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Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The
method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve
the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from
traffic accidents domain are used.They represent the number of persons with injuries in traffic accidents of Santiago, Chile.The data
were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is
compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary
Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT +MIMO-AR) and SWT in conjunction with
an Autoregressive Neural Network (SWT +MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy
was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting
models based on SWT.

1. Introduction

Time series forecasting has reached high significance in plan-
ning and management for government institutions, indus-
tries, and business. Unfortunately the forecasting implemen-
tations are limited due to the data complexity. Environmental
conditions, economy variables, risk situations, among others,
are originated in highly dynamic systems; consequently their
analysis becomes complex and inaccurate results have been
often obtained.

From the literature review, several linear and nonlinear
models have been proposed. One popular linear model is
Autoregressive Integrated Moving Average (ARIMA), which
was introduced by Box et al. [1] and widely applied to
nonstationary time series such as, electricity consumption
[2], rainfall [3], solar radiation [4], and tourists arrivals
[5]. Empirical results have shown varied accuracy levels
by testing different parameter configuration; therefore the
performance ofARIMA is dependent on an effective selection

of parameters. Even more ARIMAmodels are limited to deal
with constant variance processes and normally distributed
residuals which are rarely satisfied in real life signals.

On the other hand, the Artificial Neural Networks
(ANNs) are nonparametric models that have been imple-
mented for modeling nonstationary time series. The nonlin-
ear features of the ANNs sometimes explain the nonlinear
relationships among the explaining variables and observed
phenomena. By instance, Li and Shi (2010) applied three
typical ANN techniques for one-step ahead wind speed
forecasting by using different datasets of two representa-
tive north American sites [6], by implementation of Feed
Forward Back-Propagation (FFBP), Radial Basis Function
(RBF), and Adaptive Linear Element (ADALINE). After
multiple tests the FFBP model was considered the best
model for one site, while the RBF model was the best for
other sites; therefore the research concludes that it is not
recommended to employ only one type of ANN model in
wind speed forecasting. Other representative example is the
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prices variation range; Laboissiere et al. [7] modeled stock
prices of power distribution companies through an ANN
based on Levenberg-Marquardt (LM). Different Multilayer
Perceptron (MLP) topologies were evaluated iteratively with
opening and closing prices and other correlated variables as
input, different number of hidden neurons and one output
until finding the best configuration for short-term horizon.
In general, an ANN implementation implies taking some
decisions after several tests, such as, network topology, signal
propagation method, activation function, weights updating,
hidden levels, and numbers of nodes. Sometimes higher
accuracy can be reached by an ANN, but this leads a
computational complexity increasing [8, 9].

A novel solution is the hybrid models which are based
on the combination of techniques. Preprocessing methods
combined with conventional linear and nonlinear models are
implemented to improve the forecast. The Wavelet Decom-
position (WD) was originated in 1984 with the discovery
of Grossman and Morlet in the quantum physics context
[10]. The conjunction Wavelet Decomposition and artificial
intelligence can improve the efficiency of pure models in
many areas such as, hydrology [11, 12], transportation systems
[13], and public health [14].

In this work is proposed a new decomposition method
based on Multilevel Singular Value Decomposition (MSVD)
for extraction components of low and high frequency of a
nonstationary time series in order to improve the accuracy
of a linear and a nonlinear forecasting model. A Mul-
tiple Input and Multiple Output Autoregressive (MIMO-
AR) model is implemented based on MSVD. Three relevant
traffic accidents’ time series of Santiago, Chile, are used to
evaluate the forecast performance. The MSVD + MIMO-AR
joint model is validated through comparisons with respect
to the performance of Stationary Wavelet Decomposition
combined with MIMO-AR (SWT + MIMO-AR) and SWT
combined with an Autoregressive Neural Network based on
Levenberg-Marquardt (SWT + MIMO-ANN).

Related works about traffic accidents forecasting are
scarce; most applications make classification with multivari-
ate methods [15–18]. There have been found some forecast
applications related to transportation areas, such as, traveling
time [19], traffic flow parameters as volume, travel speeds and
occupancies [20, 21], the market demand after transportation
disruptions [22], and freight transportation demand [23, 24].

