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Abstract

Hek293 cells are the predominant hosts for transient expression of recombinant proteins and are used for stable expression
of proteins where post-translational modifications performed by CHO cells are inadequate. Nevertheless, there is little
information available on the key cellular features underpinning recombinant protein production in Hek293 cells. To improve
our understanding of recombinant protein production in Hek293 cells and identify targets for the engineering of an
improved host cell line, we have compared a stable, recombinant protein producing Hek293 cell line and its parental cell
line using a combination of transcriptomics, metabolomics and fluxomics. Producer cultures consumed less glucose than
non-producer cultures while achieving the same growth rate, despite the additional burden of recombinant protein
production. Surprisingly, there was no indication that producer cultures compensated for the reduction in glycolytic energy
by increasing the efficiency of glucose utilization or increasing glutamine consumption. In contrast, glutamine consumption
was lower and the majority of genes involved in oxidative phosphorylation were downregulated in producer cultures. We
observed an overall downregulation of a large number of genes associated with broad cellular functions (e.g., cell growth
and proliferation) in producer cultures, and therefore speculate that a broad adaptation of the cellular network freed up
resources for recombinant protein production while maintaining the same growth rate. Increased abundance of genes
associated with endoplasmic reticulum stress indicated a possible bottleneck at the point of protein folding and assembly.
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Introduction

Recombinant proteins such as hormones, growth factors,

cytokines and monoclonal antibodies play an important role in

modern medicine, being used to treat a variety of diseases (e.g.

diabetes, anaemia, hepatitis and cancer) [1]. Many of these

proteins require a range of post-translational modifications (e.g.,

glycosylation, phosphorylation) to ensure correct folding, activity,

safety and stability, and are therefore produced in mammalian

cells [2].

The most popular mammalian host cells for the production of

biopharmaceuticals are CHO cells due to their extensive

characterization and history of regulatory approvals. However,

CHO cells cannot perform all types of human glycosylation as they

lack certain sugar transferring enzymes such as a(2–6) sialyltrans-

ferase and a(1–3/4) fucosyltransferases [3]. In addition, CHO cells

are known to add potentially immunogenic glycan structures,

which can result in increased clearance of the drug and reduced

efficacy [4].

For these reasons, it is often advantageous and sometimes

essential to produce certain recombinant proteins in human cells

such as human fibrosarcoma (HT-1080), human retinal (PerC.6)

or human embryonic kidney 293 cells (Hek293). One such

example is Xigris (activated protein C), which is produced in

Hek293 cells as the post-transitional modifications performed by

CHO cells were found to be inadequate [4].

In addition to being a stable host for production of several

protein therapeutics, Hek293 is the predominant cell line for

transient expression of recombinant proteins [5,6]. Transient

transfection allows rapid production of recombinant proteins, but

product titres are generally lower than those achieved with stably

transfected cell lines [5]. If transient product titres were to be

increased to the same level as stable cell lines, it could be envisaged

that transient transfections may be a viable alternative to the time

and labour intensive generation of stable cell lines [7]. While

significant effort has been placed on optimising expression vectors,

transfection protocols and media composition [5,7–9], less effort

has been placed on understanding which cellular features are

required for high productivity in Hek293 cells and subsequent

engineering of an improved host cell.

Transient systems are difficult to study due to their nature, but

in many cases strategies known to enhance cell specific produc-

tivities of stable cell lines (e.g., cultivation at lower temperatures,

hyperosmolarity, addition of sodium butyrate, expression of cell

cycle regulators) were shown to increase transient product titres

[6,10–13]. Thus, it appears that factors influencing productivity in

stable and transient cell lines are similar.

To pave the way for engineering of Hek293 cells with improved

protein production capacity in a transient and stable setting, we

sought to gain a better understanding of the cellular mechanics

underlying high productivity in Hek293 cells. Therefore, we have

compared a stable Hek293 cell line producing a heavy chain

variable region fused to the Fc region of a human IgG (dAb-Fc),
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and its non-producing parental cell line using a range of omics

technologies. Triplicate bioreactor cultures were performed for

each cell line and samples for analysis of the transcriptome,

metabolome and fluxome were taken during exponential phase.

This multi-omics approach allowed extensive characterization of

producer and non-producer cultures and identified several

potential avenues for cellular engineering.

Materials and Methods

Cell Culture
Hek293F cells (Invitrogen, Carlsbad, CA) were cultivated in

Hek293 Freestyle Expression Medium (Invitrogen) supplemented

with 0.5 mM glutamine, 3 mM Glutamax, 100 mg/mL dextran

sulfate (Mw = 5000 Da) and 4 mL/L Pluronic-F12. Cells were

cultivated in vented shake flasks (Corning, NY, USA) in a

Multitron humidified shaking incubator (Infors HT, Basel,

Switzerland) set to 37uC, 5% CO2, and 170 rpm. Using a

liposome based transfection method, Hek293F cells were trans-

fected with a heavy chain variable region fused to the Fc region of

a human IgG (dAb-Fc) [14]. Cells expressing the recombinant

protein were selected using 400 mg/mL G418 (Invitrogen) [14].

High expressing cells were enriched using a FACS based surface

labelling method which was followed by clonal isolation in a semi-

solid medium as described by Song et al. [14]. The producer cell

line was cultivated in the same medium as the parental cell line

supplemented with 400 mg/mL G418.

Bioreactor Cultures
Parental and recombinant Hek293F cells were cultivated in

1.5 L of Freestyle 293 Expression Medium in a 3 L Applikon

bioreactor (Z611000220, Applikon Biotechnologies, The Nether-

lands). Stirrer speed was 150 rpm, temperature was maintained at

37uC, pH was controlled at 7.0 and pO2 at 50% air saturation.

Cell number and viability were determined using a CedeX cell

counter (Roche Innovatis AG, Bielefeld, Germany). Ammonia

concentrations were obtained using a Nova Bioprofiler (Nova

Biomedical, Waltham MA, USA). Glucose, lactate and extracel-

lular amino acid concentrations of filtered supernatant samples

(0.2 mm, Millipore, North Ryde, Australia) were measured by

HPLC as described in Dietmair et al. [15]. Samples for fluxomics

were taken at least four times daily. Duplicate samples for

transcriptomics and triplicate samples for metabolomics were

taken approximately 30, 43, 51 and 67 hours after inoculation of

the bioreactor (Figure 1). The oxygen uptake rate (OUR) was

determined using the dynamic method [16].

Transcriptomics Sample Preparation
Microarray samples were processed in compliance with

MIAME guidelines and the gene expression data has been

deposited in the Gene Expression Omnibus (GEO) database

(accession number GSE36094). Approximately 56106 cells were

removed from the bioreactor and centrifuged at 200 rcf for 2 min.

The supernatant was discarded and the cell pellet frozen in liquid

nitrogen and stored at 280uC. Total RNA was extracted using an

RNeasy Midi Kit (75144, Qiagen, Doncaster, Australia) according

to the manufacturer’s instructions including on-column digestion

of DNA (79254, Qiagen). The purified RNA was stored at 280uC
and one sample per time point and fermentation (n = 12 for each

cell line) was submitted to the Microarray Facility at the Institute

for Molecular Biology at The University of Queensland, Australia

for gene expression analysis. The quantity and purity of RNA was

determined using a NanoDrop spectrophotometer (Thermo

Scientific, Waltham, USA) and an Agilent Bioanalyser 2100

(Agilent Technologies, Santa Clara, USA). The RNA was

amplified and labelled using the Illumina TotalPrep RNA

Amplification kit (IL1791, Ambion/Applied Biosystems, Austen,

USA) according to the manufacturer’s instructions. Hybridisation

of labelled cRNA to Illumina HT12v4 chips (Illumina, San Diego,

USA), washing of the chips after hybridization and signal detection

were performed according to the manufacturer’s instructions.

