
licensing process mediated by PP2A, Cdc14, and Sic1.

Methods
Yeast cultures
Yeast extract peptone medium with glucose (YPD) was used to grow cells for western blot and flow 
cytometry analysis. Low fluorescence medium with glucose supplemented with adenine was used to 
visualize Cdc6-GFP under fluorescence microscope (Sheff and Thorn, 2004). G1 arrest was achieved 
by α-factor at 50 nM for 2 hr at 30°C. Cells were washed three times and resuspended in YPD to 
release the G1 arrest. Mitotic arrest was achieved by nocodazole at 15 μg/ml for 2 hr at 30°C.

Yeast strains
Standard methods were used for mating, tetrad analysis, and transformation. All yeast strains are 
haploid congenic to W303 background. Strain list in this study is in Supplementary file 1.

Western blotting and Co-IP
Cells were lysed in TBT buffer containing protease inhibitors and Phos STOP (Roche) with acid-washed 
glass bead agitation using Fast-Prep as previously described (Bloom et al., 2011). Proteins were sepa-
rated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) with Novex 4–20% 
Tris–glycine polyacrylamide gel (Life Technologies). Cdc6-9MYC was detected using anti-cMYC anti-
body 9E10 (Sigma-Aldrich Cat# M4439, RRID:AB_439694) at 1:5000 dilution and anti-Pgk1 (Thermo 
Fisher Scientific Cat# 459250, RRID:AB_2532235) at 1:5000 as a loading control. Cdc6-protein A was 
detected by HRP-conjugated rabbit IgG (Sigma-Aldrich Cat# P1291, RRID:AB_1079562). Anti-Clb2 
antibody is a gift from Frederick Cross. Images were developed using a Fuji LAS 4000 Imager (GE 
Healthcare Life Sciences, Pittsburgh, PA) or Odyssey CLx imager (LI-COR Lincoln, NE). Co-immu-
noprecipitation was performed with rabbit anti-MYC-conjugated agarose beads (Sigma-Aldrich, St 
Louis, MO) for 1 hr at 4°C. Cdc6-T7 phospho antibody is custom antibody raised in rabbit (Covance, 

https://doi.org/10.7554/eLife.74437
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Princeton, NJ). Sic1-HA and Cdc6-HA were detected by HRP-conjugated rat HA (Roche Cat# 
12013819001, RRID:AB_390917).

FACS
Cells were fixed and stained with propidium iodide staining as previously described (Epstein and 
Cross, 1992). Flow cytometry analysis was performed using a BD Accuri C6 flow cytometer (BD Biosci-
ences). A total of 20,000 cells were analyzed per sample. FL2 channel was used to detect the fluores-
cent signal.

Protein purification for in vitro phosphatase assay
Cdc6, Sic1, Swe1(1–450), and Cdc14 were expressed in E. coli BL21RP cells from pET28a-based 
vectors as fusions with 6xHis tag. Csa1 was expressed as GST fusion in BL21RP cells from pGEX-4T1-
based vector. The expression of Cdc6 and Swe1(1–450) was induced at 23°C using 0.3 mM IPTG, 
Sic1 at 37°C using 1 mM IPTG, Cdc14 at 23°C using 0.125 mM IPTG, and Csa1 at 16°C using 0.3 mM 
IPTG. 6xHis-Cdc6, 6xHis-Sic1, and 6xHis-Swe1(1–450) were purified by standard cobalt affinity chro-
matography with 200 mM imidazole used for elution. 6xHis-Cdc14 was purified using nickel affinity 
chromatography with 250 mM imidazole used for elution. GST-Csa1 was purified using Glutathione 
Sepharose (GE Healthcare). Clb5–Cdk1 complex was purified from S. cerevisiae culture where TAP-
tagged Clb5 was overexpressed from GAL1 promoter as described previously (Puig et  al., 2001; 
Ubersax et al., 2003). The yeast lysate was prepared using Mixer Mill MM 400 (Retch). PP2ACdc55 
complex was purified from yeast cells containing 3HA-tagged Cdc55 (Anastasia et al., 2012). The 
yeast culture was grown in YPD to OD600 = 1.4, when the cells were collected and snap frozen. The 
cells were lysed using Mixer Mill MM 400. The lysate was cleared by centrifugation and the super-
natant was incubated with anti-HA agarose beads for 3 hr. The beads were washed thoroughly and 
PP2ACdc55 was eluted with buffer containing HA dipeptide.

