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Abstract

Aims Reactive oxygen species are reportedly involved in the mechanism underlying heart failure with preserved ejection
fraction (HFpEF); however, the disease pathophysiology remains poorly understood. Xanthine oxidoreductase (XOR), the
rate-limiting enzyme of purine metabolism, plays an important role in uric acid production and generates reactive oxygen spe-
cies. However, the impact of plasma XOR activity on the clinical outcomes of patients with HFpEF remains unclear. The aim of
this study was to investigate whether plasma XOR activity is associated with major adverse cardiovascular events (MACEs) in
patients with HFpEF.
Methods and results The plasma XOR activity was measured in 257 patients with HFpEF, who were then divided into three
groups according to the activity levels: low XOR group (<33 pmol/h/mL, n = 45), normal XOR group (33–120 pmol/h/mL,
n = 160), and high XOR group (>120 pmol/h/mL, n = 52). During the median follow-up period of 809 days, there were 74
MACEs. Kaplan–Meier analysis revealed that the high XOR group was at the highest risk for MACEs. Multivariate analysis by
Cox’s proportional hazard regression approach showed that high XOR activity was significantly associated with MACEs, after
adjustment for confounding factors. The patients were also divided into four groups according to the absence/presence of
high XOR activity and/or hyperuricaemia. According to the multivariate Cox regression analysis, high XOR activity was associ-
ated with MACEs, regardless of the hyperuricaemia status.
Conclusions Elevated plasma XOR activity is significantly associated with adverse clinical outcomes in patients with HFpEF.
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Introduction

The increasing proportion of patients with heart failure with
preserved ejection fraction (HFpEF) relative to that of patients
with heart failure with reduced ejection fraction (HFrEF) has
been recognized as a public health problem.1,2 In contrast to
HFrEF, an effective evidence-based therapy for HFpEF has not
been established.3 It was reported that themortality rates were
similar between patients with HFpEF and those with HFrEF.4

Although the pathophysiology of HFpEF remains incom-
pletely understood, coexisting systemic pro-inflammatory
conditions, such as hypertension, diabetes mellitus, obesity,
and the metabolic syndrome, are thought to contribute to
its development.5 Induced systemic microvascular endothelial
inflammation results in the production of reactive oxygen
species (ROS) and subsequently endothelial dysfunction. In
HFpEF, ROS decrease both the bioavailability of nitric oxide
in coronary microvascular endothelial cells and the activity
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of protein kinase G activity in adjacent cardiomyocytes, caus-
ing left ventricular (LV) dysfunction.6

Xanthine oxidoreductase (XOR), the rate-limiting enzyme
of purine metabolism, plays a pivotal role in producing uric
acid (UA) production and generates ROS.7 It has been shown
that UA itself causes inflammation and ROS generation in en-
dothelial cells.8 Although a previous study has shown that
hyperuricaemia is strongly associated with adverse clinical
outcomes in patients with HFpEF,9 the association between
XOR activity and clinical outcomes in these patients remains
unclear. Therefore, the aim of this study was to investigate
whether plasma XOR activity is associated with cardiovascular
events in patients with HFpEF.

Methods

Study subjects

The study subjects were made up of 257 patients with HFpEF,
who were admitted to Yamagata University Hospital for the
diagnosis and/or treatment of heart failure (HF). The diagno-
sis of HFpEF was based on the Framingham criteria, that is,
the clinical diagnosis of HF according to two cardiologists
and the echocardiographic finding of an LV ejection fraction
of ≥50%.10,11 Patients with acute coronary syndrome (ACS)
within 3 months preceding admission, active hepatic dis-
eases, pulmonary diseases, and malignant diseases were ex-
cluded. The major risk factors of HF, such as hypertension,
dyslipidaemia, diabetes mellitus, obesity, and smoking (both
current and past smokers), were assessed. Clinical data on
age, gender, and New York Heart Association (NYHA) func-
tional class were obtained from the patients’ medical records
or history of medical therapy, and medications were assessed
at discharge. The investigation conforms with the principles
outlined in the Declaration of Helsinki. The study protocol
was approved by the Institutional Ethics Committee of Yama-
gata University School of Medicine, and all patients provided
their written informed consent for study participation.