Illumina’s GenomeStudio software was used to convert the

scanned images into text files for analysis.

Transcriptomics Data Analysis
The data from Genome studio was imported into GeneSpring

version 11.5.1 (Agilent), log2 transformed and quantile normalised

without baseline transformation. A filter was applied to remove

probes which were not expressed in 12/24 samples (the lower cut-

off of the detection p-value was set to .0.99). Significance Analysis

of Microarrays (SAM) version 3.11 was applied to identify

differentially expressed genes between producer and non-producer

cultures [17]. A false discovery rate (FDR) of 5.17% (delta

value = 0.7) was applied and all genes with q-values (representing

the FDR) less than 0.0517 were considered differentially expressed

[18]. The differentially expressed genes were analysed manually

and through the use of Ingenuity Pathway Analysis (IPA -

IngenuityH Systems, www.ingenuity.com). IPA canonical path-

ways and functional analysis identified the pathways and

molecular and cellular functions from the IPA library that were

most significant to the data set. Fisher’s exact test was used to

calculate a p-value determining the probability that the association

between the genes in the dataset and the canonical pathway/

biological function is explained by chance alone. A p-value ,0.05

was considered significant.

Metabolomics Sample Preparation
Approximately 10 mL of cell suspension (corresponding to

86106–256106 cells) was drawn from the bioreactor into a syringe

filled with 40 mL of ice cold 0.9% NaCl, transferred to a 50 mL

tube and centrifuged at 1000 rcf for 1 min at 0.5uC. The

supernatant was discarded and the cell pellet resuspended in

50 mL ice cold 0.9% NaCl for washing. After another centrifu-

gation step, the cell pellet was resuspended in 50% aqueous

acetonitrile (Labscan, Gliwice, Poland) and incubated for 10 min

at 0uC including several rounds of vortexing. A volume of 1 mL

extraction solution was used per 56106 cells [15]. The extraction

solution contained 50 nmol azidothymidine and 250 nmol norva-

line per sample which was used as internal standard for HPLC and

LC-MS/MS analysis. Metabolite extracts were centrifuged at

30000 rcf for 10 min, the supernatant was transferred to a new

50 ml tube, frozen on dry ice, freeze dried and stored at 280uC
until analysis. Prior to analysis, the lyophilized metabolites were

resuspended in MilliQ purified water (Millipore, Australia).

Metabolite Measurements
Nucleotides (NAD, NADP, AMP, GDP, ADP, ATP, CTP,

GTP, UTP), UDP-glucuronic acid (UDP-glcA) and amino acids

(Asp, Glu, Asn, Ser, Gln, His, Gly, Thr, Arg, Ala, Tyr, Val, Met,

Trp, Phe, Ile, Orn, Leu, Lys, Pro) were measured by HPLC as

described in Dietmair et al. [15]. TCA cycle (aconitate [ACO],

citrate [CIT], isocitrate [ISO], fumarate [FUM], succinate [SUC],

malate [MAL], a-ketoglutarate [KGA], oxaloacetate [OAA]) and

glycolytic (glucose-6-phophate [G6P], fructose-6-phophate [F6P],

fructose-1,6-diphosphate [F16DP], glucose-1-phophate [G1P],

glyceraldehy-3-phosphate [GA3P], dihydroxyacetone-phosphate

[DHAP], pyruvate [PYR], lactate [LAC], 3-phosphoglycerate/2-

phosphoglycerate [3PG/2PG], phosphoenolpyruvate [PEP]) and
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pentose phosphate pathway (PPP) intermediates (ribose-5-phos-

phate [R5P], ribulose-5-phosphate [RL5P], xylulose-5-phosphate

[X5P]) as well as UDP-glucose (UDP-glc) were measured by LC-

MS/MS as described below.

LC-MS/MS data acquisition was performed using a Dionex

UltiMate 3000 liquid chromatography system (Dionex, California,

USA) coupled to an ABSciex 4000 QTRAP mass spectrometer

(ABSciex, Concord, Canada). Chromatographic separation was

achieved on a Gemini-NX C18 15062.0 mm, 3 mm 110 Å

particle column (Phenomenex, Aschaffenburg, Germany) main-

tained at 55uC in the column oven. The mobile phase, adapted

from Luo et al. [19], was 7.5 mM aqueous tributylamine solution

adjusted to pH 4.95 with glacial acetic acid (eluent A) and

acetonitrile (eluent B). The gradient profile is displayed in Table 1.

The injection volume was 10 mL. Mobile phase at a flow rate of

0.3 ml/min was introduced directly into the mass spectrometer

with no split.

The mass spectrometer, equipped with a TurboV electrospray

ion source, was operated in negative ionisation mode. The turbo

ionspray voltage was set to 24500 V, and the nebuliser (GS1),

auxiliary (GS2), curtain (CUR) and collision (CAD) gases were 60,

60, 20 and medium (arbitrary units), respectively, being generated

from pressurized air in a N300DR nitrogen generator (Peak

Scientific, Massachusetts, USA). The auxiliary gas temperature

was maintained at 350uC. Entrance potential was fixed to 210 V

for all transitions. Declustering potential, collision energy and

collision cell exit potential were dependent upon previously

optimized settings for the individual analytes. To obtain adequate

selectivity and sensitivity, the mass spectrometer was set to unit

resolution and scheduled Multiple Reaction Monitoring mode

after determining an updated retention time of each analyte under

the chromatographic conditions described above. Sample acqui-

sition order was randomized and two quality control (QC) samples

were acquired alternately every 10 sample injections. QC1 was a

repeat injection of calibration level 3 (12.5 mM) and QC2 a pooled

sample of the entire sample set [20], thus providing assay and

sample specific means by which to monitor acquisition stability

and reproducibility.

Metabolomics Data Analysis
HPLC samples were normalised to internal standard (azidothy-

midine for nucleotides and norvaline for amino acids) and viable

cell density. Peak areas of metabolites detected by LC-MS/MS

were normalised to the median peak area of that metabolite. In

addition, LC-MS/MS samples were normalised to internal

standard (azidothymidine) and viable cell number. Normalised

HPLC and LC-MS/MS data were uploaded to SIMCA-P v12.0.1

(Umetrics AB, Sweden), mean centered and unit variance scaled.

This was followed by multivariate analysis using principal

component analysis (PCA) and orthogonal projection to latent

structures-discriminant analysis (OPLS-DA). Univariate analysis

(ANOVA) was performed using the R statistical software package

version 1.6–4 [21].

Figure 1. Triplicate growth curves of Hek293 producer and non-producer cell line in batch bioreactor cultures. Arrows indicate
sampling time points for metabolomics and transcriptomics.
doi:10.1371/journal.pone.0043394.g001

Table 1. Gradient profile of LC-MS/MS.

Time Eluent A (%)

0 100

8 100

20 80

30 73

31 0

33 0

34 100

50 100

doi:10.1371/journal.pone.0043394.t001
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Fluxomics
The metabolite consumption and production rates were

calculated as described in Quek et al. [22] and used for flux

variability analysis (FVA). The biomass composition was obtained

from literature values and can be found in Table S1. The cell dry

weight of the producer cells was determined in a separate

bioreactor culture. Cell suspensions corresponding to at least

36108 cells were removed at three times during exponential phase

and centrifuged at 200 rcf for 5 min. The cell pellets were

resuspended in PBS and combined to yield 36108 cells in 50 mL

PBS. The cell suspension was counted three times and centrifuged

at 200 rcf for 15 min. The supernatant was carefully removed, the

cell pellets frozen on dry ice and lyophilised. The cell dry weight

was obtained by subtracting the weight of the empty, pre-dried

50 mL tube from the weight of the same 50 mL tube containing

the dried cell pellet.

