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Abstract: The emergence and establishment of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) highlight the importance
of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spa-
tiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike
protein sequences from coronavirus disease 2019 (COVID-19) cases in the United States (excluding
21,391 sequences from VOI/VOC strains) deposited at GISAID from 19 January 2020 to 15 March 2021.
Alignment against the reference Spike protein sequence led to the identification of viral residue vari-
ants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized
additive models were applied to model VRV temporal dynamics and to identify VRVs with signifi-
cant and substantial dynamics (false discovery rate q-value < 0.01; maximum VRV proportion >10%
on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by
spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modeling was performed to
gain insight into the potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of
which had not previously been observed in a VOI/VOC, and 35 of which have emerged recently and
are durably present. Our analysis identified 17 VRVs ~91 days earlier than their first corresponding
VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of four VRVs or more,
suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported a potential
functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike
residues over time, independently of existing phylogenic classifications, and is complementary to
existing genomic surveillance methods.

Keywords: homology modelling; SARS-CoV-2; Spike protein; statistical learning; unsupervised
learning; variants of concern; variants of interest; viral residue variant

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen respon-
sible for the global coronavirus disease 2019 (COVID-19) pandemic, is an RNA virus and
thus prone to replication errors [1]. Replication errors that yield nonsynonymous amino
acid (AA) substitutions, or nucleotide insertions or deletions that cause a frame shift and
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alter the subsequent coding sequence, can lead to a variety of outcomes. If the resulting
mutations have detrimental effects on fitness, or if they have neutral effects on fitness and
undergo stochastic extinction, variants harboring these mutations fail to become established
in the population. However, mutations that confer a fitness advantage can rapidly become
dominant in a population. For SARS-CoV-2, there are four classes of variant: variant being
monitored (VBM), variant of interest (VOI), variant of concern (VOC), and variant of high
consequence (VOHC). The CDC is closely monitoring ten VBMs (Alpha, Beta, Gamma,
Epsilon, Eta, Iota, Kappa, 1.617.3, Mu, and Zeta) and two VOCs (Delta and Omicron) in the
United States [2]. VOCs show specific attributes such as increased transmissibility [3–6], in-
creased resistance to neutralization by antibodies elicited through natural infection [3,7–9],
and/or increased resistance to neutralization by vaccine-elicited antibodies [8,10,11], and
have already influenced vaccine development, evidenced by the current planning of clinical
trials to test variant-adapted vaccines [12]. While no VOHCs have yet been identified, it
remains possible that such variants—i.e., variants that can effectively evade natural or
vaccine-induced immunity—may yet emerge [13,14]. The identification of VOHCs could
necessitate the introduction of more stringent public health guidelines and/or spur further
treatment and vaccine development.

Genomic surveillance is critical for tracking the emergence and spread of new variants.
Such surveillance can be accomplished via a variety of approaches, such as phylogenic
analysis [3,15]. In this approach, new viral sequences are classified to existing lineages
identified by PANGO [16], subsets of samples with the same branches are identified, and
variant frequencies are counted to identify new variants. The NextStrain methodology [17]
can model dynamic changes in variant proportions, while an alternative approach aligns
sequence data to a matrix of binary indicators for the presence of variants, and systemati-
cally evaluates each mutant as a potential variant [18]. Leveraging the analytic approach
of single nucleotide polymorphisms (SNPs), variants have been identified by assessing
linkage-disequilibrium [19] or similar SNP-based identification and analysis [20]. However,
with the exception of the NextStrain methodology [3], these methods do not directly take
into account sequence collection time, nor explicitly incorporate highly granular geographic
information. Moreover, these methods take a holistic view of the viral genome. Thus, there
is a need for complementary approaches for detecting and characterizing Spike mutations
of potential public health importance that may be missed, or detected later, by existing
genomic surveillance methods.

To meet this need, we describe a statistical learning strategy (SLS) using generalized
additive models, unsupervised learning techniques, and single nucleotide polymorphism
(SNP) methodologies for identifying and spatiotemporally characterizing viral residue
variants (VRVs), a term we use to describe AA positions in the Spike protein where a
mutation is significantly present in a given geographic area. The SLS method generates
pertinent statistics for reproducible scientific inference and facilitates visual representation
of results for intuitive interpretation. Using publicly available SARS-CoV-2 sequences
from US COVID-19 cases that were not assigned to a VOI or VOC lineage, we apply our
method to identify and spatiotemporally characterize VRVs in the Spike protein, within
individual US states/territories. We also apply standard homology modeling methods to
highlight individual AA mutations with the potential to impact Spike protein structure
and/or function.