Xanthine oxidoreductase activity assay

Blood samples were collected in the early morning, within
24 h after hospital admission. The samples were centrifuged
at 3000 g for 15 min at 4 °C, and the obtained plasma was
stored at �80 °C until analysis. The XOR activity assay was
performed using a stable isotope-labelled substrate and liq-
uid chromatography–triple quadrupole mass spectrometry
(Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan).12 The pa-
tients were divided into three XOR groups according to their
levels of XOR activity: low XOR group (<33 pmol/h/mL,
n = 45), normal XOR group (33–120 pmol/h/mL, n = 160),
and high XOR group (>120 pmol/h/mL, n = 52).13

Additionally, to assess the clinical impact of the
co-morbidity of hyperuricaemia with high XOR activity on ad-
verse outcomes in patients with HFpEF, the patients were di-
vided into four groups according to the presence of high XOR
activity and/or hyperuricaemia. Hyperuricaemia was defined
as a serum UA levels of >7 mg/dL in both genders, according
to the Japanese guidelines for the management of
hyperuricaemia and gout.14

Endpoint and follow-up period

All patients were prospectively followed up for a median pe-
riod of 809 days (inter-quartile range, 458–1444 days). The
endpoints were major adverse cardiovascular events
(MACEs), namely, rehospitalization for HF, ACS, and cardiac
death (defined as death due to progressive HF, ACS, or sud-
den cardiac death).

Statistical analysis

The results are expressed as the mean ± standard deviation
(SD) for continuous variables and percentages for categorical
variables. Skewed values are presented as the median and
inter-quartile range. The correlation between plasma XOR ac-
tivity and UA level was analysed by single linear regression
analysis. The t-test and χ2 test were used to compare the
continuous and categorical variables, respectively. If the data
were not normally distributed, the Mann–Whitney U test was
employed. Differences among groups were analysed by anal-
ysis of variance. Cox’s proportional hazard analysis was used
to determine the independent predictors for MACEs. Signifi-
cant variables from the univariate analysis were then entered
into the multivariate analysis. Event-free survival curves were
constructed according to the Kaplan–Meier method and com-
pared using log-rank tests. Receiver operating characteristic
curves for the MACEs were constructed and used as a mea-
sure of the predictive accuracy of plasma XOR activity for
such events. In addition, the net reclassification index (NRI)
and integrated discrimination index (IDI) were calculated to
determine the quality of improvement of the corrected re-
classification following the addition of plasma XOR activity
to the baseline model, which was based on the age, NYHA
functional class, UA, estimated glomerular filtration rate
(eGFR), log brain natriuretic peptide (BNP), and loop diuretics
use variables. P values of <0.05 were considered statistically
significant. All statistical analyses were performed with a
standard software package (JMP Version 12, SAS Institute,
Cary, NC, USA; EZR, Saitama Medical Center, Jichi Medical
University, Shimotsuke, Japan).
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Results

Comparisons of clinical characteristics among the
xanthine oxidoreductase groups

The baseline characteristics of the patients according to the
XOR groups are shown in Table 1. Of the 257 patients eligible
for study inclusion, 45 had low XOR activity, 160 had normal
XOR activity, and 52 had high XOR activity. Patients in the
high XOR group were younger and had higher body mass in-
dex values than the patients in the other groups. Patients in
the low XOR group had a more severe NYHA functional class,
lower levels of eGFR and haemoglobin, and a higher use of
loop diuretics than the individuals in the other groups. There
were no significant differences among the three groups in
terms of gender, prevalence of hypertension, dyslipidaemia,
diabetes mellitus, and atrial fibrillation, and echocardio-
graphic parameters. The UA levels tended to be higher in
the high XOR group, but the difference did not reach statisti-
cal significance. However, as shown in Figure 1, there was a
weak positive correlation between the XOR activity and UA
levels (R = 0.147, P = 0.018). Because UA levels can be af-
fected by the reduction in renal function and the use of di-
uretics, we performed the analysis by excluding the patients
with chronic kidney disease Stages 3b–5 (eGFR < 45 mL/

min/1.73 m2) or high-dose (≥40 mg/day) loop diuretics use.
There was no significant correlation between the XOR activity
and UA levels (R = 0.129, P = 0.077; Supporting Information,
Figure S1).