This paper is organized as follows. Section 2 describes
the proposed methodology based on MSVD + MIMO-AR.
Section 3 describes SWT + MIMO-AR and SWT + MIMO-
ANN. Section 4 presents the efficiency metrics. Section 5
specifies the study case. Section 6 shows the empirical
research results. Finally Section 7 concludes the paper.

2. Forecasting Methodology Based on
MSVD and MIMO-AR

The proposed forecasting methodology is described in two
stages; the first stage is presented byMultilevel Singular Value
Decomposition to decompose a time series into two compo-
nents of low and high frequency, whereas the second stage

Normalize time series 𝑥 = 𝑥./max(abs(𝑥))
Set the counter 𝑗 = 0, and signal to be decomposed 𝑎0 = 𝑥
while (𝑗 < 𝐽 )𝑗 = 𝑗 + 1

Embed the signal𝐻 =hankel(𝑎0, 2)
Decompose the matrix [𝑈, [𝜆1 𝜆2] , 𝑉] = svd(𝐻)
Compute elementary matrix 1:𝐻1 = 𝑈1𝜆1𝑉1
Compute elementary matrix 2:𝐻2 = 𝑈2𝜆2𝑉2
Extract the low frequency signal of level 𝑗,𝑎𝑗 = [𝐻1(1, 1 : 𝑒𝑛𝑑) 𝐻1(2, 𝑒𝑛𝑑)]
Extract the high frequency signal of level 𝑗,𝑑𝑗 = [𝐻2(1, 1 : 𝑒𝑛𝑑) 𝐻2(2, 𝑒𝑛𝑑)]
Update the decomposition signal 𝑎0 = 𝑎𝑗

end while
Get the low frequency component 𝑐𝐿 = 𝑎𝑗
Get the high frequency component 𝑐𝐻 = ∑𝑗𝑖=1 𝑑𝑖

Algorithm 1: Multilevel SVD algorithm.

performs the prediction through the MIMO-AR model. The
MIMO-AR inputs are the lagged values of the components
extracted, and the outputs are the prediction for multiple
horizon.

2.1. Multilevel Singular Value Decomposition. MSVD is a
method inspired in the pyramidal process implemented in
multiresolution analysis of Mallat Algorithm [25] which
was defined for wavelet representation. In this method is
proposed the multilevel decomposition of a Hankel matrix,
at difference of standard HSVD [26]. MSVD implements
iterative embedding and pyramidal decomposition with a
fixed window length 𝐿 = 2; therefore two components are
obtained at each decomposition level.

MSVD algorithm is summarized as the pseudocode
shown in Algorithm 1. The input algorithm is the observed
time series 𝑥 of length 𝑁, and at the end, two additive and
intrinsic components are obtained as outputs, 𝑐𝐿 and 𝑐𝐻,
which represent the Low Frequency and the High Frequency
Component, respectively, each one of length 𝑁. MSVD is
performed in three steps: embedding through aHankelmatrix
of 2 × (𝑁 − 1) dimension as (2), decomposition in orthogonal
matrices of eigenvectors 𝑈 and 𝑉 and singular values 𝜆1, 𝜆2,
and finally extraction from elementary matrices𝐻1 and𝐻2.

MSVD is processed iteratively until the optimum decom-
position level 𝐽, when the Singular SpectrumRateΔ𝑅 reaches
the asymptotic point. Equations (1a) and (1b) describe the
computation of Δ𝑅, which is based on the relative energy of
the singular values 𝑅𝑗 (for 𝑗 = 1, . . . , 𝑘 decomposition levels).

Δ𝑅𝑗 = 𝑅𝑗𝑅𝑗+1 , (1a)

𝑅𝑗 = 𝜆1𝜆1 + 𝜆2 , (1b)

𝐻 = (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑁−1𝑥2 𝑥2+1 ⋅ ⋅ ⋅ 𝑥𝑁 ) . (2)
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2.2. Multiple Input Multiple Output Autoregressive Prediction.
The AR model is implemented to forecast the time series
by using the MIMO strategy. MIMO is used for overcoming
the error accumulation problem that is observed in the
recursive strategy and the direct strategy and for preserving
the random relationships between predicted values [27].
MIMO-AR computes the output for the forecast horizon in a
single simulation with unique model, which returns a vector
rather than a scalar value as follows:

[𝑥 (𝑛 + 1) , 𝑥 (𝑛 + 2) , . . . , 𝑥 (𝑛 + 𝜏)]
= 𝑓 [𝑧 (𝑛) , 𝑧 (𝑛 − 1) , . . . , 𝑧 (𝑛 − 𝑃 + 1)] , (3)

where 𝜏 is the forecast horizon and 𝑥 is the matrix of outputs.
Each column will contain the prediction related to a specific
horizon.

