
Frontiers in Oncology | www.frontiersin.org

Edited by:
Simona Soverini,

University of Bologna, Italy

Reviewed by:
Ken Mills,

Queen’s University Belfast,
United Kingdom
Fabio Stagno,

University Hospital Polyclinic Vittorio
Emanuele, Italy

*Correspondence:
John F. Woolley

john.woolley@liverpool.ac.uk

Specialty section:
This article was submitted to
Hematologic Malignancies,

a section of the journal
Frontiers in Oncology

Received: 14 September 2021
Accepted: 13 October 2021
Published: 29 October 2021

Citation:
Healy FM, Dahal LN, Jones JRE,
Floisand Y and Woolley JF (2021)

Recent Progress in Interferon Therapy
for Myeloid Malignancies.
Front. Oncol. 11:769628.

doi: 10.3389/fonc.2021.769628

REVIEW
published: 29 October 2021

doi: 10.3389/fonc.2021.769628
Recent Progress in Interferon
Therapy for Myeloid Malignancies
Fiona M. Healy1, Lekh N. Dahal1, Jack R.E. Jones1, Yngvar Floisand2,3

and John F. Woolley1*

1 Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom, 2 Department of
Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom, 3 The Clatterbridge Cancer Centre
NHS Foundation Trust, Liverpool, United Kingdom

Myeloid malignancies are a heterogeneous group of clonal haematopoietic disorders,
caused by abnormalities in haematopoietic stem cells (HSCs) and myeloid progenitor cells
that originate in the bone marrow niche. Each of these disorders are unique and present
their own challenges with regards to treatment. Acute myeloid leukaemia (AML) is
considered the most aggressive myeloid malignancy, only potentially curable with
intensive cytotoxic chemotherapy with or without allogeneic haematopoietic stem cell
transplantation. In comparison, patients diagnosed with chronic myeloid leukaemia (CML)
and treated with tyrosine kinase inhibitors (TKIs) have a high rate of long-term survival.
However, drug resistance and relapse are major issues in both these diseases. A growing
body of evidence suggests that Interferons (IFNs) may be a useful therapy for myeloid
malignancies, particularly in circumstances where patients are resistant to existing front-line
therapies and have risk of relapse following haematopoietic stem cell transplant. IFNs are a
major class of cytokines which are known to play an integral role in the non-specific
immune response. IFN therapy has potential as a combination therapy in AML patients to
reduce the impact of minimal residual disease on relapse. Alongside this, IFNs can
potentially sensitize leukaemic cells to TKIs in resistant CML patients. There is evidence
also that IFNs have a therapeutic role in myeloproliferative neoplasms (MPNs) such as
polycythaemia vera (PV) and primary myelofibrosis (PMF), where they can restore
polyclonality in patients. Novel formulations have improved the clinical effectiveness of
IFNs. Low dose pegylated IFN formulations improve pharmacokinetics and improve patient
tolerance to therapies, thereby minimizing the risk of haematological toxicities. Herein, we
will discuss recent developments and the current understanding of the molecular and
clinical implications of Type I IFNs for the treatment of myeloid malignancies.
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CLONAL MALIGNANCIES IN
MYELOID LINEAGES

Myeloid malignancies, consisting of myeloproliferative
neoplasms (MPNs), myelodysplastic syndrome (MDS), and
acute myeloid leukaemia (AML), are a heterogeneous group of
clonal haematopoietic disorders caused by abnormalities in
HSCs and myeloid progenitor cells, originating in the bone
marrow niche (1, 2). Each myeloid malignancy is unique and
therefore presents different challenges with regards to treatment.
MPNs have been categorized by the WHO as: chronic myeloid
leukaemia (CML), polycythaemia vera (PV), primary
myelofibrosis(PMF) and essential thrombocythemia (ET) and
are characterized by the presence of the BCR-ABL gene, JAK2,
MPL or CALR mutations, excessive erythrocyte production,
fibrot ic bone marrow degenerat ion, and excess ive
megakaryocyte lineage proliferation, respectively (3). MDS is
characterized by abnormalities in normal haematopoiesis with
resulting progression to bone marrow failure and genetic
instability with potential to develop into AML (4) which is
often considered the most aggressive myeloid malignancy.
Older AML patients, those with poor-risk associated
karyotypes, or with an unfavourable mutational burden (e.g.
TP53 mutations) have a median survival as low as 4-6 months
(5–7). In comparison, patients who are diagnosed with CML and
treated with tyrosine kinase inhibitors (TKIs), such as imatinib,
have an overall long-term (8-year) survival rate as high as 93%
(8–10). This vast difference in survival between different
malignancies warrants a novel and innovative approach to the
treatment of certain myeloid malignancies.

