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Abstract
Lysosomal storage diseases are inherited monogenic disor-
ders in which lysosome function is compromised. Although
individually very rare, they occur at a collective frequency of
approximately one in five thousand live births and usually have
catastrophic consequences for health. The lysosomal storage
diseases Niemann-Pick disease type C (NPC) is caused by
mutations predominantly in the lysosomal integral membrane
protein NPC1 and clinically presents as a progressive neuro-
degenerative disorder. In this article we review data that

demonstrate significant dysregulation of innate immunity in
NPC, which occurs both in peripheral organs and the CNS. In
particular pro-inflammatory responses promote disease pro-
gression and anti-inflammatory drugs provide benefit in animal
models of the disease and are an attractive target for clinical
intervention in this disorder.
Keywords: cytokine, inflammation, lysosomal storage
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Lysosomal storage diseases

Lysosomal storage diseases (LSDs) are a group of metabolic
disorders that result from inherited defects in proteins required
for normal lysosome function (Ballabio and Gieselmann
2009; Schultz et al. 2011). Affected proteins can include
catabolic enzymes, integral membrane proteins, and proteins
required for generating specific post-translational modifica-
tions of proteins (Futerman and van Meer 2004; Platt et al.
2012). To date, approximately 70 discrete LSDs have been
described that are individually rare; however, collectively
they occur at a prevalence of 1: 5000 live births, which may be
an underestimate owing to cases being either undiagnosed or
misdiagnosed (Cox and Cachon-Gonzalez 2012).
There are two striking features of LSDs. The first is that

disturbance of lysosomal function frequently has severe
consequences for the function of cells, organ systems, and
the body as a whole, leading to premature death (Platt et al.
2012; Platt 2014). This is perhaps not surprising in light of
the accumulating evidence that the lysosome is involved in
far more than macromolecule catabolism and re-cycling. The
lysosome is now recognized to be an organelle that has a
much broader range of functions including signaling, secre-
tion, and regulation of energy metabolism (Settembre et al.
2013). Second, distinct LSDs that result from the inactivation
of different lysosomal proteins often share similar patholo-
gies (Vitner et al. 2010). For example, inappropriate activa-
tion of the innate immune system in the form of inflammation

is especially frequent in LSDs, but intriguingly it remains an
open question as to how exactly lysosomal storage triggers
pro-inflammatory pathways (Platt 2014).

Niemann-Pick disease type C

Niemann-Pick disease type C (NPC) is an autosomal recessive
condition caused by mutations in either of two independent
genes. Mutations in NPC1, an integral transmembrane protein
of the limiting membrane of the lysosome (Higgins et al.
1999) accounts for ~ 95% of all clinical cases whereas
mutations in NPC2, a soluble cholesterol binding protein are
responsible for the remainder (Platt et al. 2014). Therefore,
NPC is unlike the majority of LSDs, which are caused by
mutations in single genes that encode a lysosomal hydrolase.
Patients with mutations in either NPC1 or NPC2 are pheno-
typically indistinguishable and because loss of activity of
either protein is not compensated for by the presence of the
other protein, it is probable that they function in a common cell
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biological pathway (Dixit et al. 2011). For the purpose of this
review our discussion will concentrate on the consequences of
impaired NPC1 function, as most information is available on
NPC1 disease. Clinically, affected individuals are usually
diagnosed in childhood although adult onset variants also
occur and are under-diagnosed (Wassif et al. 2015). The
course of disease is dominated by progressive neurodegener-
ation, which presents as cerebellar ataxia, dysphagia, dementia
and premature death, typically within the second decade of life
(Vanier 2010). Almost three hundred different mutations in
NPC1 have been identified to date, but as yet there is neither a
clear structure–function relationship that has been established,
nor a functional assay for NPC1 (Millat et al. 1999; Ribeiro
et al. 2001).