2. Results
2.1. Ab Initio Discovery of VRVs

We first applied the SLS method to identify VRVs separately in each state/territory
(Figure S1). The decision to compartmentalize VRV discovery by state/territory was
partially based on the fact that domestic travel restrictions have varied over the course of
the pandemic, with nearly half of all states having imposed some type of interstate travel
restriction [21], leading to the hypothesis that VRVs may follow state/territory-specific
temporal dynamics. The identified VRVs showed a range of dynamic patterns across the
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different states/territories (Figure S2), exemplified by the five different trajectories taken
by the V382, L452, T478, P681, and T732 VRVs in California (Figure 1A). The relative
abundance of V382 started rising on day 250, exceeded 10% on day 259, and fell below
10% on day 275. L452 emerged on day 310, exceeded 10% on day 390, and exhibited a
positive trajectory thereafter. Three other VRVs (T478, P681, T732) had similar trajectories
to L452. Note that we denote the VRV of interest using the reference amino acid position
alone (e.g., P681), given that some reference amino acids show point mutations to more
than one amino acid (see examples below).
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Figure 1. Viral residue variant (VRV) spatiotemporal patterns in the United States. (A) Locally
averaged proportions over time of five VRVs (V382, L452, T478, P681 and T732), modeled using
sequences from California. The horizontal gray dotted line denotes the maximum proportion (Pmax)
cutoff of 10% (see the formula for calculating Pmax in Section 3.3.1 of Materials and Methods). V382
exceeded the Pmax cutoff of 10% on day 259 and dropped below the Pmax cutoff of 10% on day
275 (marked by the vertical gray lines). (B) Heatmap of the 267 identified geo-VRVs, with color
designating the state/territory-specific VRV proportion at the sampling time as designated on the
left-hand vertical axis. Geo-VRVs with similar temporal dynamics are grouped into 10 clusters
(TP1 through TP10), as designated by the color bar at the top of the heatmap. (C,D) Venn dia-
grams showing the relationships between AA-subs in VOIs, AA-subs in VOCs, and (C) VRVs or
(D) pressing VRVs. AA-subs, amino acid positions that have been shown to harbor substitutions
within US-circulating variants; VOCs, variants of concern; VOIs, variants of interest.
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We refer to the combination of a VRV and a state/territory in which it was identified
as a “geo-VRV”. A total of 267 geo-VRVs, consisting of combinations of 90 VRVs identified
among the 52 state/territory classifications, were identified (Table S3). Fifty-eight VRVs
were only observed in one state/territory, whereas 32 were observed in two or more
(Table S4).

Unsupervised learning was then applied to organize the 267 geo-VRVs into 10 clusters
(TP1 through TP10) (Figure 1B, Table S3). The cluster most strikingly different from the
others was “TP2”, which was composed of 47 geo-VRVs, each of which contained the
D614 VRV at a maximum relative abundance of 100%, showing the early dominance of the
D614 VRV in these states/territories. Clusters TP3 and TP5 included geo-VRVs of potential
concern, as they included VRVs that appear to have emerged within the last few months in
their specific states/territories. In contrast, most VRVs in the remaining clusters tended to
expand and contract within relatively short times in a given state/territory, making such
VRVs likely less important from a public health perspective. We termed these 35 VRVs that
were uniquely identified in Clusters TP2, TP3, and TP5 as “pressing VRVs”.

2.2. Comparison with AA Positions Where Substitutions Have Been Identified within
US-Circulating VOIs and VOCs

We next compared the 90 VRVs and the 35 pressing VRVs with the 12 and 13 AA
positions that have been shown to harbor substitutions (AA-subs) within US-circulating
VOIs and VOCs, respectively [2]. The 90 VRVs included nine and eight AA-subs in VOIs
and VOCs, respectively; the 35 pressing VRVs included four and eight AA-subs in VOIs
and VOCs, respectively (Figure 1C), even though all VOI/VOC sequences were excluded
from the current analysis. Notably, 25 of the VRVs that have not been previously identified
as an AA-sub in a VOI or VOC appear to have emerging trajectories, demonstrating the
potential of the SLS method to identify novel Spike AA positions that may warrant further
investigation/observation.

Five VOI/VOC AA-subs (Y144, F888, V1176, H69, K417) were not identified as
a VRV. Figure S3 shows the state/territory-specific relative abundances over time for
states/territories where substitutions were identified at these five positions (albeit without
meeting the statistical significance criteria for identification as a VRV). Our data suggest
that, individually, these AA positions may be of less interest in the US.

2.3. Timely Detection of Emerging VRVs

Timely detection of potentially fast-emerging VRVs, and conversely, identification
of VRVs likely not of concern, are both important for informing public health guidelines
and for influencing research priorities. Given the importance of timely detection, we use
the first time when the maximum proportion (Pmax) of a VRV exceeded 10% as the first
reportable time (see the formula for calculating Pmax in Section 3.3.1 of Materials and
Methods). For each out of the set of AA-subs within VOIs/VOCs that were also identified
as VRVs, Table 1 compares within each state/territory the time of detecting an emerging
VRV as calculated by the SLS method vs. the first appearance of the AA-sub in the scientific
literature. The SLS method identified emerging VRVs in an average of 207 days, while the
average of reported values in the literature was 299 days. E484, an AA-sub in the B.1.1.7,
P.1, and B.1.351 variants, was an exception as it was not detectable in the US until day 370
when it was first detected as a VRV in Rhode Island.

2.4. VRV-Haplotypes

SARS-CoV-2 is a single-stranded (“haploid”) RNA virus. The presence of multiple
VRVs found in a patient form a VRV-haplotype. The accumulation of multiple VRVs on
a single RNA strand could affect protein function more than a single VRV. To identify
VRV-haplotypes, we performed unsupervised learning of selected VRVs and cases through
a two-way hierarchical cluster analysis state/territory-by-state/territory. As shown in
Figure S4, some VRV-haplotypes are shared across states/territories, but most are not.
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Figure 2, for example, shows the results of the unsupervised case and VRV clustering for
Washington state. The heatmap shows that multiple VRVs tend to aggregate among subsets
of cases, the inspection of which can reveal VRV-haplotypes. For example, the case cluster
“PG7”, which included 208 cases, had VRVs from the “RG4” and “RG3” clusters, which
included the VRVs (G142-S155-F157-E180-K444-L452-T478-D614-Q677-P681-T732-T859-
S940-D950) (see Table S5).

Table 1. Comparison by state/territory of the time to detect an emerging VRV by the SLS method vs.
the first reported appearance of the AA-sub.