The metabolic model is a reduced version of the human genome

scale model [23]. The model describes 36 biomass drains (amino

acid, nucleotides and lipids), a product drain and 347 reactions

and transporters required for biosynthesis and energy metabolism

distributed across extracellular matrix, cytosol, mitochondria and

peroxisomes (Table S2). A total of 60 metabolic rates are measured

with two degrees of redundancy enabling gross measurement error

analysis and subsequent adjustment of measured rates into a

balanceable set for FVA [22]. The model contains one residual

degree of freedom representing two alternative pathways to

produce NADPH (the cytosolic malic enzyme or oxidative PPP);

of 324 calculated fluxes 42 are undetermined, but all are

constrained by FVA. For both determined and undetermined

fluxes, an approximate 95% confidence interval was calculated

using the adjusted rates plus/minus two times the estimated

standard errors. The metabolic models are stored in Systems

Biology Markup Language (SBML) format, and can be accessed

via MATLAB script files available from Prof. Lars K. Nielsen (lars.

nielsen@uq.edu.au).

Results

Growth Profiles and Nutrient Consumption and
Production Rates

The growth profiles of the protein producing HEK293 cell line

(producer) and its parental cell line (non-producer) are shown in

Figure 1. The exponential growth rates of the two cell lines were

the same (0.02860.001, p = 0.99, ANOVA) and the cell specific

productivity of the producer cell line was 13.660.1 pg (cell day)21.

The coefficients of variation (CV) for growth rates (,4% and

,7% for producer and non-producer cells respectively) and cell

specific productivity (for the producer cell line, ,1%) were small,

indicative of stable phenotypes and high reproducibility of the

bioreactor cultures. The same mean cell diameter of 15.560.3 mm

was observed for producer and non-producer (Welch two sample

t-test, p = 0.22) and the cell dry weight measured for the producer

was assumed representative for both.

Glucose consumption and lactate production in producer

cultures were 20% lower than in non-producer cultures (431638

versus 528662 mmol (gDW h)21 for glucose consumption and

543654 versus 695692 mmol (gDW h)21 for lactate production;

Table 2). The molar lactate to glucose yields were similar

(1.2660.17 and 1.3160.26 for the producer and non-producer

respectively) suggesting that glucose utilisation efficiency was not

improved in the producer cultures. The amino acid consumption

and production pattern was the same for both cell lines. Alanine

was the major product, followed by glutamate, glycine, ornithine

and proline (Table 2). All other amino acids were consumed.

Somewhat surprisingly, serine rather than glutamine was the

major non-essential amino acid substrate for the two cell lines.

This suggests that Hek293 cells have adapted their metabolism to

preferentially use serine, the highest concentrated amino acid in

the Freestyle293 medium we employed in this study. Although the

error of the glutamine uptake rate estimate was very large (due to

the presence of Glutamax, a dipeptide of alanine and glutamine),

results suggest that glutamine consumption was lower in the

producer cell line (Table 2). Essential amino acid uptake rates were

slightly but consistently higher in the producer cell line, consistent

with a 3% increase in protein biosynthesis through the recombi-

nant product.

Fluxomics
Gross measurement error analysis was performed to confirm

that the cell specific consumption and production rates (Table 2)

were consistent [22]. The calculated chi-square (x2) test scores

were 1.6 and 0.6 for the producer and non-producer data

respectively, which were well below the cut-off of 5.99 (x2(2)95%)

indicating absence of a gross measurement error. The adjusted

rates were then used to calculate intracellular metabolic fluxes for

producer and non-producer cultures (Figure 2).

Although the majority of flux ranges overlapped, a variety of

metabolic differences could be observed between producer and

non-producer cultures. As expected from their reduced glucose

consumption, producer cultures had a lower glycolytic flux

compared to non-producer cultures, indicated by the shift of the

glycolytic flux ranges to lower values (e.g., hexokinase [HK],

phosphofructokinase [PFK], pyruvate kinase [PK]) (Figure 2).

Similar to other Hek293 cells [24], the producer and non-

producer cultures converted the majority of pyruvate to lactate

(70% and 80% for the producer and non-producer respectively).

Non-producer cultures appeared to channel a larger percentage of

glucose through the pentose phosphate pathway (PPP) as indicated

by the higher glucose-6P-dehydrogenase (G6PDH) flux range in

the non-producer. The PPP provides ribose for nucleic acid

synthesis as well as NADPH, an important cofactor in a large

number of reactions (e.g., fatty acid and nucleotide synthesis). An

alternative source for NADPH is the cytoplasmic malic enzyme

(ME_c, converting malate to pyruvate), which appeared to be

preferred by the producer cell line (Figure 2).

One of the most interesting flux results was the presence of a

pyruvate carboxylase (PC) flux in producer but not in non-

producer cultures. PC catalyses the conversion of pyruvate to

oxaloacetate, representing an alternative route for pyruvate to

enter the TCA cycle. However, the majority of TCA cycle fluxes

in producer and non-producer cultures appeared to be similar

except for the flux through mitochondrial malate dehydrogenase

(MDH_m) (Figure 2). The large variability in MDH_m flux of

producer cultures is a consequence of the variability in PC flux. As

MDH_m and PC both produce mitochondrial oxaloactetate, the

presence of a PC flux increases the uncertainties associated with

MDH_m flux. Another difference between producer and non-

producer cultures was that non-producer cultures converted more

glutamine to glutamate and further to a-ketoglutarate, thereby

slightly increasing the flux through the lower part of the TCA cycle

(Figure 2).

One of the advantages of fluxomics is that it allows calculation

of the quantities of ATP produced and consumed in different

pathways (Figure 2). Non-producer cultures produced up to 30%

more ATP in glycolysis than producer cultures. Despite the

reduced quantities of ATP produced in glycolysis, producer

cultures achieved the same growth rates as non-producer cultures

in addition to producing a recombinant protein. Thus, the

A Multi-Omics Analysis of Hek293 Cells
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producer cultures either had to increase the amount of ATP

produced via oxidative phosphorylation, or reduce their overall

energy consumption (e.g., by reducing their maintenance energy).

While both scenarios are possible according to the calculated

fluxes (Figure 2), similar oxygen uptake rates (OUR) for producer

and non-producer cultures support the latter (Table 2).

Metabolomics
Samples for intracellular metabolite analysis were taken at four

time points during exponential phase in triplicate bioreactor

cultures resulting in 36 samples each for the two cell lines

(Figure 1). A total of 52 metabolites were measured by HPLC and

LC-MS/MS (see Materials and Methods and Table S3).

Independent principal component analysis (PCA) of non-producer

and producer data was performed to inspect the data (Figure 3A

and B). Three outliers, corresponding to producer samples taken at

time point 4 of fermentation 3, which were believed to be the

consequence of incorrect cell counts, were detected and removed

(Figure 3B). A clear time-dependent trend can be observed in both

scores plots (Figures 3A and 3B).

PCA of all samples resulted in two slightly separated clusters

corresponding to producer and non-producer samples (Figure 3C),

which was further delineated by OPLS-DA (Figure 3D). Metab-

olites that contributed most to the separation of producer and non-

producer cultures according to OPLS-DA, with a variable

importance/influence on projection (VIP) score of .1, are listed

in Table 3.