The following equation defines MIMO in matrix form:

𝑥 = 𝛽𝑧𝑇, (4)

where 𝛽 is a 𝜏 × 2𝑃 matrix of linear coefficients and 𝑧𝑇
is the Autoregressive transposed matrix created from the
components 𝑐𝐿 and 𝑐𝐻 that were extracted by means of
MSVD. Matrix 𝑧 is 𝑁𝑡 × 2𝑃 dimension, where 𝑁𝑡 is the
number of samples. The matrix of coefficients 𝛽 is computed
with the Least Square Method (LSM) as below:

𝛽 = 𝑥 × 𝑧†, (5)

where 𝑧† is the Moore-Penrose pseudoinverse matrix of 𝑧.
3. Stationary Wavelet Transform Combined

with MIMO-AR and Stationary Wavelet
Transform Combined with MIMO-ANN

3.1. StationaryWavelet Transform. StationaryWavelet Trans-
form (SWT) is improved version of Discrete Wavelet Trans-
form. SWT is also known in the literature as Dyadic Wavelet
Transform, Maximal Overlap Transform, Undecimated Dis-
creteWavelet Transform, and RedundantWavelet Transform.
The implementation of SWT is defined in the algorithm of
Shensa [28]. SWT implements filtering but the downsam-
pling procedure is omitted and the filters are upsampled
[29, 30].

In SWT the length of the observed signal must be an
integer multiple of 2𝑗, where 𝑗 = 1, 2, . . . , 𝐽 is the scale
number.The signal is separated in approximation coefficients
and detail coefficients at different scales; this hierarchical
process is called multiresolution decomposition [25].

The observed signal 𝑎0 (which was named 𝑥 in previous
section) is decomposed in approximation and detail coef-
ficients through a bank of low pass filters (ℎ0, ℎ1, . . . , ℎ𝐽−1)
and a bank of high pass filter (𝑔0, 𝑔1, . . . , 𝑔𝐽−1) one to each
level as the scheme of Figure 1. Each level filter is upsampled
version of the previous one. The components obtained after
the decomposition are never decimated; therefore they have
the same length as the observed signal.

At first decomposition level the observed signal 𝑎0 is
convoluted with the first low pass filter ℎ0 to obtain the first
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g0

g1

g2
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d3

d1

h1
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Figure 1: Decomposition scheme of SWT with 𝐽 = 3.

approximation coefficients𝑎1 andwith the first high pass filter𝑔0 to obtain the first detail coefficients 𝑑1. The process is
defined as follows:

𝑎1 (𝑛) = ∑
𝑖

ℎ0 (𝑖) 𝑎0 (𝑛 − 𝑖) , (6a)

𝑑1 (𝑛) = ∑
𝑖

𝑔0 (𝑖) 𝑎0 (𝑛 − 𝑖) . (6b)

The process follows iteratively, for 𝑗 = 1, . . . , 𝐽 − 1 and it is
given as

𝑎𝑗+1 (𝑛) = ∑
𝑖

ℎ𝑗 (𝑖) 𝑎𝑗 (𝑛 − 𝑖) , (7a)

𝑑𝑗+1 (𝑛) = ∑
𝑖

𝑔𝑗 (𝑖) 𝑎𝑗 (𝑛 − 𝑖) . (7b)

Inverse Stationary Wavelet Transform (iSWT) performs the
reconstruction. The implementation of iSWT consists in
applying the operations that were performed in SWT but
in inverse order and based on equivalent filters of recon-
struction. SWT obtains subbands of frequency; the last
approximation coefficient reconstructed 𝑎𝐽 gives rise to the
component of low frequency 𝑐𝐿, whereas all reconstructed
detail coefficients 𝑑𝑗 are added to obtain the component of
high frequency 𝑐𝐻.
3.2. Forecast Based on Components Extracted by SWT. The
forecasting is implemented via both a linear and nonlinear
models to evaluate the performance of the decomposition
obtained through SWT.