L5 S13 V70 T95 W152 D253 L452 S477 E484 N501 A570 D614 Q677 P681 A701

Reporting Day * 301 301 301 301 301 87 301 331 87 362 362 362 362 362 362
Earliest SLS

Detection Day
Across All States

11 159 329 149 381 98 381 405 371 206 404 10 20 11 176

Alabama 63–186 - - - - - - - 404 - - 63 253 - -
Alaska - - - - - - - - - - - 56 305–323 383 -

Arizona - - - - - - - - - - - 26 357–400 353 -
Arkansas - - - - - - - - - - - 56 329 - -
California - 398 - - 402 - 390 - - - - 45 - 374 -
Colorado 286 - - - - - - - - - - 45 286 370 -

Connecticut - - - - - - - - - 314 - 43 191 378 -
DC - - - - - - - - 391 - - 47 - 344 -

Delaware - - - - - - - - - - - 52 384 288 -
Florida - - - - - - - - - - - 33 368 389 -
Georgia - - - - - - - - - - - 41 345 407 -
Hawaii 175–190 - - - - - - - - - - 46 374 174–376 -
Idaho - - - - - - - - - - - 53 - - -
Illinois - - - - - - - - - - - 24 366 380 -
Indiana - - - - - - - - - - - 48 370 383 -

Iowa - - - - - - - - - - - 48 273–388 - -
Kansas - - - - - 260–291 - - - - - 47 - 385 -

Kentucky - - - - - - - - - - - 59 389–397 - -
Louisiana - - - - - - - - - - - 50 307 368 -

Maine - - - - - - - - 404 371 - 51 - - -
Maryland - - - - 407 - 394 - 390 - - 45 - 230 -

Massachusetts - - - - - - - - - 206 - 10 346 298 -
Michigan - - - 149–177 - - - - - 264–273 - 50 361 - -
Minnesota 186–294 - - - - - - - - - - 46 297 387 -
Mississippi 144–215 - - - - - - - - - - 42 353 392 -

Missouri - - - - - - - - - - - 47 - 364–384 -
Montana - - - - - - - - - - - 68 - - -
Nebraska - - - - - - - - - - - 46 - 387 -
Nevada - 392 - - 396 - 393 - - - - 37 391 394 -

New Hampshire - - - - - - - - - 374 - 41 349–390 364 -
New Jersey - - - - - - 402 - - - - 44 - 276 -

New Mexico - - - - - - - - - - - 50 291 387 233–252
New York 11–13 - - - - - 386 - 414 - - 11 - 11 -

North Carolina - - - - - - - - - - - 44 - 382 -
North Dakota - - - - - - - - - - - 57 328–363 - -

Ohio - - - - - - 405 - - - - 20 20 391 -
Oklahoma - - - - - - - - - - - 54 306 - -

Oregon - 397 - - - - 398 - - - - 45 - - -
Pennsylvania - - - - - - - - - - - 44 394 317 -
Puerto Rico - - - - - 185–252 - - - - - 49 - 347 -

Rhode Island - - - - - - - 405 371–384 356 - 40 358–398 379 -
South Carolina - - - - - - - - - - - 46 405 368–389 -

Tennessee 50–141 - - - - - - - - - - 50 318 - -
Texas - - - - - - - - - - - 23 360 378 -
Utah - 159–173 - - - 98–190 - - - - - 44 - 358 -

Virginia - - 329–331 - - - - - 397 - - 47 384 359 176–185
Washington - 406 - - 411 - 403 - - 410 - 50 373 - -
Wisconsin - - - - - - 409 - - 265–271 - 12 299–407 411 -
Wyoming - 381 - - 381 - 381 - - - - 51 - 392 -

Other States - - - - - - - - 393 404 404 34 - 368 375–381

For each of 15 amino acid positions shown to harbor a substitution in a VOI or VOC, the top two rows show the
first reported date in the literature of a VOI or VOC harboring a substitution at the designated site vs. the date of
VRV detection at the same amino acid position by the SLS method (across all states/territories. * “Reporting Day”
was set to the 15th day in each month in which the relevant publication appeared. “SLS Detection Day” was set to
the day at which the locally averaged proportion of the specific VRV exceeded 10% based on temporality models
fitted in each states/territory. If the locally averaged proportion of the VRV later declined below 10%, the second
day is shown after a dash. All numbers in the table express the number of days post-19 January 2021. A dash
means that that VRV for that column was not detected in the state for that row. VOI, variant of interest; VOC,
variant of concern.

Through algorithmic comparison and merging of different case clusters, six VRV-
haplotypes (W1 through W6) were identified in Washington, while the “W6” cluster
(7130 cases) carried only a single VRV, D614 (Table 2). Comparison across VRV-haplotypes
suggested that W6 evolved to W3, W4, and W5 via the acquisition of an additional mutation
at T732, Q677, and D178, respectively. Similarly, both W3 and W4 could have evolved to
W2 via the acquisition of an additional mutation at Q677 or T732, respectively.

VRV-haplotype blocks are identified from unsupervised learning. Within each block,
there can be multiple VRV-haplotypes that consist of polymorphic residues; individual
VRVs may take either the reference residue or a substitution. For example, VRV-haplotype
W1 had 10 haplotypes (Table 2), where the number after the hyphen indicates the number
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of substitutions. For example, the haplotype “ICRVNGA” had four substitutions, and was
observed twenty times in Washington.
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Figure 2. Heatmap showing the presence of 10 selected VRVs among 9147 cases in Washington state.
Unsupervised learning was used to organize the 10 VRVs into 5 residue groups (RG1 through RG5)
and to organize the 9877 cases into 12 patient groups (PG1 through PG12).

Table 2. VRV-haplotypes identified in Washington and in New York: state-specific frequencies of cases,
number of VRVs per VRV-haplotype, and haplotypic polymorphisms (state-specific frequencies).
Unimputable residues are denoted with an “X”.