In vitro dephosphorylation assay
Substrate proteins Cdc6, Swe1(1–450), and Csa1 at 500 nM concentration were phosphorylated for 
60 min at room temperature using 2 nM Clb5–Cdk1 in a buffer containing 50 mM HEPES–KOH, pH 
7.4, 150 mM NaCl, 5 mM MgCl2, 20 mM imidazole, 2% glycerol, 0.2 mg/ml BSA, and 500 μM ATP 
[(with added [γ-32P]-ATP (Hartmann Analytic))]. Prior to addition of phosphatase mix, an aliquot of the 
reaction was pipetted to SDS sample buffer. Then, a mixture containing Sic1 and phosphatase Cdc14 
or PP2ACdc55 was mixed with the phosphorylation reactions to inhibit Clb5–Cdk1 and to measure the 
dephosphorylation. The final concentration of Sic1 was 1 µM. At 4, 8, and 16 min, an aliquot of the 
reaction was mixed with SDS sample buffer to stop the reaction. The samples were loaded on SDS–
PAGE and following electrophoresis, the gels were stained using Coomassie Brilliant Blue R-250 dye 
and dried.

Γ-32P phosphorylation signals were detected using an Amersham Typhoon 5 Biomolecular Imager 
(GE Healthcare Life Sciences). Signals were quantified using ImageQuant TL (Image Quant TL, 
RRID:SCR_018374). The dephosphorylation assays were performed in three independent replicate 
experiments.

Microscope
Images were acquired with Nikon Eclipse Ti2 microscope with ×60 Oil CFI Plan APO Lambda lens. 
Fluorescence illumination is provided by Sola light engine and images were captured by Nikon DS-Qi2. 
Images were acquired by Nikon NIS element software.

Time-lapse movie
Yeast cultures were grown at 30°C in synthetic complete media with 2% glucose (SC) to OD600 
0.2–0.6, and placed on 0.08 mm cover glass and covered with 1 mm thick 1.5% agarose (NuSieveTM 
GTGTM Agarose, Lonza) pad made with SC. Images were acquired using Zeiss Observer Z1 micro-
scope with Axiocam 506 mono camera (Zeiss), ×63/1.4NA oil immersion objective and Tempcontrol 
37-2 digital (PeCon) to keep the sample at 30°C. Time-lapse imaging was performed using ZEN soft-
ware, an automated stage and Definite Focus. Phase-contrast, Citrine, and mCherry images were 
taken every 3 min for 8 hr from up to 12 positions. Colibri LED modules at 25% power were used to 
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excite the fluorescent proteins. Cdc6-Citrine was imaged using Zeiss Filter Set 46 and Colibri 505 LED 
module for 500 ms. Whi5-mCherry was imaged using Zeiss Filter Set 61 HE and Colibri 540–580 LED 
module for 750 ms. The analysis was carried out using MATLAB (MATLAB, RRID:SCR_001622). The 
cells were segmented and tracked based on the phase-contrast image, followed by quantification of 
the nuclear fluorescence signals as described in Doncic et al., 2013. The nuclear signal was obtained 
by applying a 2D Gaussian fit to the brightest point in the cell and assigning the 25% with highest 
signal as the nucleus. The cytoplasmic fluorescence signal was considered as background and was 
subtracted from the nuclear signal. For every strain, data are from at least two repeats with different 
transformants.

Protein purification for Mcm2–7 loading assay
Sic1 was purified as described before (Gros et  al., 2014). ORC and Cdt1·Mcm2–7 were purified 
as described previously (Remus et al., 2009). For Cdc6·Clb2·Cdk1·Cks1, cells (strain YDR12) were 
grown in 10 l of YPD at 25°C to a density of 2 × 107 ml−1, arrested in G1 phase by addition of 50 μg 
ml−1 α-factor, harvested by centrifugation, resuspended in 10 L YP/2% galactose lacking α-factor, and 
incubated at 25°C overnight to induce expression of Cdc6-TAPTCP. Next day, cells were harvested by 
centrifugation, washed twice with cold 25 mM HEPES, pH 7.6/1 M sorbitol, once with buffer H (25 mM 
HEPES–KOH pH 7.6/0.02% NP-40/10% glycerol)/300 mM KCl, resuspended in 0.5× volume of buffer 
H/300 mM KCl/2 mM DTT/protease inhibitor cocktail, and frozen as droplets in liquid nitrogen. The 
resulting ‘popcorn’ was stored at −80°C until further processing. Cell lysate was prepared by crushing 
the frozen popcorn in a freezer mill (SPEX CertiPrep 6,850 Freezer/Mill) for 6 cycles of 2 min at a rate 
of 15 impacts per second. Crushed cell powder was thawed on ice, resuspended with 1 volume of 
buffer H/0.3 M KCl/1 mM DTT. Insoluble material was pelleted by centrifugation of the lysate in a 
type 45 Ti rotor (Beckman) for 60 min at 40,000 rpm. The clarified extract was supplemented with 
2 mM CaCl2 and incubated with 1 ml calmodulin affinity beads for 2 hr at 4°C. The calmodulin resin 
was washed with 10 CV of buffer H/300 mM KCl/2 mM CaCl2/1 mM DTT, and bound protein eluted 
with 10 CV of buffer H/300 mM KCl/1 mM EDTA/2 mM EGTA/1 mM DTT. Peak fractions were pooled, 
concentrated by centrifugation through an Amicon spin concentrator, digested for 4 hr at 4°C with 
TEV protease to remove the TAPTCP tag, and subsequently fractionated by gel filtration using a 24 ml 
Superdex 200 column equilibrated in buffer H/300 mM KCl/1 mM EDTA/1 mM EGTA/1 mM DTT. 
Peak fractions were pooled, diluted with 2× volumes of buffer H/1 mM EDTA/1 mM EGTA/1 mM 
DTT to a final salt concentration of 100 mM KCl, and fractionated on a 1 ml Mono S ion exchange 
column using an elution gradient of 0.1–1 M KCl over 10 CV. Peak fractions were pooled and stored 
in aliquots at −80°C after snap freezing in liquid nitrogen. For the original identification of the Cdc6-
associated proteins by mass spectrometry, purified complex was fractionated by SDS–PAGE, indi-
vidual Coomassie-stained bands excised from the gel, and proteins subjected to mass-spectrometric 
analysis after in-gel trypsin digestion using standard protocols.