The MIMO-AR model has the same structure that was
used in the previous section.Therefore the nonlinear forecast
based on an Artificial Neural Network is described here.

A sigmoid Multilayer Perceptron (MLP) of three layers
[31] is implemented.TheANN is denotedwith𝐴𝑁𝑁(𝑃,𝑄, ℎ).
The inputs are the 𝑃 lagged terms contained in the regressor
matrix 𝑧. The hidden layer has 𝑄 nodes and the output has ℎ
nodes, which are the forecast horizon.The prediction at each
forecast horizon 𝑥𝑛 + ℎ via the ANN is expressed with,

𝑥(𝑛+ℎ) = 𝑄∑
𝑗=1

𝑏𝑗ℎ𝑌𝑗, (8a)

𝑌𝑗 = 𝑓( 𝑃∑
𝑖=1

𝑤𝑖𝑗𝑧𝑖) , (8b)
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Table 1: Series of injured people in traffic accidents due to different causes.

Series Causes Incidence rate

I-G1

Unwise distance, inattention to traffic conditions, disrespect to red light,

60%
disrespect to pedestrian passing, disrespect to stop sign,

disrespect to giving way sign, pedestrian crossing the road suddenly,
drunk driver, disrespect for giving the right of way,

and unexpected change of track

I-G2

Overtaking without enough time or space, improper turns,

15%
driving under the influence of alcohol, backward driving,
driving in opposite direction, recklessness in pedestrian,
pedestrian outside the allowed crossing, improper speed,

alcohol in pedestrian, and passenger gets in or gets out of a moving vehicle
I-G3 Road deficiencies, mechanical failures, undetermined causes, and noncategorized causes 25%

where ℎ = 1, . . . , 𝜏, 𝑏𝑗ℎ is the weight of the connection
between 𝑗th hidden node and ℎth output, and𝑌𝑗 is 𝑗th hidden
level output, while𝑤𝑖𝑗 is theweight of the connection between𝑖th input node and 𝑗th hidden node, and 𝑧𝑖 represents 𝑖th
lagged vector.

The sigmoid transfer function is denoted with the follow-
ing:

𝑓 (𝑥) = 11 + 𝑒−𝑥 . (9)

Parameters 𝑏 and 𝑤 are updated with the application of
the learning algorithm, in this case, Levenberg-Marquardt
[32, 33].

4. Efficiency Metrics

The performance of the models MSVD +MIMO-AR, SWT +
MIMO-AR, and SWT +MIMO-ANN is evaluated with three
efficiency criteria. The normalized Root Mean Square Error
(nRMSE), the modified Nash-Suctliffe Efficiency (mNSE)
[34], and the modified Index of Agreement (mIA) [35].
MetricsmNSE andmIA at difference of nRMSE are not based
on square differences; in place they are based on the Sum
of Absolute Error (SAE) and the Sum of Absolute Deviation
(SAD); the formulas are shown below:

nRMSE = √(1/𝑁𝑡)∑𝑁𝑡𝑖=1 (𝑥𝑖 − 𝑥𝑖)2𝑥 (10)

SAE = 𝑁𝑡∑
𝑖=1

𝑥𝑖 − 𝑥𝑖 , (11a)

SAD = 𝑁𝑡∑
𝑖=1

𝑥𝑖 − 𝑥 , (11b)

where 𝑥𝑖 is 𝑖th observed value, 𝑥𝑖 is 𝑖th predicted value, 𝑥 is
the mean of all 𝑥𝑖, and𝑁𝑡 is the testing sample size.

Scores mNSE and mIA overcome the possible oversensi-
tivity to extreme values induced by metrics based on square

computation and increase the possible sensitivity for lower
values.

mNSE = [1 − SAE
SAD

] , (12)

mIA = [1 − SAE2SAD] , if SAE ≤ 2SAD, (13a)

mIA = [2SAD
SAE

− 1] , if SAE > 2SAD. (13b)

Metrics mNSE and mIA are monotonically and function-
ally related, but the use of 2SAD balances the number of
deviations evaluated within the numerator and within the
denominator of the factional part.