Almost half (8/19) of the metabolites identified using OPLS-DA

were nucleotides or nucleotide sugars. With the exception of AMP

and GDP, all were more abundant in non-producer than in

producer cultures (Table 3). Intracellular UDP-glcA and AMP

concentrations displayed the greatest differences between producer

and non-producer cultures. UDP-glcA concentrations were up to

61% lower while AMP concentrations were up 114% higher in

producer cultures. The adenylate energy charge (AEC; defined as

[ATP+ADP/2]/[AMP+ADP+ATP] [25]) during exponential

phase was slightly higher in non-producer cultures (0.9260.02

Table 2. Mean (n = 3) metabolic uptake and production rates of non-producer and producer cultures during exponential phase.

Non-producer Producer Significantly differentially expressed transporters1

Metabolite Rate ± SE Rate ± SE

Glucose* 2528663 2431638 GLUT10, GLUT11

Lactate* 695692 543654

Ylactate/glucose 1.360.2 1.360.2

NH4 1763 1762

OUR 2335629 2334655

Consumed amino acids

Gln 229617 26621

Asn 24.161.0 23.960.4

Ser 23766 23864 SLC1A4

Asp 26.361.6 27.961.1 SLC1A3

Essential amino acids

Arg 21663 21762 SLC7A6, SLC7A5, SLC3A2

His 23.260.5 23.460.3

Thr 28.461.6 28.960.9 SLC1A4

Tyr 24.660.7 24.860.4 SLC7A5, SLC3A2

Val 21463 21462

Met 24.961.1 25.060.6 SLC7A6

Trp 21.560.3 21.760.2 SLC7A5, SLC3A2

Phe 25.861.0 25.860.6 SLC7A5, SLC3A2

Ile 21363 21362

Leu 21964 22062 SLC7A6, SLC7A5, SLC3A2

Lys 21262 21261

Produced amino acids

Ala 11617 17624 SLC1A4

Glu 9.661.4 8.161.1 SLC1A3

Gly 6.261.1 6.961.1

Orn 9.061.5 7.561.5

Pro 3.860.4 3.960.7

Rates are shown in mmol (gDW h)21. Negative rates represent consumption and positive rates production of the corresponding metabolite.
1Differentially expressed transporters in producer and non-producer cultures according to Significance Analysis of Microarrays (SAM) using a false discovery rate of
5.17%. All amino acid transporters were upregulated in producer cultures. OUR = oxygen uptake rate, SE = standard error, Y = yield,
*indicates rates which were statistically significantly different (p,0.05, ANOVA) in producer and non-producer cultures.
doi:10.1371/journal.pone.0043394.t002
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Figure 2. Overlay of fluxomics and transcriptomics results. Intracellular fluxes were calculated using a flux balance approach based on the
maximization and minimization of ATP yield and are shown as solid bars with the 95% confidence interval, calculated from the adjusted rates plus/
minus two times the estimated standard error, shown as vertical lines. Red/green coloured diamonds indicate which transcripts were down2/
upregulated in producer cultures. Figure adapted from Ingenuity Pathway Analysis.
doi:10.1371/journal.pone.0043394.g002
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versus 0.9360.17 for producer and non-producer cultures

respectively).

Similar to the majority of nucleotides, the concentration of most

glycolytic and TCA cycle intermediates was slightly lower in

producer than in non-producer cultures. Except for F16DP,

however, these differences were not statistically significant

(p.0.05, ANOVA). This lack of significance may reflect, at least

in part, a high degree of variability in measurement data obtained

by LC-MS/MS (mean CV of 18% for LC-MS/MS versus a mean

CV of less than 10% for HPLC measurements). Although not

statistically significant, intracellular lactate concentrations were up

to 22% lower in producer cells, in which lactate production rates

were also lower (Table 2). F16DP concentrations were up to 71%

lower in producer cultures. These observations corroborate the

calculated flux data for which the glycolytic rate in non-producers

was lower than for producers (Figure 2).

Several amino acids (Gln, Arg, Pro, Trp, Val, Ile, Glu, Lys) were

identified to significantly contribute to the separation between

producer and non-producer cultures using OPLS-DA. The most

significant amino acid was Gln, whose concentration was up to

43% lower in producer than in non-producer cultures. This

observation may be related to the decreased Gln uptake rate of

producers (ca. 5 fold less than the rate for non-producers, Table 2).

Intracellular concentrations of Arg, Pro, Trp, Val, Ile, Glu and Lys

were also lower in producer than in non-producer cultures, but to

a lesser extent than Gln. Interestingly, intracellular Arg and Lys

concentrations in non-producer cultures remained relatively

constant during exponential phase, while decreasing in producer

cultures. The same trend was observed for intracellular Trp, Ile

and Val concentrations for time points 1–3 (Table 3). This suggests

increased consumption of Arg, Lys, Trp, Ile and Val in producer

cultures, which is in agreement with the higher uptake rates of

these amino acids.

Transcriptomics
To investigate differences in gene expression between producer

and non-producer cultures, we analysed transcript abundances in

both cell lines using an Illumina HT12 chip. Of the 47218 entities

present on the chip, 17836 probes were expressed in at least 50%

of the samples (12/24). Using an FDR of 5.17%, 2445 probes were

differentially regulated between producers and non-producers

(Significance Analysis of Microarray - SAM). Of these, 1428 were

comparatively down- and 1017 upregulated in the producer cell

line (Table S4). Only 72 and 12 probes changed more than 1.5

and 2 fold respectively, highlighting that the magnitude of

Figure 3. Multivariate analysis of intracellular metabolite concentrations. Principal component analysis (PCA) and orthogonal projection to
latent structures - discriminant analysis (OPLS-DA) was used to explore intracellular metabolite concentrations of producer and non-producer
cultures. (A) Score scatter plot of the first two principal components of non-producer samples. (B) Score scatter plot of the first two principal
components of producer samples. Arrows indicate outliers, believed to be a consequence of incorrect cell counts, which were removed. (C) 3D score
scatter plot of the first three principal components of producer (red) and non-producer (green) samples. (D) OPLS-DA score scatter plot of producer
(red) and non-producer samples (green).
doi:10.1371/journal.pone.0043394.g003
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significant differences between cultures is often small. By applying

a fold change (FC) cut-off one might miss relevant genes with small

changes in gene expression [26].

The list of differentially regulated probes was uploaded to IPA

for further interrogation, and more than 90% could be mapped to

the IPA knowledge base. In addition to IPA, visual inspection was

performed. The ten genes with the highest positive and negative

fold changes according to IPA are listed in Table 4. Only three of

these genes immediately appear to be related to protein

production, namely ribosomal protein L14 (RPL14), prefoldin

subunit 6 (PFDN6) and heat shock 70 kDa protein 6 (Hsp6), which

are involved in translation and folding. In contrast to our

expectations, however, two of these genes (PFDN6, RPL14) were

downregulated in producer cultures. PFDN6 predominantly acts

as chaperone for nascent actin and tubulin chains [27–29], and

hence may not be involved in the folding of the recombinant

protein. Notably, the majority of genes encoding actin, tubulin and

actin related proteins (e.g., ARPC2, Table 4) were downregulated

in producer cells. Two additional genes listed in Table 4 also

appear to be related to cytoskeletal organisation: Ras-related C3

botulinum toxin substrate 2 (RAC2) [30–33] and kelch-like 4

(KHLH4), an actin binding protein [34]. Together, these

observations are suggestive of altered cytoskeletal organisation in

producer compared to non-producer cells. However, the relevance

of these observations to recombinant protein production is

unclear.