Plasma xanthine oxidoreductase activity and
major adverse cardiovascular events in patients
with heart failure with preserved ejection
fraction

During the follow-up period, there were 74 MACEs, namely,
39 rehospitalizations for HF, 14 ACS, and 21 cardiac deaths.
As shown in Figure 2A, Kaplan–Meier analysis revealed that
the high XOR group was at the highest risk for MACEs,
whereas there was no difference in the occurrence of these
events between the low and normal XOR groups. Similarly,
Supporting Information, Figure S2A showed that the high
XOR group had higher risk for MACEs than the other groups,
even if excluding the patients with lower levels of eGFR or the
use of diuretics.

Both univariate and multivariate Cox proportional hazard
regression analyses were conducted to identify predictors of
MACEs in patients with HFpEF. The univariate analysis re-
vealed that the plasma XOR activity was significantly

Table 1 Comparison of clinical characteristics among three groups based on XOR activity

Variables Low XOR (n = 45) Normal XOR (n = 160) High XOR (n = 52) P value

Age (years) 78 ± 10 71 ± 11 69 ± 12 <0.001
Male, n (%) 21 (47) 93 (58) 28 (54) 0.385
BMI (kg/m2) 20.2 ± 3.4 22.0 ± 4.0 23.1 ± 4.4 0.015
Hypertension, n (%) 35 (78) 121 (76) 37 (71) 0.734
Dyslipidaemia, n (%) 14 (31) 33 (21) 14 (27) 0.296
Diabetes mellitus, n (%) 8 (18) 38 (24) 15 (29) 0.436
Atrial fibrillation, n (%) 26 (58) 86 (54) 35 (67) 0.222
NYHA III–IV, n (%) 24 (53) 49 (31) 19 (37) 0.022
Aetiology

IHD/VHD/DCM/Others 7/11/11/16 23/46/18/73 14/13/3/22 0.085
Echocardiographic data

LVEDD (mm) 50 ± 8 50 ± 9 49 ± 6 0.717
LVEF (%) 66 ± 9 64 ± 9 63 ± 9 0.402
LAD (mm) 43 ± 10 45 ± 9 47 ± 8 0.153

Blood examination
eGFR (mL/min/1.73 m2) 53.7 ± 24.3 69.1 ± 22.1 66.8 ± 22.1 <0.001
UA (mg/dL) 6.0 ± 2.4 6.1 ± 2.1 6.7 ± 2.1 0.161
Hb (g/dL) 10.9 ± 1.8 12.1 ± 2.0 12.8 ± 2.3 <0.001
BNP (pg/mL) 361 (190–635) 184 (86–484) 267 (111–698) 0.079

Medications
ACEIs and/or

ARBs, n (%)
29 (64) 108 (68) 34 (65) 0.912

Beta-blockers, n (%) 28 (62) 85 (53) 29 (56) 0.551
Loop diuretics, n (%) 33 (73) 78 (49) 27 (52) 0.011

XOR inhibitors, n (%) 8 (27) 11 (12) 3 (10) 0.127
Statins, n (%) 10 (22) 25 (16) 9 (17) 0.598

ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; BMI, body mass index; BNP, brain natriuretic pep-
tide; DCM, dilated cardiomyopathy; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; IHD, ischaemic heart disease; LAD, left
atrial diameter; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association;
UA, uric acid; VHD, valvular heart disease; XOR, xanthine oxidoreductase.
Data are expressed as mean ± standard deviation, n (%), or median (inter-quartile range).
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associated with MACEs in these patients [hazard ratio (HR),
1.320 per 1 SD increase; 95% confidence interval (CI),
1.134–1.498; P < 0.001]. Furthermore, the patients’ age,
NYHA functional class, eGFR, BNP, UA level, and use of loop
diuretics were also related to MACEs (Table 2). The multivar-
iate analysis showed that the plasma XOR activity was an in-
dependent risk factor for MACEs after adjustment for
confounding factors (HR, 1.253 per 1 SD increase; 95% CI,
1.079–1.454; P = 0.003; Table 2). By contrast, the UA levels
were not an independent predictor of MACEs in the patients
(HR, 1.105 per 1 SD increase; 95% CI, 0.864–1.413; P = 0.427).
In addition, the multivariate analysis revealed that the high
XOR group was at a higher risk for MACEs after adjustments
for age, NYHA functional class, eGFR, log BNP, UA level, and
loop diuretics use compared with the low XOR group (HR,
3.6; 95% CI, 1.683–8.120; P < 0.001) and normal XOR group
(HR, 3.3; 95% CI, 1.923–5.455; P < 0.001; Figure 2B). These

results were more prominent for the patients without renal
failure or diuretics use (Supporting Information, Figure S2B).

Impact of hyperuricaemia on clinical outcomes in
patients with heart failure with preserved
ejection fraction

To clarify the impact of the co-morbidity of hyperuricaemia
with high XOR activity on the clinical outcomes of patients
with HFpEF, the patients were divided into four groups ac-
cording to the absence (�) or presence (+) of high XOR activ-
ity and/or hyperuricaemia: (i) high XOR activity (�) and
hyperuricaemia (�), n = 146; (ii) high XOR activity (�) and
hyperuricaemia (+), n = 59; (iii) high XOR activity (+) and
hyperuricaemia (�), n = 31; and (iv) high XOR activity (+)
and hyperuricaemia (+), n = 21. As shown in Table 3, regard-
less of the high XOR activity status, patients with
hyperuricaemia had lower levels of eGFR and higher uses of
loop diuretics and XOR inhibitors than those without
hyperuricaemia. The group with the high XOR activity and
hyperuricaemia had the highest prevalence of atrial fibrilla-
tion and tended to have higher BNP levels than the other
groups. There were no significant differences among the four
groups in terms of the prevalence of hypertension, diabetes
mellitus, and dyslipidaemia, and NYHA functional class.

Kaplan–Meier analysis showed that the group with the
co-morbidity had the highest risk for MACEs (Figure 3A). As
shown in Figure 3B, patients with hyperuricaemia but without
high XOR activity tended to have a high risk for MACEs, albeit
the difference did not reach statistical significance. By con-
trast, the patients with high XOR activity had a higher risk
for MACEs than those without high XOR activity, regardless
of whether hyperuricaemia was present or not. These results
were similar, even if excluding the patients with lower levels
of eGFR or diuretics use (Supporting Information, Figure S3A
and S3B).

Fig 2 Impact of xanthine oxidoreductase (XOR) activity on clinical outcomes in heart failure with preserved ejection fraction. (A) Kaplan–Meier curves
for major adverse cardiovascular events based on XOR activity. (B) Multivariate Cox regression analysis for predicting major adverse cardiovascular
events in patients with heart failure with preserved ejection fraction.

Fig 1 Correlation between plasma xanthine oxidoreductase (XOR) activity
and serum uric acid.
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Table 3 Comparison of clinical characteristics among four groups according to the presence of high XOR activity and/or hyperuricaemia

Variables

High XOR (�) and
hyperuricaemia (�)

(n = 146)

High XOR (�) and
hyperuricaemia (+)

(n = 59)

High XOR (+) and
hyperuricaemia (�)

(n = 31)

High XOR (+) and
hyperuricaemia (+)