5. Case Study

The Chilean Police and the National Traffic Safety Commis-
sion (CONASET) are the official institutions that register
the data of traffic accidents in Chile [36]. The data are
continuously collected, and in this study they have been
sampled with a fixed interval of 7 days (one week). Three
discrete time series of injured people in traffic accidents in
Santiago from 2000:1 to 2014:12 due to different causes are
used. CONASET has defined one hundred causes of traffic
accidents; in this study case the series of persons with injuries
I-G1 and I-G2 group include 20 causes which are related to
improper behavior of drivers, passengers, and pedestrians,
with an incidence rate of 75%, whereas the series I-G3
groups include the remaining causes (not related to improper
behavior) with an incidence rate of 25%. Table 1 presents the
series of persons with injuries in traffic accidents and the
causes related to the incidents.

Figures 2(a), 3(a), and 4(a) show the observed time series,
whereas Figures 2(b), 3(b), and 4(b) show the Fourier Power
Spectrum (FPS) of I-G1, I-G2, and I-G3, respectively. High
data variability is observed during the analyzed period; by
instance I-G1 presents upward trend between weeks 1 and
280 which is followed by downward trend until week 348;
that behavior continues in the remaining observed period.
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Figure 2: (a) I-G1 and (b) FPS of I-G1. The thick solid line is the global wavelet spectrum for I-G1, while the dashed line is the red-noise
spectrum.
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Figure 3: (a) I-G2 and (b) FPS of I-G2. The thick solid line is the global wavelet spectrum for I-G1, while the dashed line is the red-noise
spectrum.
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Figure 4: (a) I-G3 and (b) FPS of I-G3. The thick solid line is the global wavelet spectrum for I-G1, while the dashed line is the red-noise
spectrum.

On the other hand, I-G2 presents downward trend from
week 232 until the end, and I-G3 presents upward trend
from week 491 until end. The FPS analysis shows the signal
spectrumand the red-noise spectrum; a signal spectrumpeak
is significative when its value is higher than the red-noise
spectrum [37]. Both series, I-G1 and I-G2, present the highest
peak at week 26 at 98% of confidence level, whereas I-G3
shows the highest peak at week 17 at 73% of confidence level.
The order of each AR model was selected with the number
of weeks for which the highest power spectrum was found;
consequently 𝑃 = 26 for I-G1 and I-G2, and 𝑃 = 17 for
I-G3.

6. Empirical Research Result

The empirical results obtained by the application of MSVD
+ MIMO-AR, SWT + MIMO-AR, and SWT + MIMO-ANN
are presented in this section in two stages decomposition and
prediction.

6.1. Decomposition Based onMSVD and SWT. MSVD imple-
ments an iterative process which finishes when Δ𝑅 reaches
the asymptotic value.TheSingular SpectrumRateΔ𝑅 for each
decomposition level 𝐽 is illustrated in Figure 5; the asymptotic
value is reached when Δ𝑅 ≈ 1, and it was observed in
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Figure 5: Decomposition levels versus Singular Spectrum Rate.
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Figure 6: I-G1, Low Frequency Component and High Frequency
Component via MSVD and SWT.

repetition 16. Therefore the iterative process finishes when
iteration 16 was performed; this condition is used with all-
time series.

SWT decomposition is implemented trough Daubechies
of order 2 (Db2) (due to the inaccurate results that were
obtained with the other types of wavelet functions, they are
not presented). Three decomposition levels (𝐽 = 3) were
selected according to the period fluctuation between 8 and
16 weeks.

Figures 6, 7, and 8 show the components of low frequency
and high frequency obtained with MSVD and SWT for I-G1,
I-G2, and I-G3, respectively. The 𝑐𝐿 components extracted by
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Figure 7: I-G2, Low Frequency Component and High Frequency
Component via MSVD and SWT.
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Figure 8: I-G3, Low Frequency Component and High Frequency
Component via MSVD and SWT.

both MSVD and SWT show long-memory periodicity fea-
tures, whereas the 𝑐𝐻 components show short-term periodic
fluctuations.