The phenotype of NPC1-deficient cells

Probably the most prominent feature of NPC cells is the
accumulation of free cholesterol in the late endosome/
lysosome (Fig. 1). Although this remains the basis for the
clinical diagnostic test (Vanier 2010) it is contentious
whether it is disease causing or a secondary consequence
of the disease. In fact a complex array of lipid species are
stored in NPC including glycosphingolipids (GSLs), sphin-
gomyelin, and sphingosine, the latter generated from cera-
mide catabolism (Rosenbaum and Maxfield 2011). Because
storage does not occur as a direct result of impaired catabolic
activity NPC is classified as secondary LSD. The function of
NPC1 is itself currently unresolved and although the
prevailing view is that it is involved in removing cholesterol
from the lysosome, evidence that the purified protein can
bind the sterol may indicate its requirement as a co-factor
rather than support the hypothesis that NPC1 is responsible
for moving cholesterol out of the acidic compartment.
Further support for this has been the demonstration that
cholesterol can move effectively from the lysosome to
mitochondria in NPC1 cells (Kennedy et al. 2014). A
combination of experimental data reinforces an alternative
model of the pathogenic cascade (Fig. 2). NPC1 has greatest

homology with the resistance-nodulation-division family of
prokaryotic permeases and has been demonstrated to have
activity as an efflux pump (Davies et al. 2000). When NPC1
is inactivated in healthy cells the first metabolite to
accumulate is sphingosine (which also builds up in tissues
in patients and animal models, Rodriguez-Lafrasse et al.
1994), which requires active transportation out of the
lysosome because it is protonated at acidic pH (Lloyd-Evans
et al. 2008). A consequence of the storage of sphingosine is
inhibition of the filling of the acidic compartment with
calcium. This could be indirect via protein kinase C
inhibition (Walter et al. 2009) or a direct effect of sphingo-
sine on the protein that fills the acidic store with calcium, the
identity of which remains unknown. Whilst the precise
biological roles of calcium release from the lysosome are not
fully defined it is known that fusion and trafficking in the
endocytic pathway are uniquely dependent upon calcium
mobilization from the lysosome (Morgan et al. 2011).
Therefore, impaired filling of the lysosome with the cation,
as a result of sphingosine accumulation, means insufficient
calcium can be released, which in turn leads to a block in
endosome/lysosome trafficking and fusion. This is then the
cause of the secondary storage of cholesterol, GSLs, and
sphingomyelin (Fig. 1). All of these defects, including
sphingosine accumulation, the lysosomal calcium deficit,
impaired calcium release, and prevention of normal endocy-
tic trafficking have been confirmed independently in multiple
studies in NPC cells (Rodriguez-Lafrasse et al. 1994) (Chen
et al. 2010) (Shen et al. 2012; Tamari et al. 2013).

NPC and innate immune responses

Because neurodegeneration is the main clinical feature of
NPC disease, it is unsurprising that a major research focus
has been on the effects of loss of NPC1 activity within the
CNS. However, because NPC1 is expressed in all cells, its
loss is very likely to have widespread consequences. In this
review we will discuss the evidence that mutations in NPC1
impact significantly on multiple tissues and cells, in partic-
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Fig. 1 Cholesterol and GM1 ganglioside
accumulation are prominent characteristics

of the Niemann-Pick disease type C (NPC)
cellular phenotype. WT (a–c) and NPC1�/�

fibroblasts (d–f) stained for nucleus,
propidium iodide - red (a and d), cholesterol,

filipin—blue (b and e) and GM1 ganglioside,
cholera toxin subunit B—green (c and f).
Arrows indicate examples of punctate

accumulations in NPC1�/� cells. Scale bar:
10 lm.
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ular within the immune system and result in inflammation
and altered innate immune responses.

Animal model of NPC; the Npc1�/� (BALB/cNctr-
Npc1m1N/J) mouse

Our understanding of NPC has been advanced enormously
by studies of an authentic mouse model, the Npc1�/�

(BALB/cNctr-Npc1m1N/J) mouse, which has almost total
absence of the protein and displays all the hallmarks of the
clinical disease (Loftus et al. 1997). This mutant strain arose
spontaneously and has a lifespan in the range of 10–-
14 weeks and therefore has a course of disease more acute
that the vast majority of patients. The mutant mouse has been
exploited successfully not only for determining the ontogeny
of disease and underlying pathogenic mechanisms but also
for the evaluation of experimental therapies. Analyses using
these mice have been undertaken at the whole animal,
cellular, and molecular levels (Baudry et al. 2003; Smith
et al. 2009; Cologna et al. 2012, 2014).
Prior to about 4–5 weeks of age Npc1�/� mice have no