ID VRV-Haplotype Freq L + Haplotypic Polymorphism-Number of Substitutions (Frequency)

Washington

W1 S13-W152-L452-V483-N501-D614-A684 104 4
ICRVNGA-4(20)/IWRVNGA-3(4)/SCRVNGA-3(5)/SLLVNGA-

2(5)/SRLVNGA-2(4)/SWLVTGA-2(4)/SWLVYDA-1(1)/SWLVYGA-
2(5)/SWQVNGA-2(2)/SWRVNGA-2(54)

W2 D614-Q677-T732 12 3 GHS-3(11)/XXX-3(1)
W3 D614-T732 128 2 GA-2(126)/GI-2(2)
W4 D614-Q677 208 2 DH-1(9)/GH-2(110)/GP-2(89)
W5 D178-D614 74 2 GG-2(70)/NG-2(4)
W6 D614 7130 1 G-1(7125)/N-1(5)

New York

N1 L5-L54-E132-Y453-T478-E484-D614-
P681-T732 172 9 LLEYKEGHA-4(168)/LLEYKEGHT-3(4)

N2 L5-L54-E132-Y453-T478-E484-
D614-T732 651 8

FLEYREGT-3(4)/FLEYTEDT-1(11)/FLEYTEGA-3(3)/FLEYTEGS-
3(1)/FLEYTEGT-2(266)/FLEYTKGA-4(1)/FLEYTKGT-3(44)/LLEYKEGT-2(3)/

LLEYTAGT-2(1)/LLEYTEGA-2(51)/LLEYTEGI-2(2)/LLEYTEGS-
2(24)/LLEYTKGS-3(2)/LLEYTKGT-2(171)/LLEYTQGT-2(8)/LLQYTEGT-2(59)

N3 D80-F157-L452-D614-P681-T859-D950 132 7 DFLGHID-3(108)/DFLGPID-2(18)/DFLGPNH-3(4)/DSLGPNH-4(2)

N4 D80-F157-L452-D614-T859-D950 637 6
DFQGND-3(4)/DFRGID-3(15)/DFRGNH-4(1)/DFRGTD-2(120)/DFRNTD-

2(2)/DSRGNH-5(3)/DSRGTD-3(2)/GFRGND-4(1)/GFRGNH-5(1)/GSLGNH-
5(9)/GSRGND-5(10)/GSRGNH-6(455)/GSRGNY-6(1)/GSRGTD-4(13)

N5 S494-D614-P681-T716 514 4 PGHI-4(367)/PGHT-3(55)/PGPT-2(52)/SGHI-3(19)/SGHT-2(8)/SGPI-2(13)
N6 D614-P681 1161 2 GH-2(1124)/GL-2(4)/GR-2(32)/GS-2(1)
N7 D614 10822 1 D-0(1)/G-1(10821)

+ Number of substitutions in VRV-haplotypes from the reference amino acids.

Table 2 also displays the VRV-haplotypes observed in New York (N1 through N7).
The most frequent block, N2, had seven VRVs and 16 unique haplotypes. Block N1 only
differed from Block N2 via the acquisition of the P681 VRV, and thus the two blocks are
closely connected. Similarly, Block N4, which probably gave rise to Block N3, had 14
unique haplotypes, including “GSRGNH” (six substitutions), which was observed 455
times. Lastly, N5 probably arose from N6 via N7, and had the “PGHI” haplotype (observed
367 times).
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2.5. Naming VRV-Haplotypes via PANGO Lineages

As all sequences corresponding to VOI/VOC were excluded, the strains with detected
VRVs are not currently undergoing special monitoring or characterization. We were thus
interested in naming the identified VRV-haplotypes and the PANGO lineages assigned by
GISAID. To this end, we selected VRV-haplotype blocks including four or more pressing
VRV mutations, resulting in eight VRV-haplotype blocks. Table 3 cross-tabulates these VRV-
haplotypes by their assigned lineages. Of particular interest, viruses with the haplotype
“KGHA” of T478-D614-P681-T732 were observed 2132 times, and 2029 of them were
assigned to the strain B.1.1.222. It is natural to name the haplotype T478K-D614G-P681H-
T732A as a B.1.1.222. Another noteworthy strain is B.1.234, which corresponds to “SVGHF”
and “SVGHS” of G142-E180-D614-Q677-S940 with exceptionally high frequencies (353 and
262). The remaining VRV-haplotypes mostly correspond to B.1. Fourteen other strains were
found in more than 10 occurrences and may also be of potential interest.

Table 3. VRV-haplotypes. Cross-tabulation of individual VRV-haplotypes with GISAID-assigned
lineages in all 167,893 sequences, excluding lineages with fewer than 10 occurrences. “Freq”, corre-
sponding haplotype frequencies; “Unknown”, sequences not assigned to any lineage.

Hap-Load Freq

U
nk

no
w

n

A
.2

.4

B
.1

B
.1

.1

B
.1

.1
.1

B
.1

.1
.1

71

B
.1

.1
.2

22

B
.1

.1
.2

9

B
.1

.1
.3

04

B
.1

.1
.3

17

B
.1

.1
52

B
.1

.1
65

B
.1

.1
66

B
.1

.2

B
.1

.2
15

B
.1

.2
34

B
.1

.2
56

B
.1

.3
24

B
.1

.3
50

B
.1

.3
54

B
.1

.3
60

B
.1

.3
99

B
.1

.9
4

(1) D80-F157-L452-D614-T859-D950
DSRGNH-5 63 58 5
GSLGNH-5 9 9
GSRGND-5 21 19 1
GSRGNH-6 539 522 1 2 3 5

(2) D80-S155-F157-L452-T859-D950
DRSRNH-5 39 39
GRSRND-5 3 3
GRSRNH-6 30 30
GSSRNH-5 509 492 1 2 3 5

(3) G142-E180-D614-Q677-S940
SEGHF-4 3 1 1 1
SVGHF-5 353 353
SVGHS-4 273 2 1 262 8
(4) S155-F157-L452-T859-D950

RSRND-4 3 3
RSRNH-5 69 69
SSRNH-4 533 511 1 7 3 5
(5) S13-W152-L452-D614
ICLG-3 43 1 36 3
ICRG-4 795 51 557 1 4 10 14 10 34 2 72
IWRG-3 120 1 77 7 2 28
SCRG-3 30 4 16 4
(6) S494-D614-P681-T716
PGHI-4 521 467 1 1 1 20 3
PGHT-3 194 100 8 3 31 2 3 29 1
RGHI-4 3 3
SGHI-3 38 19 3 1 4
(7) T478-D614-P681-T732