The two most downregulated genes (Table 4) corresponded to

fatty acid binding protein 5 (FABP5) and related sequences

(FABP5L1). FABP5 is one of the nine members of the fatty acid

binding protein (FABP) family, which regulate lipid uptake,

secretion and intracellular transport [35]. Fatty acids fulfil a

variety of cellular functions (e.g., energy storage, signalling

molecules and transcription factors) but are poorly soluble in the

aqueous cytosol requiring FABPs to transport them to their

respective destinations [35]. Hence, differential expression of

FABPs may affect a variety of cellular functions complicating

analysis of their relevance to this study.

A number of biological functions and canonical pathways

were identified by IPA, for which their relevance to the present

study is unclear (e.g., germ cell-sertoli cell junction signalling,

gastrointestinal disease) and these are not discussed further but

can be found in Table S5. Figure 4 gives an overview of

relevant biological functions and metabolic pathways identified

using IPA (p,0.05, right-tailed Fisher’s exact test). Although no

outward difference in growth rate, viability or morphology

between producer and non-producer cultures were observed,

IPA identified the functional classes cell death, cellular growth

and proliferation, cell cycle and cell morphology as being

enriched in the list of differentially regulated genes. Notably,

approximately 65% of genes belonging to these functions were

downregulated in the producer cell line.

Functions and Pathways Related to Protein Production
IPA identified several biological functions and pathways

related to the production of recombinant proteins (e.g., gene

expression, protein folding, protein synthesis, aminoacyl-tRNA

biosynthesis, Figure 4). One of the most significant functions

was gene expression which contained mostly (81%) transcription

related genes. While an approximately equal number of

transcription related genes were up- and downregulated in

Table 3. Metabolites contributing most to the separation of producer and non-producer cultures according to orthogonal
projection to latent structures - discriminant analysis (OPLS-DA) and corresponding fold changes (FC) at time points 1–4.

Time point 1 Time point 2 Time point 3 Time point 4

Metabolite FC ± SE FC ± SE FC ± SE FC ± SE

UDP-GlcA 0.44±0.05 0.43±0.04 0.41±0.04 0.39±0.03

AMP 1.70±0.03 1.90±0.16 1.49±0.20 2.14±0.48

ATP 0.8760.06 0.81±0.04 0.81±0.03 0.82±0.05

F16DP 0.43±0.11 0.32±0.07 0.29±0.04 0.59±0.15

CTP 0.8760.06 0.85±0.05 0.84±0.02 0.81±0.04

Gln 0.79±0.05 0.69±0.06 0.64±0.08 0.57±0.10

GTP 0.86±0.06 0.82±0.05 0.86±0.04 0.86±0.06

Arg 0.9560.03 0.90±0.03 0.85±0.05 0.83±0.04

Pro 0.9160.06 0.67±0.05 0.78±0.04 0.84±0.07

ADP 0.9660.05 0.85±0.05 0.81±0.04 0.83±0.08

LAC 0.89±0.05 0.9160.06 0.86±0.05 0.78±0.09

UTP 0.9360.05 0.9060.06 0.87±0.03 0.79±0.05

Trp 0.90±0.03 0.88±0.04 0.85±0.05 0.9160.05

Val 0.9460.04 0.91±0.04 0.86±0.05 0.87±0.05

AEC 0.9960.01 0.99±0.00 1.0060.00 0.9960.01

Ile 0.9460.03 0.9360.04 0.88±0.05 0.9260.05

Glu 0.9460.05 0.8960.06 0.8360.08 0.8760.10

Lys 0.9860.04 0.94±0.03 0.9060.05 0.86±0.05

GDP 1.1660.09 1.18±0.07 1.0560.06 1.0960.11

Bold text indicates statistically significantly different metabolites (ANOVA, p,0.05). UDP-GlcA = UDP-glucuronic acid, F16DP = fructose-1,6-diphosphate, SE = standard
error, n = 9.
doi:10.1371/journal.pone.0043394.t003
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producer cultures according to IPA (111 versus 106), inspection

of the related canonical pathway purine metabolism revealed

that all differentially regulated genes encoding RNA polymer-

ases (POLR2C, POLR2H, POLR3D, POLRMT, POLR1E)

were downregulated. In addition, all genes encoding nucleoside

diphosphate kinases (NME1, NME2, NME4, NME6) converting

NDPs to NTPs (the building blocks of RNA) were also

downregulated in producers. Contrary to conventional wisdom,

these observations suggest an overall downregulation of tran-

scription in producer cultures.

While translation as such was not identified by IPA, 36% of

genes associated with protein synthesis in IPA encoded genes

related to translation. Among these were 13 genes encoding

translation elongation or initiation factors (EIF3G, EEF1A1,

EEF1AL7, LOC402251, LOC649150, EIF3J, EIF2B3, EIF4A2,

TSFM, EIF3C/EIF3CL, EIF4G2, EIF2C3, EIF4H), of which

only four were upregulated in the producer cell line. In addition,

the majority of genes encoding ribosomal proteins were downreg-

ulated in producer cultures, suggesting an overall downregulation

of translation. In contrast, the majority of genes involved in

aminoacyl-tRNA biosynthesis, such as cysteinyl-, lysyl, leucyl,

threonyl, tryptophanyl and tyrosyl-tRNA synthetases (CARS,

KARS, LARS2, TARS, WARS, YARS) were upregulated in

producer cultures (Figure 4).

Overall, an approximately equal number of genes associated

with the folding of recombinant proteins were up- and downreg-

ulated in the producer cell line suggesting that the protein folding

capacity was not substantially increased (Table 5). Although not

statistically significant at the 95% level (p = 0.07), the endoplasmic

reticulum (ER) stress pathway was also identified by IPA. In

contrast to most other pathways which predominantly contained

genes that were downregulated in producer cultures, this pathway

included four up- and only one downregulated gene (Table 5).

Caspase 9 (CASP9), heat shock 70 kDa protein 5 (BiP),

homocysteine-inducible, endoplasmic reticulum stress-inducible,

ubiquitin-like domain member 1 (HERPUD1) and X-box binding

protein 1 (XBP-1) were upregulated while endoplasmic reticulum

to nucleus signalling 1 (ERN1) was downregulated.

Differential Regulation of Metabolic Genes
In addition to production of a recombinant protein, producer

cultures were metabolically different. As such, it was not surprising

that IPA identified a range of metabolic pathways as differentially

regulated between producer and non-producer cultures (e.g.,

glycolysis, citrate cycle) (Figure 4B). The most significant pathway

was nicotinate and nicotinamide metabolism suggesting differences

in NADP and NAD usage between producer and non-producer

cultures as indicated by the differences in PPP and Me_c fluxes

calculated using FBA (Figure 2).

The second most significant pathway was glycolysis, with 14

differentially regulated enzymes/isoenzymes: acylphosphatase

(ACYP2), aldehyde dehydrogenase (ALDH1A2, ALDH1A3,

ALDH1B1, ALDH3A2), aldolase (ALDOA), glyceraldehyd-3P-

dehydrogenase (GAPDH), phosphoglycerate kinase 1 (PGK1),

phosphoglycerate mutase (PGAM1, PGAM4), enolase (ENO2)

and phosphoglucomutase (PGM1, PGM2, PGM5) (Table 6). With

exception of ACYP2 and ALDH1A3, transcripts for these

enzymes/isoenzymes were downregulated in producer cells

(Table 6).

In addition to glycolytic enzymes, a large number of genes

encoding TCA cycle enzymes/isoenzymes and proteins involved

in oxidative phosphorylation were differentially regulated in

producer cultures (Table 6). Examples include isocitrate dehydro-

genase (IDH1, IDH2, IDH3), succinate dehydrogenase (SDHA,

SDHC), malate dehydrogenase (MDH2), NADH dehydrogenase

(NDUFA10, NDUFB2, NDUFB9), ubiquinol cytochrome c

oxidoreductase (UQCRC2, UQCRH), cytochrome c oxidase

(COX8A) and several ATP synthases (ATP5C1, ATP5J2, ATP5L,

ATP5S, ATPAF1). With the exception of IDH2 and UQCRH, all

of these genes were downregulated in producer cultures (Table 6).