(n = 21) P value

Age (years) 72 ± 11 74 ± 10 69 ± 10 68 ± 14 0.088
Male, n (%) 74 (51) 40 (68) 14 (45) 14 (67) 0.058
BMI (kg/m2) 21.8 ± 4.1 21.3 ± 3.8 23.3 ± 4.6 22.9 ± 4.4 0.222
Hypertension, n (%) 112 (77) 44 (75) 19 (61) 18 (86) 0.212
Dyslipidaemia, n (%) 37 (25) 10 (17) 9 (29) 5 (24) 0.516
Diabetes mellitus, n (%) 37 (25) 9 (15) 8 (26) 7 (33) 0.278
Atrial fibrillation, n (%) 73 (50) 39 (66) 18 (58) 17 (81) 0.016
NYHA III–IV, n (%) 47 (32) 26 (44) 12 (39) 7 (33) 0.437
Aetiology

IHD/VHD/DCM/Others 21/36/26/63 9/21/3/26 8/8/2/13 6/5/1/9 0.127
Echocardiographic data

LVEDD (mm) 50 ± 9 50 ± 9 49 ± 6 49 ± 7 0.882
LVEF (%) 64 ± 9 66 ± 9 63 ± 10 64 ± 8 0.481
LAD (mm) 44 ± 9 45 ± 10 45 ± 6 49 ± 9 0.245

Blood examination
eGFR (mL/min/1.73
m2)

69.1 ± 22.0 57.3 ± 25.0 70.8 ± 20.7 61.0 ± 23.4 0.004

UA (mg/dL) 5.0 ± 1.2 8.6 ± 1.9 5.2 ± 1.0 8.9 ± 1.5 <0.001
Hb (g/dL) 12.0 ± 2.0 11.6 ± 2.1 12.5 ± 2.1 13.4 ± 2.5 0.005
BNP (pg/mL) 217 (80–477) 283 (105–769) 238 (73–1492) 579 (172–1766) 0.091

Medications
ACEIs and/or ARBs,
n (%)

99 (68) 38 (64) 17 (55) 17 (81) 0.240

Beta-blockers, n (%) 85 (58) 28 (47) 15 (48) 14 (67) 0.298
Loop diuretics, n (%) 70 (48) 41 (69) 12 (39) 15 (71) 0.004
XOR inhibitors, n (%) 5 (4) 16 (29) 1 (3) 4 (19) <0.001
Statins, n (%) 27 (18) 8 (14) 7 (23) 2 (10) 0.505

ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; BMI, body mass index; BNP, brain natriuretic pep-
tide; DCM, dilated cardiomyopathy; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; IHD, ischaemic heart disease; LAD, left
atrial diameter; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association;
UA, uric acid; VHD, valvular heart disease; XOR, xanthine oxidoreductase.
Data are expressed as mean ± standard deviation, n (%), or median (inter-quartile range).

Table 2 Univariate and multivariate Cox proportional hazard analyses of predicting major adverse cardiovascular events in patients with
heart failure with preserved ejection fraction

Variables

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Agea 1.273 1.002–1.651 0.049 1.084 0.842–1.395 0.532
Male gender 1.293 0.815–2.084 0.277
BMIa 0.989 0.738–1.313 0.941
Hypertension 0.917 0.554–1.585 0.746
Dyslipidaemia 0.962 0.543–1.616 0.887
Diabetes mellitus 1.335 0.780–2.196 0.282
Atrial fibrillation 1.165 0.734–1.879 0.519
NYHA (III/IV vs. II) 3.493 2.198–5.616 <0.001 2.382 1.386–4.138 0.002
eGFRa 0.740 0.571–0.952 0.019 1.022 0.757–1.378 0.888
Log BNPa 1.828 1.413–2.394 <0.001 1.317 0.958–1.809 0.090
Hba 0.876 0.702–1.101 0.253
UAa 1.360 1.099–1.657 0.005 1.105 0.864–1.413 0.427
XORa 1.320 1.134–1.498 <0.001 1.253 1.079–1.454 0.003
Loop diuretics use 2.110 1.313–3.468 0.002 1.159 0.684–2.003 0.586