6.2. Prediction via MIMO-AR and MIMO-ANN Models.
The MIMO strategy is implemented to predict the number
of injured people in traffic accidents for multiple horizon
through the Autoregressive model and through an Artificial
Neural Network. For both linear and nonlinear models the
spectral analysis developed by means of FPS informs about
the order of the models; it was shown in Figures 2(b), 3(b),
and 4(b). The inputs are the 𝑃 lagged values of 𝑐𝐿 and the 𝑃
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Table 2: Forecasting results for I-G1.

h (week) nRMSE mNSE(%) mIA(%)
MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN

1 0.0021 0.34 0.22 99.9 98.0 98.8 99.9 99.0 99.4
2 0.0030 0.29 0.19 99.9 98.3 98.9 99.9 99.2 99.5
3 0.0007 0.44 0.29 99.9 97.6 98.4 99.9 98.8 99.2
4 0.0030 0.44 0.60 99.9 97.6 96.7 99.9 98.8 98.3
5 0.0003 0.56 1.49 99.9 96.8 91.7 99.9 98.4 95.8
6 0.0024 0.51 3.10 99.9 97.1 82.9 99.9 98.6 91.4
7 0.0041 0.63 5.19 99.9 96.5 71.7 99.9 98.3 85.8
8 0.0125 0.61 7.07 99.9 96.6 63.3 99.9 98.3 81.6
9 0.0366 5.6 — 99.8 67.8 — 99.9 83.9 —
10 0.0990 4.8 — 99.4 71.6 — 99.7 85.9 —
11 0.2512 6.5 — 98.5 64.2 — 99.3 82.1 —
12 0.6009 5.9 — 96.6 66.6 — 98.3 83.3 —
13 1.3685 10.13 — 92.2 43.7 — 96.1 71.8 —
14 2.9872 — — 83.3 — — 91.6 — —
Min 0.0003 0.29 0.19 83.3 43.7 63.3 91.6 71.8 81.6
Max 2.9872 10.1 7.07 99.9 98.3 98.9 99.9 99.2 99.5
Mean 1–8 0.003 0.48 2.3 99.9 97.3 87.7 99.9 98.7 93.9
Mean 1–13 0.1834 2.8 — 98.9 84.1 — 98.9 92.0 —
Mean 1–14 0.3837 — — 97.8 — — 98.9 — —

lagged values of 𝑐𝐻, and the outputs are the number of injured
people for the next 𝜏 weeks. The components 𝑐𝐿 and 𝑐𝐻 were
extracted previously via MSVD and SWT.

Before prediction, each data set of low and high frequency
has been divided into two subsets, training and testing.
The training subset (𝑁tr) involves 70% of the samples, and
consequently the testing subset (𝑁𝑡) involves the remaining30%.

The MIMO-ANN structure denoted with (𝑃,𝑄, ℎ) was
implemented with 𝑃 lagged values (set previously with the
FPS information), 𝑄 = log2(𝑁tr), where 𝑁tr is the training
subset size, and ℎ = 8 forecast horizon.

The prediction performance is evaluated with the effi-
ciencymetrics nRMSE,mNSE, andmIA, which are presented
in Tables 2, 3, and 4 for I-G1, I-G2, and I-G3, respectively.
The ANN results correspond to 500 epochs and 10 runs.
The results obtained through the nonlinear model SWT +
MIMO-ANN are inferior with respect to the linear models
MSVD + MIMO-AR and SWT + MIMO-AR; therefore the
rest of comparisons are performed between the linearmodels.
The SWT +MIMO-AR results for 14 weeks’ ahead prediction
of all-time series are not presented due to the poor results
that were obtained, as those results that were obtained with
SWT + MIMO-ANN for forecast horizon higher than 8
weeks.

From Table 2 and Figure 9, MSVD + MIMO-AR obtains
the best accuracy in the forecast of I-G1. A significative gain
was observed in each forecasting horizon of the model based
on MSVD with respect to the models based on SWT. The
mean gain for 1 to 13 weeks ofMSVD+MIMO-AR over SWT
+MIMO-AR is 17.7% in mNSE and 8.1% in mIA.

40

50

60

70

80

90

100

Sc
or

es
 (%

)

126 8 104 142
Horizon (weeks)

mNSE + SWT

mIA + SWT

mNSE + MSVD
mIA + MSVD

Figure 9: Multistep forecasting results, comparison for I-G1.