discernible behavioral indication of disease that distinguishes
them from wild-type littermates. First indications of behav-
ioral deficits, such as tremor and ataxic gait, appear by weeks
5–6; by weeks 7–8 defects in motor coordination become
more apparent, and by 9–10 weeks ataxia is advanced and
accompanied by increased loss in weight and poor coat
condition as feeding and drinking becomes difficult (humane
end point applied) (Fig. 3) (Smith et al. 2009). Although the
BALB/cNctr-Npc1m1N/J strain has been the most intensively
studied, there are also other authentic mammalian animal
models of NPC. Interestingly, loss of Npc1 in mice on the
C57BL/6 genetic background results in more acute disease
relative to the BALB/cNctr-Npc1m1N/J mouse (Parra et al.
2011), suggestive of genetic modifiers. A feline model of
NPC has also been characterized (Brown et al. 1994) and
successfully used to trial experimental therapies (Stein et al.
2012).

Neuroinflammation and neurodegeneration in NPC

Pathology within the CNS is a feature of most LSDs,
probably because neurons are uniquely vulnerable to pertur-
bation of normal lysosomal activity (Jmoudiak and Futerman
2005; Bellettato and Scarpa 2010; Vitner et al. 2010).
Activation of the innate immune system is also a very

Fig. 2 Proposed pathological cascade in Niemann-Pick disease type

C (NPC) cells. Cartoon of proposed pathological process that underlies
the NPC cellular phenotype and results in neurodegeneration, neur-
oinflammation, and dysregulation of innate immune responses.

Fig. 3 Details of the progression of disease
in Npc1�/� mice. Npc1�/� (BALB/cNctr-
Npc1m1N/J) mice display an acute clinical

course, with a lifespan of 10–14 weeks that
is characterized by the predictable
development of defined symptoms at

specific ages.
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common feature of neurodegenerative LSDs (Jeyakumar
et al. 2003) (Bellettato and Scarpa 2010; Vitner et al. 2010).
Interestingly, microglial activation (as indicated by

up-regulation of CD68 expression) and astrogliosis (Pekny
and Nilsson 2005) are apparent from as early as 2 and 4
weeks of age respectively in Npc1�/� mice (Baudry et al.
2003), prior to any overt behavioral symptoms. Whilst NPC-
activated microglia up-regulate CD68, in contrast to micro-
glia in the GM1 and GM2 gangliosidoses mice (Jeyakumar
et al. 2003), they do not become positive for MHC class II
expression, indicating a different activation state, the signif-
icance of which is not currently understood (Smith et al.
2009). Neuropathology in NPC develops in a distinct
temporal and spatial pattern, with cell loss in both motor
and sensory pathways, in addition to the characteristic
progressive death of Purkinje cells in the cerebellum (Pressey
et al. 2012). Because Npc1 activity is absent throughout the
CNS of BALB/cNctr-Npc1m1N/J mice an important question
has been to what extent does deletion in particular cell types
drive disease. Although data points toward cell autonomous
neurodegeneration (Lopez and Scott 2013), non-cell auton-
omous mechanisms cannot be absolutely excluded because
of the complex interdependence of different cell populations
within the CNS. For example, the lifespan of Npc1�/� mice
was extended threefold by expression of functional Npc1 in
astrocytes (Zhang et al. 2008), greater than fivefold when
expressed in neurons and when combined there was an
additive effect, but disease symptoms in motor systems still
occurred, albeit significantly delayed (Borbon et al. 2012).
Changes in gene expression in the CNS that underlie the

pathological cascade have also been documented and one
pathway that has been identified is a network of pro-
inflammatory genes (Cologna et al. 2014). Comparable
studies performed on post-mortem patient cerebellum with
those from the mutant mouse revealed transcriptional
changes and identified complement C3 as the only gene
found to be elevated in all samples analyzed (Cologna et al.
2014).
It is still not understood why brain inflammation is

triggered in NPC and other LSDs. Clearly, neuroinflamma-
tion as a generalized response is independent of the
molecular identity of the storage material, because it is
universal amongst neurodegenerative LSDs. However, the
precise nature of the inflammatory profile is very likely to
differ between specific LSDs and is very probably influenced
by both the chemical composition of the storage and the
underlying mechanistic defect. It is recognized that inflam-
mation is a response to tissue damage or stress and is a
protective mechanism that can result in induction of appro-
priate repair processes (Chovatiya and Medzhitov 2014).
However, in chronic conditions the failure of inflammation to
resolve, presumably because the pro-inflammatory stimulus
remains, means the destructive phases of the response are
significantly extended.