BMI, body mass index; BNP, brain natriuretic peptide; CI, confidence interval; eGFR, estimated glomerular filtration rate; Hb, haemoglobin;
NYHA, New York Heart Association; UA, uric acid; XOR, xanthine oxidoreductase.
aPer 1 SD increase.
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Improvement of the prognostic value by the
addition of plasma xanthine oxidoreductase
activity to the baseline model

To investigate whether the model fit and discrimination were
improved by the addition of plasma XOR activity to the base-
line model, the improvements of the C index, NRI, and IDI
were evaluated. The baseline model takes the patients’ age,
NYHA functional class, UA level, eGFR, log BNP, and use of
loop diuretics into account. The addition of XOR activity to
the baseline model significantly improved the C index (0.710
vs. 0.758, P = 0.017; Table 4), as well as the NRI (0.499;
95% CI, 0.244–0.754; P < 0.001) and IDI (0.062; 95% CI,
0.024–0.100; P = 0.002) (Table 4).

Discussion

Main findings

The main findings of the present study were as follows: (i)
high XOR activity was an independent risk factor for MACEs
in patients with HFpEF, whereas low XOR activity was not as-
sociated with poor clinical outcomes; (ii) high XOR activity
was significantly associated with MACEs, regardless of

whether hyperuricaemia was present or not; and (iii) the pre-
diction model with XOR activity included improved the prog-
nostic value for patients with HFpEF.

Impact of xanthine oxidoreductase activity and
uric acid levels on clinical outcomes in heart
failure with preserved ejection fraction

Impaired LV relaxation and diastolic dysfunction are reported
to be involved in the genesis of symptoms in patients with
HFpEF.15,16 Previous studies have shown that endothelial dys-
function is related to the progression of LV diastolic
dysfunction.17–19 Coronary microvascular endothelial dys-
function is thought to play a key role in the pathophysiology
of HFpEF. Furthermore, systemic endothelial dysfunction con-
tributes to an increase in peripheral arterial stiffness and gen-
erates an earlier wave reflection, which can augment the
central blood pressure and lead to the development of
HFpEF.20

Xanthine oxidoreductase exists in two interconvertible
forms: xanthine dehydrogenase (XDH) and xanthine oxidase
(XO). Whereas XDH reacts preferentially with nicotinamide
adenine dinucleotide, XO consumes molecular oxygen and
thus generates ROS, such as the superoxide anion (O2

�).21 In
the inflammatory state, XDH is induced in endothelial cells

Table 4 Statistics for model fit and improvement with the addition of XOR activity on the prediction of major adverse cardiovascular
events

C index (P value) NRI (95% CI, P value) IDI (95% CI, P value)

Baseline model 0.710 Reference Reference
+ XOR activity 0.758 (P = 0.017) 0.499 (0.244–0.754, P < 0.001) 0.062 (0.024–0.100, P = 0.002)

IDI, integrated discrimination index; NRI, net reclassification index; CI, confidence interval; XOR, xanthine oxidoreductase.
Baseline model includes age, New York Heart Association functional class, log brain natriuretic pepti, estimated glomerular filtration rate,
uric acid, and loop diuretics use.

Fig 3 Impact of the co-morbidity of hyperuricaemia with high xanthine oxidoreductase (XOR) activity on clinical outcomes in heart failure with pre-
served ejection fraction. (A) Kaplan–Meier curves for major adverse cardiovascular events according to the absence or presence of high XOR activity
and/or hyperuricaemia. (B) Multivariate Cox regression analysis for predicting major adverse cardiovascular events in patients with heart failure with
preserved ejection fraction.
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and released to the circulation. The circulating XDH is
then rapidly converted to XO by either reversible sulfhydryl
oxidation or irreversible proteolytic modification.22

XO-derived O2
� can react with nitric oxide, producing

peroxynitrate (ONOO�), which is a strong oxidizing mediator
of endothelial cell injury.23 In addition, ONOO� has the po-
tential to convert XDH into XO, leading to a further increase
in ROS generation.24 We had previously demonstrated the as-
sociation between plasma XOR activity and coronary artery
spasm, which is thought to be related to endothelial
dysfunction.25 Furthermore, the plasma XOR activity was as-
sociated with the severity of coronary artery spasm, being in-
creased with a higher disease severity. Thus, XOR-derived
ROS might be one of the causes of endothelial dysfunction
and subsequent HFpEF development.