KGHA-4 2132 11 17 2 14 2029 18 1 12 2
KGHS-4 6
KGHT-3 159 4 57 3 67 8 1
KGPA-3 5 1 3 1
TGHA-3 85 13 63 2 1 2 2
(8) F157-L452-D614-T859
FQGN-3 22 22
FRGI-3 15 14 1
FRGN-3 5 5
SLGN-3 11 10 1
SRGN-4 625 601 1 7 3 6
SRGT-3 37 33

Green shading: >100 occurrences. Light green shading: >10 occurrences.
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2.6. Impact of VRV Haplotypes on Viral Structure

The SLS method includes homology modeling of Spike mutations, to predict possible
consequences on Spike structure/function and to guide laboratory research. Inspection
of the temporal dynamics of the VRV-haplotypes may be useful for identifying VRVs of
interest. We performed homology modeling on two potentially interesting VRV-haplotypes,
one of which we refer to as “UK-VRV” (N501-A570-D614-P681-T716-S982-D1118, from the
UK variant cluster B.1.1.7) and another VRV-haplotype, S13-W152-L452-D614 (from the US
variant cluster (B.1.94; B.1.427; B.1.429)).

The D614G mutation observed in the UK-VRV haplotype has been associated with
increased infectivity/transmissibility [22–24]. Cryo-electron microscopy structures have
recently been reported [25,26] that reveal the structural consequences of this mutation and
provide a plausible mechanistic explanation for the increased infectivity of D614G-carrying
variants. The D614 VRV has predominated in all US cases for which sequence information
is available in the TP2 cluster (Figure 1B, Table S2). The N501Y mutation (present in the
B.1.1.7 variant) is located in the receptor-binding domain (RBD) and has been reported to
enhance binding affinity to the angiotensin-converting enzyme-2 [8,27]. N501Y has also
been shown to reduce susceptibility to some neutralizing antibodies (nAbs), although the
B.1.1.7 variant appears to remain susceptible to some extent to natural infection-acquired
and vaccine-induced nAbs [8].

Of the five remaining VRVs in the UK-VRV haplotype, A570, T716, and S982 seem
relatively benign in that mutations at these positions are already decreasing in certain
states/territories (this trend is also true to some extent for N501Y). While this observation
may simply reflect inadequate sequencing efforts in recent months, it may also indicate
that mutations at these positions do not confer any fitness advantage to the virus.

The two remaining VRVs in the UK-VRV haplotype, P681 and D1118, are more in-
triguing. Mutations at these two sites, particularly at P681, appear to persist in multiple
states/territories. The P681H mutation occurs in the S1/S2 cleavage segment of the Spike
protein, which is typically not resolved in cryo-electron microscopy or X-ray diffraction
experiments. Thus, we cannot speculate on potential structural consequences of this mu-
tation. However, the continued presence of this mutation in many states and its location
in the Spike protein S1/S2 cleavage segment is most interesting. It is plausible that the
P681H mutation increases the flexibility of the S1/S2 cleavage segment, which might lead
to enhanced cleavage and infectivity. However, there are no experimental studies to date
that demonstrate a significant increase in S1/S2 cleavage for this mutant relative to other
variants. Likewise, we are not aware of any reports that D1118H impacts transmissibil-
ity or morbidity, but the location of this mutation in the Spike protein trimer assembly
(Figure 3A,B) suggests it could impact trimer assembly structure/stability/dynamics.

The US variants also carry the D614G mutation. The VRV-haplotype S13I-W152C-
L452R (ICR-3) appeared in Fall 2020 and is rapidly becoming dominant in states on the West
Coast, as well as appearing in selected southwestern and southeastern states (Figure 3C–F).
The S13I and W152C mutations, which are situated in the N-terminal domain (NTD) of the
Spike protein, have been implicated in escape from NTD-targeting monoclonal antibod-
ies [28]. The L452R mutation is situated in the RBD; homology modelling of the RBD–ACE2
complex shows that while R452 does not directly contact ACE2, the guanidinium side chain
of R452 is surface-exposed and thus could potentially impact nAb binding (Figure 3G).
The L452R mutation was recently shown to reduce binding affinity to some RBD-targeting
monoclonal antibodies, as well as to reduce susceptibility to nAbs [28]. Thus, structural
modeling of mutations in the S13-W152-L452 VRV-haplotype yields results that are consis-
tent with the temporal dynamics of this VRV-haplotype.



Viruses 2022, 14, 9 9 of 16Viruses 2021, 13, x  10 of 17 
 

 

 
Figure 3. Homology modeling of Spike mutations and haplotypic polymorphisms over time of the 
S13-W152-L452 VRV-haplotype. (A,B) Modeled structure of the Spike protein trimer with (A) D1118 
or (B) H1118 (homology-modelled using PDB entry 7KRS as the template structure). Spike protein 
monomers are displayed in blue, salmon, and aquamarine; aspartic acid and histidine residues are 
rendered as CPK images. (C–F) Frequencies over time for seven commonly observed haplotypic 
polymorphisms of the S13-W152-L452 VRV-haplotype, out of its polymorphisms in the US. Only 
haplotypic polymorphisms with at least 50 observations are included. Nomenclature is as follows: 
The first three letters designate the amino acids present at positions 13, 152, and 452, respectively; 
the number after the hyphen designates the number of amino acids at these three positions that do 
not match their reference strain equivalents. Numbers of sequences harboring each S13-W152-L452 
haplotypic polymorphism (across the entire USA) are shown in parentheses. Frequencies of seven 
common S13-W152-L452 VRV-haplotypic polymorphisms (C) in the entire US; (D) in California, 
Oregon, and Washington combined; (E) in Arizona, Colorado, Nevada, New Mexico, and Tennessee 
combined; and (F) in Florida and Georgia combined. (G) Homology-modeled complex of the recep-
tor-binding domain of the Spike protein (salmon), harboring the L452R mutation, bound to the an-
giotensin-converting enzyme 2 (ACE2) receptor (aquamarine). Within the R452 residue, nitrogen 
atoms are shown in blue and carbon atoms are shown in grey. 