If transcript abundance is indicative of the magnitude of flux (e.g.,

in the absence of other regulatory mechanisms), downregulation of

these genes suggests that producer cultures had lower TCA cycle

and ATP synthase fluxes compared to non-producer cultures.

While this is possible according to the flux results, one cannot draw

a definite conclusion due to the large overlap of calculated TCA

cycle and ATP synthase fluxes between producer and non-

producer cultures (Figure 2).

Discussion

This study explored metabolic differences between an efficient

Hek293 producer line and the parent non-producer, in order to

guide future design of superior cell lines for stable and transient

recombinant protein production. While not as high as seen in

CHO production lines, a specific productivity of 13.660.1 pg (cell

day)21 is excellent for Hek293 cells, particularly considering that

the cells were not subjected to gene amplification. Importantly, no

outward phenotypic differences in growth, viability or morphology

were apparent between the producer and parent line (Figure 1).

Hereby, we avoid the confounding effects of reduced growth rate

and its broad cellular consequences, which may obscure changes

related to productivity [36,37].

Table 4. Most significantly regulated genes according to
Ingenuity Pathway analysis.

Gene ID Gene name
Fold
change

Downregulated in producer cultures

FABP5 Fatty acid binding protein 5 (psoriasis-associated) 6.31

FABP5L1 Fatty acid binding protein 5 pseudogene 1 5.03

FGGY FGGY carbohydrate kinase domain containing 4.39

BEX1 Brain expressed, X-linked 1 2.92

SDHC Succinate dehydrogenase complex, subunit C 2.74

PFDN6 Prefoldin subunit 6 2.64

RPL14 Ribosomal protein L14 2.63

FBXO22 F-box protein 22 2.46

ITM2C Integral membrane protein 2C 2.28

ARPC2 Actin related protein 2/3 complex, subunit 2 2.22

Upregulated in producer cultures

RETNLB Resistin like beta 65.5

PDZD2 PDZ domain containing 2 5.90

WDR72 WD repeat domain 72 5.38

ACHE Acetylcholinesterase 2.35

RYR1 Ryanodine receptor 1 (skeletal) 2.20

RAC2 Ras-related C3 botulinum toxin substrate 2 2.15

KLHL4 Homo sapiens kelch-like 4 (Drosophila) 1.82

RAI14 Retinoic acid induced 14 1.77

HSPA6 Heat shock 70 kDa protein 6 1.75

GOLPH3 Golgi phosphoprotein 3 (coat-protein) 1.66

doi:10.1371/journal.pone.0043394.t004
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Against this common phenotypic background, we identified a

number of differentially regulated genes associated with the

functional classes of cell growth and proliferation, cell cycle, cell

death, and cell morphology. While this may simply be reflective of

the inherent biological variability between a parental line and its

derivate, it may also reflect as yet unknown roles for these

functions related to protein production.

Alternatively, as the majority of these genes were downregulated

in the producer cell line, the overrepresentation of these functions

may reflect a mechanism whereby cells free up resources required

for the production of the recombinant protein, while maintaining

the same growth rate. It is interesting that although glucose

consumption and glycolytic ATP production in producer cultures

was lower (Table 2 and Figure 2), there is no metabolic evidence of

compensation (e.g., increased Gln or oxygen consumption,

increased efficiency of glucose utilisation) based on our measure-

ments. In contrast, many genes encoding TCA cycle enzymes and

proteins involved in oxidative phosphorylation were downregulat-

ed in producer cultures indicating lower ATP production via

oxidative phosphorylation in these cells (Table 6).

Investigation of Metabolic Differences between Producer
and Non-producer Cultures

Identification of the mechanisms underlying reduced glucose

uptake and lactate production is of great interest to the

pharmaceutical industry, as reduced lactate concentrations gener-

ally result in increased viable cell densities and higher product

titers [38–40]. In our study, producer cultures exhibited a 1.2 fold

reduction in glucose uptake and a 1.3 fold reduction in lactate

production rates compared to non-producer cultures.

Several studies have shown a positive correlation between the

mRNA abundance of the glucose transporter GLUT1 and glucose

uptake rate. For example, Flier et al. [41] observed that increased

glucose uptake of fibroblasts transfected with ras and src

oncogenes correlated with increased expression of GLUT1.

Similarly, Paredes et al. [42] showed that knockdown of the

glucose transporter GLUT1 decreased glucose uptake of hybrid-

oma cells by 45%. Therefore, we compared the expression levels

of GLUT1 and other glucose transporters in producer and non-

producer cultures. A total of eight glucose transporters were

expressed, namely GLUT1, GLUT3, GLUT6, GLUT8,

GLUT10, GLUT11 and GLUT12, of which GLUT1 and

GLUT3 had the highest expression levels. In contrast to our

expectations, the transcript levels of the majority of glucose

transporters were slightly higher in producer than in non-producer

cultures, despite their reduced glucose uptake rate. However, only

the expression of GLUT10 and GLUT11 was significantly higher

in producer cultures (SAM, q,5.17%). This suggests that the

reduced glucose uptake rate was not mediated by reduced

expression of glucose transporters.

The reduction in glucose consumption of producer cultures led

to an approximately 1.2 fold reduction in calculated glycolytic flux

(Figure 2). While none of the rate-limiting enzymes (HK, PFK,

PK) were differentially expressed between producer and non-

producer cultures, a large number of other glycolytic genes were

downregulated between 1.1 and 1.9 fold in producer cultures

(Table 6). This suggests that the reduction in glycolytic flux was -

Figure 4. Ingenuity Pathway analysis (IPA) of differentially expressed genes. Relevant and significant (p,0.05, right-tailed Fisher’s exact
test) (A) biological functions and (B) metabolic pathways identified using IPA. Red and blue colours represent the percentage of up- and
downregulated genes. The function metabolism summarises carbohydrate, lipid, amino acid, vitamin and mineral metabolism. The complete list of
functions and pathways can be found in Table S5.
doi:10.1371/journal.pone.0043394.g004
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at least in part - regulated at the transcript level. Thus, it appears

that lower glucose uptake may be a consequence of downstream

regulation, as opposed to regulation of transporter expression.

Alternatively, the reduced expression of glycolytic genes in

producer cultures may be a response to lower glycolytic

requirements.

While PFK was not differentially expressed, the concentration

of F16DP (a product of PFK), was significantly lower in producer

cultures (approximately half, p,0.05, ANOVA, Table 3). While

not statistically significant (p.0.05, ANOVA), F6P, the substrate

of PFK, was higher in producer than in non-producer cultures at

three of the four time points (Table S3), indicating that PFK

activity was regulated by other means. Regulation of PFK is

complex, and some factors influencing its activity are shown in

Figure 5. PFK is activated by AMP, ADP and fructose-2,6-

diphosphate (F26DP), and inhibited by ATP, citrate and fatty

acids (FA) [43]. As mentioned earlier, FA are poorly soluble in the

aqueous cytosol and their intracellular concentration depends on

the concentration of FABPs [44]. Interaction of FABPs with FA

can be inhibited by F16DP [44]. Several of our observations

(higher AMP, lower ATP and citrate concentrations) support

higher PFK activity in producer cultures while others (lower ADP

and F16DP concentrations, reduced expression of FABP5) support

lower PFK activity. Further observations such as an 1.1 fold higher

expression of 6-phosphofructo-2-kinase/fructose-2,6-biphospha-

tase 3 (PFKFB3), converting F6P to F26DP and vice versa, add

to the level of complexity. Consequently, the reason for lower

F16DP concentrations in producer cultures remains unclear.