Microglia, the resident myeloid cell populations of the
brain are considered to be the most important source of
pro-inflammatory molecules, including cytokines, chemo-
attractants, and reactive oxygen species within the CNS
(Gonzalez-Scarano and Baltuch 1999) (Ransohoff and Perry
2009) as well as providing protective mechanisms (Griffiths
et al. 2009; Napoli and Neumann 2010). Several scenarios
can be envisaged to explain why microglia are activated in
LSDs. It may be as a result of accumulation of storage
materials in microglia themselves affecting signaling path-
ways. On the other hand, as sentinels within the CNS it may
be microglial detection of storage in other cell populations,
particularly neurons, that is the trigger. Of course, it may not
be actual storage, but rather a loss of cellular homeostasis
beyond the normal range. Loss of neurons, especially by
necrotic death is also very likely to provoke innate immune-
mediated inflammation (Kono and Rock 2008). An impor-
tant activity of microglia is the phagocytosis of apoptotic cell
debris (Napoli and Neumann 2009), but it is not known if
this scavenging activity is normal or impaired in NPC and if
is the latter, whether it also contributes to the inflammatory
profile (Palin et al. 2008). Unfortunately, at this time we
have an incomplete understanding of the temporal and
spatial details of inflammation and neurodegeneration in
NPC.
One of the most important issues that have been resolved is

the question of whether neuroinflammation actively pro-
motes pathogenesis. The ability of anti-inflammatory thera-
pies, such as non-steroidal drugs (NSAIDs), aspirin and
ibuprofen to significantly extend the lifespan, protect against
microglial activation and Purkinje cell loss and delay
symptom onset in Npc1�/� mice (Smith et al. 2009)
confirmed that neuroinflammation enhances disease and
when used in combination with agents that inhibit GSL
biosynthesis and modulate calcium they can maximize
therapeutic benefit (Williams et al. 2014).

Deficits in the NPC peripheral immune system

Natural killer cells

The immune system in peripheral tissue and the CNS are
intimately connected at a number of levels and so the
immune system as a whole merits study in these diseases.
Natural killer (NK) cells are an immune cell population that,
in particular, plays an important role in the killing of virally
infected and transformed cells (Vivier et al. 2011). As an
effector sub-group of lymphocyte they express a number of
activating and inhibitory receptors, which engage ligands on
target cells and when appropriate release cytotoxic products
via degranulation (Lanier 2008).
The first lipid to accumulate in the lysosome when NPC1

is inactivated is sphingosine. In healthy cells sphingosine has
two potential fates; it can either be recycled back to form
ceramide for reutilization in the salvage pathway of GSL
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biosynthesis or phosphorylated by two specific kinases to
yield sphingosine-1-phosphate (S1P), a bioactive lipid that
has multiple known functions (Maceyka and Spiegel 2014).
During inflammation immune cells enter and leave sites of
tissue damage by the process of regulated cell migration and
trafficking (Butcher and Picker 1996). S1P levels differ
significantly between the blood, lymph, and tissues (higher in
the first two; lower in the latter) and this gradient has a major
role in affecting lymphocyte trafficking as it forms a
chemotactic gradient (Cyster and Schwab 2012). Speak
Speak et al. (2014) hypothesized that the accumulation of
sphingosine in the lysosome in NPC would mean reduced
generation of S1P (phosphorylation of sphingosine occurs
outside of the lysosome) and result in alteration of the normal
systemic/tissue gradient and thereby affect NK cell traffick-
ing. Firstly, the authors confirmed a 10-fold increase in the
sphingosine content of lymph nodes in Npc1�/� mice and a
proportional decrease in conversion to S1P (only a three-fold
increase), suggesting the likelihood of a defect in the gradient
between lymphatic fluid and node. Second, as predicted there
was a significant increase in the frequency of NK cells in
multiple organs as compared to control animals and a
corresponding decrease in the circulation. The distribution of
NK cells in Npc1�/� mice is similar to that reported in
animals deficient in a specific S1P receptor (Walzer et al.
2007). Comparable differences in frequencies were also
measured in blood from NPC patients and interestingly,
carrier genotypes also failed to show an age-related expan-
sion in NK cell numbers. In addition, analysis confirmed an
alteration in NK cell development and phenotype (maturation
status) as well as frequency in Npc1�/� animals and patients.
Functionally, deficient cells in the mouse were significantly
compromised in their ability to kill target cells (cytotoxicity),
which correlated with impaired degranulation and reduced
calcium release from the lysosome (Speak et al. 2014).
These data strongly implicate the requirement for lysosomal
calcium in cytotoxic granule (specialized lysosome-related
organelles) secretion by NK cells, which has also been
demonstrated for cytotoxic T-cells degranulation if acidic
store calcium release is impaired (Davis et al. 2012).
Furthermore, a prediction from this would be that other
Npc1�/� cell types might also have diminished secretion of
lysosome-related organelles.