The US variants also carry the D614G mutation. The VRV-haplotype S13I-W152C-
L452R (ICR-3) appeared in Fall 2020 and is rapidly becoming dominant in states on the 
West Coast, as well as appearing in selected southwestern and southeastern states (Figure 
3C–F). The S13I and W152C mutations, which are situated in the N-terminal domain 
(NTD) of the Spike protein, have been implicated in escape from NTD-targeting 

Figure 3. Homology modeling of Spike mutations and haplotypic polymorphisms over time of the
S13-W152-L452 VRV-haplotype. (A,B) Modeled structure of the Spike protein trimer with (A) D1118
or (B) H1118 (homology-modelled using PDB entry 7KRS as the template structure). Spike protein
monomers are displayed in blue, salmon, and aquamarine; aspartic acid and histidine residues are
rendered as CPK images. (C–F) Frequencies over time for seven commonly observed haplotypic
polymorphisms of the S13-W152-L452 VRV-haplotype, out of its polymorphisms in the US. Only
haplotypic polymorphisms with at least 50 observations are included. Nomenclature is as follows:
The first three letters designate the amino acids present at positions 13, 152, and 452, respectively;
the number after the hyphen designates the number of amino acids at these three positions that do
not match their reference strain equivalents. Numbers of sequences harboring each S13-W152-L452
haplotypic polymorphism (across the entire USA) are shown in parentheses. Frequencies of seven
common S13-W152-L452 VRV-haplotypic polymorphisms (C) in the entire US; (D) in California,
Oregon, and Washington combined; (E) in Arizona, Colorado, Nevada, New Mexico, and Tennessee
combined; and (F) in Florida and Georgia combined. (G) Homology-modeled complex of the
receptor-binding domain of the Spike protein (salmon), harboring the L452R mutation, bound to the
angiotensin-converting enzyme 2 (ACE2) receptor (aquamarine). Within the R452 residue, nitrogen
atoms are shown in blue and carbon atoms are shown in grey.
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3. Materials and Methods
3.1. Spike AA Sequences

Spike AA sequences (genome position: 21563–25384) from 189,727 COVID-19 cases in
the US and selected US territories, along with their associated metadata, were retrieved from
GISAID [29] (https://www.gisaid.org/ accessed on 23 March 2021). Geographic origin
(one of the 50 US states, Washington DC, Puerto Rico, or the Virgin Islands) was available
for 189,284 of the sequences. For 443 of the cases, no US state/territory origin information
was available. To ensure adequate sample size, Spike sequences from North Dakota, South
Dakota, and the Virgin Islands were combined with these 443 sequences, forming an “Other
States” category (728 sequences). Among them, 21,391 sequences were classified as a VOI
or VOC (Table S1). These sequences were excluded, leaving 167,893 sequences for analysis
(see Table S2 for monthly case numbers by state/territory).

3.2. Sequence Alignment and Transformation to VRV Indicators

Spike protein sequences were aligned to the Wuhan reference sequence [30] using
MAFFT [31], yielding a complete “rectangular residue sequence matrix”. Sequences with at
least one AA mutation (compared to the reference) were identified, enabling transformation
of the residue sequence matrix to a matrix of binary VRV (mutant) indicators. Monomorphic
residues led to columns of zeros and were eliminated from further analysis. We use VRV in
this work to refer to a single AA position that harbors a substitution. We reserve the term
“variant” in this work for identified VOIs and VOCs.

3.3. Statistical Learning Strategy (SLS)
3.3.1. Modeling VRV Temporal Dynamics

To model non-linear temporal dynamics, a generalized additive model (GAM) was
used to regress the VRV indicator over sample collection time via the following probability
model for the jth binary VRV indicator,

Pr
(
VRVj = 1

∣∣t) = 1
1 + exp

[
−α − sj(t)

] (1)

where α is a constant coefficient and sj(t) is a non-linear function of time t, and both
are estimated by the restricted maximum likelihood method [32]. Upon completing the
estimation, the above function was used with the estimated coefficient and non-linear
function to compute locally averaged proportions of each jth VRV, yielding a p-value
that measures if the function sj(t) deviates from zero. Also produced is the maximum
proportion as Pmax = max[Pr

(
VRVj = 1

∣∣t)]. To correct for multiple comparisons, VRVs
p-values were converted to q-values (false discovery rates) [33]. The function “gam” was
used to fit the GAM and the function “qvalue” was used to compute q-values (R packages
MGCV [34] and qvalue [33], respectively). The smoothing parameter k = 7 was chosen, and
VRVs present in fewer than 10 sequences (or >90% of all sequences, as for D614), or whose
span between emergence and disappearance from circulation was less than seven days
were assigned a p-value (and q-value) of one.

Upon fitting the GAM, the fitted values were used as locally averaged VRV proportions
daily from the first to the last reporting day. Computed proportions over time describe VRV
temporal dynamics. A VRV is identified by both statistical significance (q-value < 0.01) and
being present in a substantial proportion (Pmax > 10%).