It has been reported that UA transporters are expressed in
both renal tubular cells and endothelial cells.8 Despite the
existing controversy over whether UA causes endothelial dys-
function, many previous studies have demonstrated that pa-
tients with hyperuricaemia also had dysfunction of the
endothelium.26–28 Furthermore, it has been demonstrated
that hyperuricaemia was associated with the incidence of
HF in patients with arterial hypertension and of MACEs in pa-
tients with HFpEF.9,29 However, the present study showed
that high XOR activity—but not hyperuricaemia—was an in-
dependent risk factor for MACEs in patients with HFpEF. Re-
markably, it was reported that UA levels are associated with
poor clinical outcomes in patients with HF without chronic
kidney disease, because hyperuricaemia represents increased
XOR activity.30 There is the possibility that the contribution of
UA to the clinical outcomes of HF partially reflects that of the
XOR activity. Considering these results, it can be presumed
that the XOR activity rather than UA contributes to the path-
ophysiology of HFpEF. By contrast, some previous studies re-
ported that UA is an inhibitor of XOR.31,32 Because UA is
known to have an antioxidative effect and be protective
against ROS, the contribution of UA to cardiovascular disease
is controversial.33

Clinical implications

Although XOR inhibitors have been reported to improve en-
dothelial function in patients with chronic HF,34,35 their po-
tential effects in patients with HFpEF have not been
elucidated. We had previously reported that both low and
high XOR activities were significantly associated with adverse
clinical outcomes in patients with chronic HF, including HFpEF
and HFrEF.13 However, in the present study, low XOR activity
was not associated with MACEs in patients with HFpEF.
Givertz et al.36 demonstrated that XOR inhibitors failed to im-
prove clinical outcomes in patients with symptomatic HF.
Those authors had enrolled patients who had LV ejection
fraction levels of ≤40% and serum UA levels of ≥9.5 mg/dL.

In addition, most of the patients had used a high dose of di-
uretics (median furosemide equivalent dose of 120 mg/day)
and had a co-morbidity of chronic kidney disease. As the
XOR activity was not evaluated in that study, patients with
low XOR activity in spite of a high UA levels might have been
included. There is a possibility that XOR inhibitors become
less effective or harmful to such patients.

Xanthine oxidoreductase inhibition has been demon-
strated to improve endothelial function by reducing ROS,
but not by lowering the UA level.35 Considering that high
(but not low) XOR activity was found to be associated with
MACEs in patients with HFpEF, XOR inhibitors could have
beneficial effects in improving clinical outcomes in HFpEF if
administered to patients with high XOR activity. Further in-
vestigations are needed to determine whether XOR inhibitors
are effective for the treatment of HFpEF.

Limitations

The current study had several limitations. First, as this study
involved only a single centre and had a relatively small sample
size, the generalizability of our results is limited. The propor-
tion of patients with normal XOR activity was larger than
those with abnormal XOR activities, and unbalanced sample
size of those groups can affect statistical analysis. Second, be-
cause we did not assess directly XOR activity directly in coro-
nary endothelial cells, we could not determine the direct
contribution of endothelial XOR to coronary endothelial dys-
function. Finally, because we did not measure the endothelial
function in the patients, we could not evaluate the associa-
tion between coronary endothelial function and the patho-
physiology of HFpEF.

Conclusions

This study revealed that elevated plasma XOR activity is
significantly associated with adverse clinical outcomes in
patients with HFpEF. Therefore, the levels of plasma XOR
activity can be used to predict cardiovascular events in
patients with this disease.

Elevated plasma XOR activity was significantly associated
with adverse clinical outcomes in patients with HFpEF.
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