From Table 3 and Figure 10, MSVD +MIMO-AR obtains
the best accuracy in the forecasting of I-G2. A significative
gain ofMSVD+MIMO-ARwas observed in each forecasting
horizon with respect to the models based on SWT.Themean
gain for 1 to 13 weeks of MSVD + MIMO-AR over SWT +
MIMO-AR is 20.6% in mNSE and 9.3% in mIA.

From previous analysis that was made for I-G1 and I-
G2, from Table 4 and Figure 11, the I-G3 forecast based on
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Table 3: Forecasting results for I-G2.

h (week) nRMSE mNSE(%) mIA(%)
MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN

1 0.00048 0.62 0.91 99.9 97.9 97.1 99.9 98.9 98.5
2 0.00009 0.56 0.84 99.9 98.1 97.2 99.9 99.1 98.6
3 0.00132 0.85 1.64 99.9 97.2 94.4 99.9 98.6 97.2
4 0.00058 0.83 3.84 99.9 97.2 87.1 99.9 98.6 93.5
5 0.00105 1.12 8.68 99.9 96.3 71.4 99.9 98.2 85.7
6 0.00249 1.05 13.78 99.9 96.6 55.1 99.9 98.3 77.6
7 0.00761 1.22 14.67 99.9 95.9 47.2 99.9 97.9 73.6
8 0.02418 1.18 15.34 99.9 96.0 42.7 99.9 98.0 71.3
9 0.07071 10.4 — 99.8 65.6 — 99.9 82.8 —
10 0.19062 9.5 — 99.4 68.8 — 99.7 84.4 —
11 0.48291 12.5 — 98.5 58.6 — 99.2 79.3 —
12 1.15837 11.6 — 96.3 60.6 — 98.2 80.3 —
13 2.64161 19.6 — 91.6 36.4 — 95.8 68.2 —
14 5.77482 — — 81.9 — — 90.9 — —
Min 0.00009 0.56 0.84 81.9 36.4 42.7 90.9 68.2 71.3
Max 5.77482 19.6 15.3 99.9 98.1 97.2 99.9 99.1 98.6
Mean 1–8 0.004 0.93 7.5 99.9 96.9 74.0 99.9 98.5 87.0
Mean 1–13 0.35 5.5 — 98.9 81.9 — 99.4 90.9 —
Mean 1–14 0.74 — — 97.7 — — 98.8 — —

Table 4: Multistep MIMO forecasting results, nRMSE, mNSE, and mIA for I-G3.

h (week) nRMSE mNSE(%) mIA(%)
MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN MSVD + AR SWT + AR SWT + ANN

1 0.0001 0.48 0.46 99.9 97.7 97.6 99.9 98.9 98.8
2 0.0020 0.40 0.41 99.9 98.0 97.9 99.9 99.0 98.9
3 0.0005 0.57 0.52 99.9 97.2 97.3 99.9 98.6 98.6
4 0.0007 0.57 1.58 99.9 97.3 91.9 99.9 98.6 95.9
5 0.0004 0.72 3.76 99.9 96.5 81.4 99.9 98.3 90.7
6 0.0015 0.63 7.03 99.9 96.9 65.6 99.9 98.4 82.8
7 0.0052 0.82 9.54 99.9 96.1 53.2 99.9 98.0 76.6
8 0.0165 0.82 9.63 99.9 96.1 52.4 99.9 98.1 76.2
9 0.0482 7.83 — 99.8 62.5 — 99.9 81.3 —
10 0.1303 6.59 — 99.4 67.7 — 99.7 83.9 —
11 0.3293 8.44 — 98.4 59.6 — 99.2 79.8 —
12 0.7864 7.96 — 96.2 61.8 — 98.1 80.9 —
13 1.7868 13.04 — 91.4 35.0 — 95.7 67.5 —
14 3.8944 — — 81.4 — — 90.7 — —
Min 0.0001 0.56 0.41 81.4 35.0 52.4 90.7 67.5 76.2
Max 3.89 19.6 9.6 99.9 98.0 97.9 99.9 99.0 98.9
Mean 1–8 0.003 0.63 4.12 99.9 96.9 79.7 99.9 98.5 89.8
Mean 1–13 0.24 5.46 — 98.9 81.7 — 99.4 90.9 —
Mean 1–14 0.5 — — 97.6 — — 98.8 — —

MSVD+MIMO-AR is alsomore accurate than the prediction
obtained with the models based on SWT. The mean gain for
1 to 13 weeks of MSVD +MIMO-AR over SWT +MIMO-AR
is 20.9% in mNSE and 9.4% in mIA.