Gel-filtration analysis of Sic interaction with Cdc6·Clb2·Cdk1·Cks1
6 μg of Sic1, 4 μg Cdc6·Clb2·Cdk1·Cks1, or a mixture of 6 μg Sic1 and 4 μg Cdc6·Clb2·Cdk1·Cks1 were 
incubated in a 50 μl reaction volume containing buffer H/300 mM KCl/1 mM EDTA/1 mM EGTA/1 mM 
DTT for 10 min at room temperature, fractionated on a 2.4 ml Superdex 200 PC 3.2/30 column, and 
fractions analyzed by SDS–PAGE and silver stain.

Mcm2–7 loading assay
Purified Mcm2–7 loading onto linear 1 kbp ARS-containing DNA immobilized on paramagnetic beads 
using was performed as described previously (Remus et al., 2009), except that 50 nM Cdc6·Clb2·Cd-
k1·Cks1 was used in place of Cdc6. Where indicated, Sic1 was included at 500 nM.

Prediction of IDRsin Cdc6 and Clb2
The IDRs and disordered binding regions of Cdc6 were predicted using DISOPRED (UCL Bioinfor-
matics Group, RRID:SCR_010248; Ward et  al., 2004), IUPRED2A (IUPRED, RRID:SCR_014632; 
Mészáros et  al., 2018), PrDOS (PrDOS, RRID:SCR_021886), MFDp2 (MFDp2, RRID:SCR_021885; 
Mizianty et al., 2013), and CSpritz (CSpritz, RRID:SCR_021884; Walsh et al., 2011). A consensus was 
derived by combining the high confidence predictions from all these programs.
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Structure modeling of Cdc6 and Clb2
The atomic coordinates for Cdc6 isolated from the cryo-EM structure of ORC-Cdc6-Cdt1-Mcm2–7 
intermediate (OCCM; PBD ID: 5V8F; Yuan et al., 2017) were extracted and used to build a full-length 
template of Cdc6. The 140 missing residues from this structure for Cdc6 was modeled separately via an 
ab initio modeling program QUARK (QUARK, RRID:SCR_018777; Zhang et al., 2016). The full-length 
Cdc6 model was constructed by combining abovementioned fragment and extracted coordinates 
of Cdc6 using MODELLER (MODELLER, RRID:SCR_008395; Eswar et al., 2006) and further refined 
using 3DRefine (Bhattacharya et al., 2016). Clb2 was modeled using a hybrid threading approach, ab 
initio, and template-based approach based on the algorithm, I-TASSER (Iterative Threading ASSEmbly 
Refinement) (I-TASSER, RRID:SCR_014627; Roy et al., 2010). I-TASSER identifies structural templates 
from the PDB by a multithreading server, LOMETS (LOMETS, RRID:SCR_021882; Wu and Zhang, 
2007), and then constructs full-length atomic models by iterative template-based fragment assembly 
simulations. The IDR in Clb2 was modeled independently using QUARK (Zhang et al., 2016) and incor-
porated to create a full-length model in similar manas described above for Cdc6. Both the full-length 
modeled structures were meticulously evaluated by various structure verification programs, including 
VERIFY3D (University of California at Los Angeles – Department of Energy Institute for Genomics and 
Proteomics, RRID:SCR_001921; Eisenberg et  al., 1997), Voromqa (VoroMQA, RRID:SCR_021881; 
Olechnovič and Venclovas, 2017), Proq3 (ProQ3, RRID:SCR_021880; Uziela et  al., 2016), and 
ProsaWeb (ProSA-web, RRID:SCR_021879; Wiederstein and Sippl, 2007). These programs employ a 
variety of methods inclusive of deep learning approaches to evaluate the quality of the models. The 
final models were chosen by selecting the best evaluation profiles and their correlation with known 
functional features. The models were visualized and analyzed for their biophysical properties using the 
visualization programs Pymol (PyMOL, RRID:SCR_000305; Schrodinger, 2010) and ChimeraX (UCSF 
ChimeraX, RRID:SCR_015872; Pettersen et al., 2021).
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