Regulation of PFK is one of several examples linking glucose

metabolism to FAs and FABPs [44,45]. FABPs in general have

been heavily scrutinised for their role in cellular glucose uptake

and insulin resistance with respect to diabetes (reviewed in [35]).

Employing a cell culture setting, Kusudo et al. [46] observed that

FABP3 expression increased the glucose uptake rate of C2C12

mouse skeletal muscle cells. In the present case, we observed that

FABP5 expression was downregulated up to 6.3 fold in producer

Table 5. Differentially regulated genes involved in protein folding.

Gene ID Gene name Fold change q value (%)

Protein folding

Upregulated in producer cultures

HSPA6 Heat shock 70 kDa protein 6 1.75 0.00

DNAJC21 DnaJ (Hsp40) homolog, subfamily C, member 21 1.57 0.00

HSPA5 Heat shock 70 kDa protein 5 (Grp78, BiP) 1.24 0.00

PDIA4 Protein disulfide isomerase family A, member 4 1.16 2.48

PDIA6 Protein disulfide isomerase family A, member 6 1.15 2.48

HSPA1L Heat shock 70 kDa protein 1 pseudogene 1.15 1.09

HSP90AA1 Heat shock protein 90 kDa alpha, class A member 1 1.13 2.48

CANX Calnexin 1.11 2.48

FKBP1A FK506 binding protein 1A 1.11 1.09

Downregulated in producer cultures

DNAJC11 DnaJ (Hsp40) homolog, subfamily C, member 11 1.53 0.00

HSP 84 Similar to Heat shock protein HSP 90-beta 1.38 0.00

PDIA5 Protein disulfide isomerase family A, member 5 1.16 0.00

CALR Calreticulin 1.16 0.10

HSP90AB4P Heat shock protein 90 kDa alpha, class B member 4, pseudogene 1.16 2.48

HSP90AB1 Heat shock protein 90 kDa alpha, class B member 1 1.16 0.53

PPIA Peptidylprolyl isomerase A 1.14 2.48

HSPA2 Heat shock 70 kDa protein 2 1.14 0.53

PDIA3P Protein disulfide isomerase family A, member 3, pseudogene 1.13 2.48

ERP44 ER protein 44 1.12 2.48

ER stress

Upregulated in producer cultures

XBP1 X-box binding protein 1 1.28 0.00

HERPUD1 Homocysteine-inducible, ER stress-inducible, ubiquitin-like domain member 1 1.26 0.00

HSPA5 Heat shock 70 kDa protein 5 (Grp78, BiP) 1.24 0.00

CASP9 Caspase 9 1.12 1.09

Downregulated in producer cultures

ERN1 Endoplasmic reticulum to nucleus signalling 1 1.15 0.53

The genes listed in this table were identified using Ingenuity Pathway Analysis (IPA) and through visual inspection of the list of differentially expressed genes identified
using Significance Analysis for Microarrays (SAM, q ,5.17%). Genes involved in the folding of specific proteins (e.g., actin), and hence apparently unrelated to folding of
the recombinant protein, were removed.
doi:10.1371/journal.pone.0043394.t005
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cells (Table 4), and, while speculative, this may be associated with

the reduction in glucose uptake rate. Downregulation of FABP5

(and FABP4) was also observed in hybridoma cells with reduced

glucose uptake rates [38,47]. A 66 fold upregulation of resistin like

b (RETNLB) might also be related to the altered glucose

metabolism in producer cells (Table 4). RETNLB belongs to a

family of cysteine rich secreted proteins composed of resistin,

resistin like a and RETNLB [48]. Similar to FABPs, these proteins

(especially resistin) have been investigated for their role in insulin

resistance and diabetes [49–52]. Moon et al. [53] showed that the

expression of resistin in rat skeletal muscle cells resulted in a

reduction of their glucose uptake rates. In contrast to resistin, the

role of RETNLB in humans has hardly been investigated [54],

and its association with the reduced glucose uptake rate of

producer cultures is merely speculative.

In contrast to glucose uptake rate which did not positively

correlate with the expression level of glucose transporters, we

observed both increased uptake rates of many amino acids and

increased expression of several amino acid transporters (SLC1A4,

SLC1A3, SLC7A6, SLC7A5, SLC3A2) in producer cultures

(Table 1). Despite higher amino acid uptake, and downregulation

of valine leucine and isoleucine degradation pathways (Figure 4),

intracellular amino acid concentrations (with the exception of His,

Thr, Ser and Asp) were lower in producer cultures. This may

relate to higher amino acid utilisation for the purposes of

recombinant protein production. Similarly, increased demand of

Table 6. Differentially regulated metabolic genes involved in glycolysis, the citrate cycle and oxidative phosphorylation.

Gene ID Gene name Fold change q value (%)

Glycolysis/gluconeogenesis

ACYP2 Acylphosphatase 2, muscle type 1.19 0.10

ALDH1A2 Aldehyde dehydrogenase 1 family, member A2 21.57 0.00

ALDH1A3 Aldehyde dehydrogenase 1 family, member A3 1.15 1.09

ALDH1B1 Aldehyde dehydrogenase 1 family, member B1 21.15 0.15

ALDH3A2 Aldehyde dehydrogenase 3 family, member A2 21.15 1.09

ALDOA Aldolase A, fructose-bisphosphate 21.65 0.00

ENO2 Enolase 2 (gamma, neuronal) 21.84 0.00

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 21.16 0.10

PGAM1 Phosphoglycerate mutase 1 (brain) 21.15 0.53

PGAM4 Phosphoglycerate mutase family member 4 21.26 0.00

PGK1 Phosphoglycerate kinase 1 21.10 2.48

PGM1 Phosphoglucomutase 1 21.31 0.00

PGM2 Phosphoglucomutase 2 21.14 0.53

PGM5 Phosphoglucomutase 5 21.27 0.00

Citrate cycle

IDH1 Isocitrate dehydrogenase 1 (NADP+), soluble 21.15 0.15

IDH2 Isocitrate dehydrogenase 2 (NADP+), mitochondrial 1.17 1.09

IDH3B Isocitrate dehydrogenase 3 (NAD+) beta 21.12 0.53

MDH2 Malate dehydrogenase 2, NAD (mitochondrial) 21.24 0.00

PC Pyruvate carboxylase 21.15 0.15

SDHA Succinate dehydrogenase complex, subunit A 21.22 0.15

SDHC Succinate dehydrogenase complex, subunit C 22.74 0.00

Oxidative phosphorylation

ATP5C1 ATP synthase 21.16 0.53

ATP5J2 ATP synthase 21.09 2.48

ATP5L ATP synthase 21.12 2.48

ATP5S ATP synthase 21.19 0.10

ATPAF1 ATP synthase 21.14 0.10

COX8A Cytochrome c oxidase subunit VIIIA (ubiquitous) 21.12 1.09

NDUFA10 NADH dehydrogenase 1 alpha subcomplex 10 21.16 0.15

NDUFB2 NADH dehydrogenase 1 beta subcomplex 2 21.24 0.00

NDUFB9 NADH dehydrogenase 1 beta subcomplex 9 21.18 0.00

UQCRC2 Ubiquinol-cytochrome c reductase core protein II 21.22 2.48

UQCRH Ubiquinol-cytochrome c reductase hinge protein 22.74 0.53

Genes in this table were identified using Ingenuity Pathway analysis (IPA) and through visual inspection of the list of differentially expressed genes determined using
Significance Analysis for Microarrays (SAM, q,5.17%, bold text). A positive/negative fold change indicates up/downregulation in producer cultures.
doi:10.1371/journal.pone.0043394.t006
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cysteinyl-tRNA synthetase for the cysteine-rich recombinant

protein and RETNLB was reflected in increased mRNA

abundance.