The I-G1 Prediction viaMSVD+MIMO-AR for 14 weeks’
ahead prediction is shown in Figures 12(a) and 12(b); from

figures good fit is observed between actual and estimated
values. Metrics computation gives nRMSE of 2.9%, mNSE of
83.3%, andmIAof 91.6%.Theprediction of the same series via
SWT+MIMO-AR for 13 weeks’ ahead prediction is shown in
Figure 13; lower accuracy is observed with nRMSE of 10.1%,
mNSE of 43.7%, and mIA of 71.8%.
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Figure 10: Multistep forecasting results, comparison for I-G2.
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Figure 11: Multistep forecasting results, comparison for I-G3.

The I-G2 Prediction viaMSVD+MIMO-AR for 14weeks’
ahead prediction is shown in Figures 14(a) and 14(b); from
figures good fit is observed with nRMSE of 5.8%, mNSE
of 81.9%, and mIA of 90.9%. The prediction of the same
series via SWT +MIMO-AR for 13 weeks’ ahead prediction is
shown in Figure 15, lower accuracy is observed with nRMSE
of 19.6%, mNSE of 36.4%, and mIA of 68.2%.

The I-G3 Prediction viaMSVD+MIMO-AR for 14weeks’
ahead prediction is shown in Figures 16(a) and 16(b); from
figures good fit is observed with nRMSE of 3.8%, mNSE
of 81.4%, and mIA of 90.7%. The prediction of the same
series via SWT +MIMO-AR for 13 weeks’ ahead prediction is
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Figure 12: I-G1 Prediction by MSVD + MIMO-AR. (a) Observed
versus predicted and (b) Linear Fit.
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Figure 13: I-G1 Prediction by SWT + MIMO-AR. (a) Observed
versus predicted and (b) Linear Fit.
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Figure 14: I-G2 Prediction by MSVD + MIMO-AR. (a) Observed
versus predicted and (b) Linear Fit.
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Figure 15: I-G2 Prediction by SWT + MIMO-AR. (a) Observed
versus predicted and (b) Linear Fit.
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Figure 16: I-G3 Prediction by MSVD + MIMO-AR. (a) Observed
versus predicted and (b) Linear Regression, fitted line.

shown in Figure 17, lower accuracy is observed with nRMSE
of 13.0%, mNSE of 35.0%, and mIA of 67.5%.

7. Conclusions

In this paper was presented a new decomposition method
for extracting components of low and high frequency of a
nonstationary time series. The method was called MSVD
due to the use of Multilevel Singular Value Decomposition
of a Hankel matrix. MSVD was evaluated for multistep
ahead forecasting based on the Autoregressive model and the
MIMO strategy.

The forecasting model MSVD + MIMO-AR was com-
pared with a linear and a nonlinear forecast model based on
the commonly decomposition technique Stationary Wavelet
Transform.The empirical application was developed through
three time series coming from traffic accidents domain. All
experiments have shown the superior accuracy of MSVD
+ MIMO-AR with respect to SWT + MIMO-AR and SWT
+ MIMO-ANN. MSVD + MIMO-AR in comparison with
the second best model SWT + MIMO-AR, achieving mean
mNSE-gain of 19.8% andmeanmIA-gain of 8.9% for 13weeks’
ahead forecasting of persons with injuries in traffic accidents
in Santiago, Chile. It was also observed that an ANN with
Levenberg-Marquardt based on SWT decays significantly
from 9 weeks’ ahead forecasting.

Furthermore, the implementation of MSVD presents
simplicity with respect to other techniques based on singular
values by the use of a fixed window length in the embedding
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Figure 17: I-G3 Prediction by SWT + MIMO-AR. (a) Observed
versus predicted and (b) Linear Regression, fitted line.

step, and although the algorithm is iterative, the stopping
condition is guaranteed by the convergence of the Singular
SpectrumRate parameter.MSVDalso presentsmore simplic-
ity with respect to SWT; this is because SWT requires taking
some decisions to select the wavelet mother function.

Future implementations will consider new application
areas to support planning and management tasks of public
and private institutions.
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