3.3.2. Visual Representation of Temporal Dynamics

Within-state/territory: Temporal dynamics of <8 VRVs within a given state/territory
were visualized with a line plot. For visualizing temporal dynamics of ≥8 VRVs within
a given state/territory, unsupervised learning was applied, grouping VRVs with similar
temporal patterns. Results were visualized with a heatmap.

Spatially integrated: To visualize spatiotemporal VRV dynamics, all state-specific
temporal dynamics were integrated and unsupervised learning (one-way hierarchical

https://www.gisaid.org/
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clustering with the Euclidean distance with weights in favor of recent temporal trajectories
and the “ward.D2” agglomeration method) [35] was applied.

3.3.3. Missing Residue Imputation

Given the physical proximity and constrained functionalities, residues are in high dise-
quilibrium, forming haplotypes on a single-stranded RNA sequence (“VRV-haplotypes”) [36].
Haplotype structures enable imputation similarly to SNP imputation. Ten residues were
selected to form a “imputation set”. For each selected VRV, its missing values were imputed
based on their empirical haplotype frequencies. Remaining missing residues (if any) are
denoted by a lower case “x”. While technically, a missing residue sequence value cannot
be distinguished from an AA deletion, we conjectured that AA deletions would be rare in
Spike and treated all such cases as missing values.

3.3.4. VRV-Haplotypes

A viral strain harboring multiple VRVs is referred to as a “VRV-haplotype”. To identify
VRV-haplotypes, unsupervised learning was used to organize both cases and VRVs through
a two-way hierarchical analysis [35].

The two-way hierarchical analysis used the parallel function “parDist” with the “tan-
imoto” distance measure and the function “hclust” with “ward.D2” algorithm in the R
package. VRV-haplotypes were identified separately within each state/territory.

Hierarchically organized COVID-19 cases and VRVs are visually represented by a
heatmap for every state/territory, which can be divided in grids by R geographic case
groups (case1, case2, . . . , caseR) and by C VRV groups (vrv1, vrv2, . . . , vrvC).

As a matrix of VRV indicators was used to identify blocks of multiple VRVs among
subsets of cases, these blocks are referred to as VRV-haplotype blocks, since individual
VRVs within blocks may vary. Within each block, actual residues were used to construct
VRV-haplotypes for estimating haplotype frequencies and linking haplotypes with viral
strains. For evaluating the relationship of VRV-haplotypes with known variants, variant
information for case sequences was retrieved from GISAID [29].

3.3.5. Homology Modeling of Selected Haplotype Mutants

After identifying specific Spike protein mutants of interest from VRVs and related
VRV-haplotypes, standard homology modeling methods were applied to generate 3D
models. Since all mutants examined in this study occurred in haplotypes harboring the
D614G substitution, reference structures harboring this mutation (PDB codes 6ZWV; 7KRR;
7KRS) [25,26] were used as templates. All model building and analysis was performed
using the ChimeraX interactive molecular graphics package (Resource for Biocomputing,
Visualization, and Informatics at UC San Francisco, CA, USA) [37]. Mutated side chain
conformations were generated from the backbone-dependent rotamer library of Shapovalov
and Dunbrack [38] and selected to minimize steric clash with neighboring residues. No
additional structural refinement was performed. For homology modeling using the Spike
receptor binding domain (RBD)-ACE2 complex, PDB code 6M0J [39] was used.

4. Conclusions

The continuous evolution of SARS-CoV-2 has already impacted public health guide-
lines and research priorities, with the potential of even more clinically consequential
variants still to emerge. Here, we leveraged a public data resource and described a statisti-
cal learning strategy for analyzing large, complex SARS-CoV-2 sequence datasets while
incorporating temporal and spatial information. We provided detailed information on the
emergence and persistence (or disappearance) of specific mutations in US states/territories,
helping identify mutations that may warrant further observation/investigation. Our ap-
proach can be applied to other pathogens for which sufficient genomic surveillance data
are available, generating important, statistically rigorous, and visually interpretable infor-
mation for the biomedical research community, clinicians and public health officials. Our
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approach can also provide insight on the evolution of mutants and linkages with known
viral strains.

By applying the SLS method to 167,893 US sequences not classified as any VOI/VOC,
we identified 77 novel individual VRVs, including 25 pressing VRVs that appear to have
emerged in the US. Among these pressing VRVs, the haplotype (T478-D614-P681-T732)
links with the strain B.1.1.222 and the haplotype (G142-E180-D614-Q677-S940) links with
the strain B.1.234, both of which do not correspond to any current VOI/VOC. Additionally
of note, if the SLS method is applied to all US sequences, all circulating VOIs/VOCs are
identified (results not shown). Indeed, timely discovery of novel VRVs is an important
feature of the SLS method, which directly identifies emerging VRVs without relying on
established classification of viral strains, as reliable classification of new strains by phylo-
genic analyses requires a sufficient number of accumulated viral sequence data. We should
emphasize that our analyses were based on samples collected from January 2020 through
March 2021, so it is not surprising that many of the VRVs we identified involve mutations
associated most closely with the Alpha variant (B.1.1.7), which was predominant in the U.S.
and world-wide during this time period. However, we note that our analyses also identified
a haplotype N6 (Table 2) that exhibits the subsequently well-documented mutation P681R,
characteristic of the Delta variant that has dominated infections world-wide during the
latter half of 2021. During our analysis time period, this N6 haplotype was a minor, but
statistically significant, fraction of the observed haplotypes in patient samples. Recent
experimental studies [40,41] indicate that this mutation enhances S1/S2 segment cleavage
and makes a major contribution to the enhanced infectivity observed for the Delta variant.
The fact that our analysis protocol identified this specific mutation long before the Delta
variant became clinically relevant in the U.S. appears to support the contention that our
method may be useful for the early recognition of potentially important mutations.