Invariant natural killer T cells and LSDs

Invariant natural killer T cells (iNKT) cells are a special-
ized subset of T lymphocytes that bear an invariant TCRa
chain and express markers shared with NK cells (Bendelac
et al. 2007). They are key effector cells in innate immunity
and modulate the activities of the adaptive immune system,
especially in host defense against pathogens and cancer
(Brennan et al. 2013). Unlike conventional T cells, which
respond to antigen presenting cells that express peptides in

the context of MHC molecules, iNKTs are activated by
GSL ligands presented by the MHC-related molecule CD1
(CD1a-e in humans; CD1d in the mouse) (Speak et al.
2008). Importantly, both positive selection of iNKT cells in
the thymus and their maintenance in peripheral organs is
dependent upon presentation of specific endogenous lipid
ligands by CD1 (Mendiratta et al. 1997; Gapin et al.
2001). Because loading of CD1 with lipid molecules occurs
in late endocytic/lysosome compartments in the mouse,
diseases that alter the distribution, nature or abundance of
GSLs (such as LSDs) have the potential to render this
process ineffective and thereby affect the frequency and
properties of iNKT cells. Consistent with this, it was found
that multiple mouse models of LSDs (that store diverse
GSL species), including NPC, had decreased numbers of
iNKT cells and their maturation was compromised (but T
cells specific for peptide ligands were not affected) (Gadola
et al. 2006). GSL-triggered cytokine release was signifi-
cantly reduced and presentation of endogenous lipids was
impaired in all models, but interestingly only Npc1�/� mice
had lower cell surface expression of CD1d (Gadola et al.
2006). However, in contrast to the situation in the mouse,
analysis of NPC patients revealed normal frequencies and
functions of iNKT cells (Speak et al. 2012). This differ-
ence is most likely due to differences in trafficking
requirements for iNKT cells between the two species.
The evidence is that lipid loading occurs in the early
endosome in humans, not in the late endocytic system as it
is in the mouse, so is therefore not affected in NPC patients
(Chen et al. 2007).

Conclusions

In this review we have highlighted that LSDs are not just
diseases of CNS dysfunction but also involve activation of
the innate immune system, leading to chronic inflammation
that actively contributes to the disease. There are multiple
routes of communication between the peripheral immune
system and the CNS, including both direct ones mediated by
neural circuits (Olofsson et al. 2012) and systemic mechan-
isms, in the form of circulating cytokines, acute phase
proteins and other pro-inflammatory molecules (Allan and
Rothwell 2001). It is well established that the ongoing
neurodegenerative processes in the CNS are exacerbated by
induction of inflammation at peripheral sites (Perry et al.
2003). Also, neuropathology frequently results in the
recruitment of immune cells from peripheral sites into the
CNS and should their generation or functioning be ineffec-
tive, any neuroprotective benefit their mobilization may offer
will be lost. A particularly important reason for exploring the
nature of the altered innate immune responses in LSDs is that
the vast majority of these disorders are currently without
effective treatment and anti-inflammatories have shown
benefit in relevant models and are attractive as adjunct
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therapeutics. Therefore, targeting the immune system merits
clinical evaluation.
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