Our flux analysis indicates that pyruvate carboxylase (PC) was

active in the producer but not in the non-producer cells (Figure 2).

Hek293 cells deliberately engineered to express yeast pyruvate

carboxylase 2 (PYC2) displayed metabolic changes similar to those

observed in producer cultures [40]. PYC2 expressing Hek293 cells

exhibited lower glucose and glutamine consumption, and a

reduced PPP flux (7% versus 28% of glucose uptake rates) than

parental cells [40]. Reduced glucose consumption and lactate

production has also been observed in CHO cells expressing

human PC [55] and BHK cells expressing yeast PC [56,57]. The

similarity suggests that increased PC activity might explain the

metabolic differences, though there are several caveats. Firstly, PC

has been overexpressed in the cytosol, while the native enzyme is

mitochondrial. Secondly, PC expression was slightly lower (1.15

fold) in producer than in non-producer cultures (Table 6) and

intracellular malate, pyruvate and oxaloacetate concentrations

were similar (Table S3). Thus, neither increased enzyme capacity

nor increased thermodynamic driving force can explain the

increased flux. It is possible, however, that a change in allosteric

regulation (PC is normally activated by acetyl CoA and inhibited

by aspartate) can have resulted in the increased activity and

downstream effects.

Characterising Protein Production
The production of a recombinant protein by a mammalian cell,

directly affects many cellular processes such as transcription,

translation and protein folding. Therefore it is not surprising that

many omics studies investigating cell lines with different produc-

tivities, have shown differential regulation of genes and proteins

involved in these functions [58–64]. Similarly, the functions gene

expression (containing mostly transcription related genes), post-

translational modification, protein folding and synthesis, were

overrepresented among differentially expressed genes in our

producer cell line (Figure 4). In contrast to our expectations

however, we did not observe an overall upregulation of these

processes. In fact, many genes related to transcription and

translation were downregulated in producer compared to non-

producer cultures (e.g., RNA polymerases, nucleoside diphosphate

kinases, translation initiation and elongation factors). Potentially,

this has a negative impact on recombinant protein production by

limiting the rate of transcription and/or translation. Alternatively,

the downregulation of these genes may be a consequence of

broader adaptive changes not specifically related to protein

production. For example, all genes encoding histones

(HIST2H2AA3, HIST2H2AC, HIST2H4A, HIST2H2AA4,

H2AFY2, H2AFY, HIST3H2A, HIST1H4C, H1F0, H1FX),

except for LOC644914, were upregulated in the producer cell

line, suggesting increased packing of DNA and therefore reduced

accessibility by transcriptional machinery.

Several omics studies have shown that genes and proteins

involved in protein folding were upregulated in high producers,

indicating that protein folding may pose a bottleneck in certain cell

lines [59–61,63,65]. While some of the genes/proteins identified in

these studies were also upregulated in our study (e.g., BiP, PDI,

Canx), overall, an approximately equal number of genes involved

in protein folding were up- and downregulated. We did however,

observe upregulation of several genes related to ER stress in

producer cultures, including XBP-1, BiP and HERPUD1

(Table 5). ER stress can be caused by the accumulation of

unfolded proteins, leading to activation of the unfolded protein

response (UPR) [66]. In its spliced form, XBP-1 is one of the key

regulators of the UPR, initiating the transcription of a range of

other UPR genes such as BiP, DNAJC21 and FKBP1A [67,68].

All of these genes were upregulated in producer cultures,

suggesting that the UPR was activated and that protein folding

capacity may limit recombinant protein production in this cell line.

Therefore, overexpression of genes involved in protein folding may

help to increase the productivity of producer cultures.

Conclusions
Hek293 cells are the predominant host for transient expression

of recombinant proteins and are also used as hosts for stable

expression of proteins where glycosylation is inadequate in other

cells. In contrast to CHO cells which have been extensively

studied, very few studies have investigated cellular features

required for recombinant protein production in Hek293 cells.

To shed light on the cellular changes associated with high

productivity in these cells, we compared a high producing Hek293

cell line and its parental cell line using transcriptomics,

metabolomics and fluxomics.

In many instances, a positive correlation between changes in

transcript abundance, fluxes and metabolite concentrations were

observed. Perhaps of greater interest are several instances where

discrepancies between transcript abundances and fluxes were

identified, and/or outcomes were contrary to expectations (e.g.,

increased expression of glucose transporter genes yet lower

glycolytic flux for producer cells). These instances are indicative

of alternative regulatory mechanisms which may warrant further

investigation.

Overall, we speculate that for the cell lines under investigation,

broad adaptation through many subtle changes results in a

rebalancing of metabolism and freeing up of metabolic resources

required for the production of recombinant protein, leading to a

possible bottleneck at the point of protein folding and assembly.

Our integrated omics approach to characterising cellular

phenotype identifies features and raises questions that single omics

techniques in isolation would have failed to identify. Thus, we

illustrate a platform for rational and insightful hypothesis

generation in investigating the complexities of cellular phenotype,

Figure 5. Regulation of phosphofructokinase (PFK). PFK converts
fructose-6-phosphate (F6P) to fructose-1,6-diphosphate (F16DP), can be
inhibited by ATP, citrate and fatty acids (FA) and activated by ADP, AMP
and fructose-2,6-diphosphate (F26DP). F26DP concentrations depend
on 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)
activity converting F6P to F26DP and vice versa. In addition, intracellular
FA concentrations depend on fatty acid binding proteins (FABP) which
mediate their uptake and intracellular transport. Red and green colours
indicate decreased/increased abundance of metabolites/mRNA in
producer cultures.
doi:10.1371/journal.pone.0043394.g005
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and developing a deeper understanding of the mechanisms of

recombinant protein production. The addition of further technol-

ogies such as proteomics and use of next-generation sequencing

technologies will undoubtedly enhance the power of this approach,

shedding further light on the subtleties of the cellular machine.

Supporting Information

Table S1 Biomass composition of Hek293 cells. Relative

percentages of individual metabolites were taken from the

literature and multiplied with the measured cell dry weight

(514 pg/cell). The relative percentages of total carbohydrates,

proteins, lipids, DNA and RNA were taken from Zupke and

Stephanopoulos [1] and Bonarius et al. [2]. The amino acid

composition of proteins was taken from Okayasu et al. [3] and

Sheik et al. [4]. The relative percentages of individual phospho-

lipids, dNTPs and NTP was taken from Sheik et al. [4]. The

relative percentages were slightly adjusted to yield 100%.

(DOCX)

Table S2 Metabolic model of Hek293 cells.
(DOCX)

Table S3 Mean intracellular metabolite concentrations
in producer and non-producer cultures at time points 1–
4. HPLC measurements are in fmol/cell. LC-MS/MS measure-

ments are relative concentrations based on normalized peak areas.

N = 9 except for time point 4 in producer cultures where n = 6.

SE = standard error.

(XLSX)

Table S4 List of differentially regulated genes identified
using Significance Analysis of Microarrays (SAM) using
a delta value of 0.7 and a false discovery rate (FDR) of
5.17. A positive fold change (red text) means that the

corresponding gene was more abundant in non-producer cultures.

A negative fold change (green text) means that the gene was more

abundant in producer cultures.

(XLSX)

Table S5 Complete list of biofunctions and canonical
pathways identified using Ingenuity pathway analysis
(IPA).

(XLSX)
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