As part of the assessment of immune correlates of protection, many randomized,
placebo-controlled COVID-19 vaccine efficacy trials measure Spike protein sequences from
symptomatic COVID-19 endpoint cases, and sometimes also from SARS-CoV-2 asymp-
tomatic infections. Sieve analysis of these viral sequences can be conducted to assess
whether and how vaccine efficacy depends on Spike protein sequence features, including
differential vaccine efficacy across the levels of VRVs and of VRV-haplotypes [42]. The
graphical tools proposed here for spatiotemporal tracking of VRVs and VRV-haplotypes
can be useful for sieve analysis. Firstly, they help define and communicate the set of VRVs
and VRV-haplotypes of study endpoint cases that have sufficient variability to be able
to assess whether vaccine efficacy depends on the feature. For example, given that most
vaccines use the Wuhan strain as the vaccine-insert, VRVs that meet our Pmax > 0.10
criterion would readily have the level of variability required for sieve analysis, whereas
VRVs with Pmax < 0.02 would likely not. Secondly, including the assignment to vaccine or
placebo as a factor in the unsupervised clustering graphics applied to the vaccine efficacy
trial sequence data sets may help communicate results of sieve analysis. Thirdly, many
of the vaccine efficacy trials have been offering the vaccine to placebo recipients, such
that the placebo arm is lost and long term follow-up occurs only in individuals originally
vaccinated or newly (deferred) vaccinated [43]. The graphical tools may be applied to track
study participant vaccine breakthrough virus VRVs and VRV-haplotypes over time, and to
similarly track VRVs and VRV-haplotypes in GISAID data bases of unvaccinated persons
matched by geography and time. A comparison of these two tracking results may aid sieve
analysis during the long-term follow-up period of the vaccine efficacy trials.

Evidence is mounting that neutralizing antibodies acquired by natural infection [44,45]
or through vaccination [46–49] are a correlate of protection against COVID-19. Therefore, it
will be critical to assess whether and how VRVs and/or VRV-haplotypes in the infecting
strains impact neutralizing antibody titers attained by natural infection [50], as well as
whether and how they impact neutralization sensitivity to vaccine-induced neutralizing an-
tibodies [10] and/or monoclonal antibodies [51]. One possibility is that the graphical tools
used here could annotate VRVs and VRV-haplotypes according to impact on neutralization.
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Moreover, a subset of sieve analyses is designed to restrict to VRVs and VRV-haplotypes
that are known to impact neutralization response to the given vaccine under study, to
improve power and to contribute to understanding neutralizing antibody-based correlates
of protection. Once VRVs or VRV-haplotypes that impact vaccine efficacy are identified and
their impact is quantified, this information can be applied to inform models for predicting
vaccine efficacy against circulating virus populations and to aid optimization of vaccine
strain selection.

A limitation of our approach is that it is constrained by intrinsic sampling limitations
because all sequences were collected and contributed by laboratories (Table S6) without
consistent sampling protocols. Hence, despite the large size of our dataset, the analyzed
sequences were not nationally representative. Further, it is important to interpret our
results in terms of VRV proportions among reported sequence data, rather than incidences
or prevalence of VRVs, in the absence of reliably estimated denominators. To overcome
this limitation, public health agencies need to consider a uniformly developed surveillance
protocol, to sequence COVID-19 cases from well-defined populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v14010009/s1, Figure S1: For all Spike residues with sufficient variation, scatterplots of the
maximum proportion (Pmax) of sequences from a given state/territory harboring a mutation at a
given amino acid position vs. q-value. Points in red represent residues that meet both criteria for
classification as a VRV. Points in black represent residues that do not, Figure S2: Temporal patterns
of VRVs identified in each state/territory, Figure S3: Locally averaged proportions over time for
substitutions at 3 AA-subs in a VOI (Y144, F888, V1176) and at 3 AA-subs in a VOC (H69, Y144,
K417) that were not detected by the SLS method in states/territories where at least three sequences
had a substitution at the designated AA position. AA-sub, amino acid that has been shown to
harbor a substitution in a US-circulating VOI or VOC. VOI, variant of interest; VOC, variant of
concern. The “TP1” through “TP10” labels, along with the vertical color bar on the left side of the plot,
refer to the 10 individual State-VRV clusters identified in the plot, based on their temporal patterns
(“TP” = temporal pattern), Figure S4: Presence of VRVs among all cases in each state/territory. A
gray cell means the VRV was not identified in the given case; a black cell means that it was. Both
cases and VRVs were clustered by two-way hierarchical cluster analysis. The “PG” (“patient group”)
and “RG” (“residue group”) labels in the lower left corner of each plot correspond to the row (case)
and column (VRV) clusters identified by two-way hierarchical cluster analysis, also identified by the
vertical and horizontal color bars at the left and top, respectively, of each plot, Table S1: Distribution
of the 21,391 VOI/VOC sequences by specific variant and by state/territory, Table S2: Distribution of
the 167,893 SARS-CoV-2 sequences by state/territory and by GISAID submission month, along with
state/territory-specific distribution of the 21,391 VOI/VOC sequences that were excluded from the
analysis, Table S3: The 10 identified geo-VRV clusters (TP1 through TP10), based on temporal profiles,
Table S4: Frequencies of the 90 viral residue variants (VRVs) by state/territory, from an unsupervised
learning from bi-clustering of all states and VRVs, Table S5: VRV-haplotypes identified within each
state/territory, along with state/territory-specific frequencies. The “positivity” column indicates the
proportion of mutations in each haplotype block, Table S6: List of individuals from the Originating
laboratories responsible for obtaining the specimens and the Submitting laboratories where genetic
sequence data were generated and shared via the GISAID Initiative, on which this research is based.
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