There are currently a variety of therapies available for myeloid
malignancies, dependent on the disease in question. Most CML
patients will experience long term responses with tyrosine kinase
inhibitors (TKIs) targeting the BCR-ABL oncogene and can in
many cases be considered functionally cured of their disease (9,
11). PV is associated with blood hyperviscosity due to the
Abbreviations: ABL, Abelson proto-oncogene; AML, Acute Myeloid Leukaemia;
ara-C, Cytarabine; bFGF, basic fibroblast growth factor; BCR, Breakpoint cluster
region gene; cGAMP, 2’3’-Cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase;
CML, Chronic Myeloid Leukaemia; cMyc, cellular Myc protein; COX,
Cyclooxygenase; DNA, Deoxyribonucleic acid; DR5, Death receptor 5; ET,
Essential thrombocythaemia; GVHD, Graft versus host disease; GVL, Graft
versus leukaemia; HCT, Haematopoietic stem cell transplant; HSCs,
Haematopoietic stem cells; IFNAR1/2, Interferon-alpha/beta receptor 1/2; IFNs,
Interferons; IFN-a/b/g, Interferon alpha/beta/gamma; IRF3/9, Interferon
regulatory factor 3/9; ISGF3, Interferon-stimulated gene factor 3; ISGs,
Interferon-stimulated genes; ISREs, Interferon-stimulated response elements;
IkB, Inhibitor of kappa B kinase; JAK1/2, Janus Kinase 1/2; LSCs, Leukaemic
stem cells; MDS, Myelodysplastic syndrome; MMR, Molecular response rate;
MPNs, Myeloproliferative neoplasms; MRD, Measurable/minimal residual
disease; MSCs, Mesenchymal stromal cells; NF-kB, Nuclear factor-kappa B;
NSAIDs, Non-steroidal anti-inflammatory drugs; PAMPs, Pathogen-associated
molecular patterns; PMF, Primary myelofibrosis; PV, Polycythaemia Vera; Rig-G,
Retinoic acid-induced gene G; RUNX1, Runt-related transcription factor 1;
STAT1/2, Signal transducer and activator of transcription 1/2; STING,
Stimulator of interferon genes; TKIs, Tyrosine Kinase Inhibitors; TNF-a,
Tumour necrosis factor alpha; TRAIL, Tumour necrosis factor-related apoptosis
inducing ligand; TYK2, Tyrosine kinase 2; VEGF, vascular epidermal
growth factor.
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expansion of the erythrocyte mass, and therefore standard
therapy involves blood withdrawal to reduce mass as well as
treatment with hydroxyurea, or ruxolitinib (Janus activated
kinase 1/2 (JAK1/JAK2) inhibitor) as a second-line
chemotherapy option (12, 13). PMF can also be treated using
JAK2 inhibitors, however this is considered only a symptom
relieving measure – PMF is only potentially curable with an
allogeneic haematopoietic stem cell transplant (HCT) and is
associated with a substantial risk of treatment-related mortality
(14). Finally, MDS and AML can also be treated with high dose,
aplasia-inducing chemotherapy and consolidated with HCT.
However, relapse remains a problem and many factors such as
poor cytogenetic risk (15); monosomal karyotype (16);
measurable residual disease (MRD) positivity (17, 18); FLT3-
ITD and other mutations (19–21) can influence the risk of
relapse in AML patients after HCT.

A large portion of AML patients are elderly and are
considered unfit to undergo intensive chemotherapy (22).
Current treatment for these malignancies is therefore
unfavourable for many patients. Alternatively, hypomethylating
agents in combination with BCL2 inhibitors (23, 24) are
becoming an increasingly better option to reduce toxicity (25),
although a new treatment for MDS and AML is still
urgently required.

For decades, cytokines belonging to the Interferon (IFN)
family have been shown to play an integral role in co-
ordinating immune responses against viruses, intracellular
pathogens and tumour control (26). IFNs are divided into three
types: Type I (including IFN-a and IFN-b), Type II (IFN-g only)
and Type III (IFN-l). A summary of these subtypes and potential
therapeutics is described in Table 1 (27–29). Type I IFNs are
produced by most cells, following detection of pathogen-
associated molecular patterns (PAMPs), such as foreign or self-
nucleic acids (30). Interestingly, Type I IFNs differ in their
binding affinity to the same cell surface receptor (IFNAR1/
IFNAR2) and consequently trigger different antiviral,
antiproliferative, and immunomodulatory outcomes (31). It is
these antiproliferative and immunomodulatory outcomes which
highlight IFNs as a potential treatment for myeloid malignancies
(32). Herein we discuss to what extent IFNs can be used
therapeutically to manage myeloid malignancies.
TYPE I INTERFERON SIGNALING

Following binding of Type I IFNs to the IFNAR1/IFNAR2
receptor complex, the associated JAK1 and tyrosine kinase 2
(TYK2) activation causes the tyrosine phosphorylation of STAT1
(signal transducer and activator of transcription 1) and STAT2
(Figure 1). This ultimately results in the formation of an IFN-
stimulated gene factor 3 (ISGF3) complex which is translocated
to the nucleus. Here, it binds IFN-stimulated response elements
(ISREs), initiating transcription of IFN-stimulated genes (ISGs)
(33). These ISGs have a wide range of functions, and can be
involved in immune system regulation and cell death, amongst
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FIGURE 1 | Type I Interferon Signalling Pathways. Type I IFNs bind the IFNAR1/IFNAR2 receptors, causing heterodimerization and TYK2 and JAK1 activation,
initiating STAT1/STAT2 heterodimerization and phosphorylation. Following IRF-9-mediated translocation of this heterodimer to the nucleus, it binds interferon-
stimulated response elements (ISREs), resulting in transcription of interferon-stimulated genes (ISGs). Resulting proteins include death receptor ligands (including
TRAIL and Fas), which bind their respective receptors. Apoptosis is induced, either directly, or indirectly via NF-kb signalling. These pathways also synergize with
TNF-a pathway, increasing apoptosis. The STING pathway, initiated by detection of circulating tumour DNA, can mediate production of Type I IFNs or induce
apoptosis, through canonical and non-canonical pathways following TBK1 activation. This includes its role in positive feedback loops involving IRF7, further
increasing Type I IFN production.
TABLE 1 | Summary of the Canonical Functions of Type I Interferons and Therapeutic Potential.

Type Expressed in
humans?

Function/Key Processes Therapeutically
used?

Cancer
therapeutic?

IFN-a Yes Apoptosis, CD8+ T cell priming, antigen presentation, pro-inflammatory cytokine
production

Yes- IFN-a2a,
IFN- a2b
IFN- a14

IFN- a2a, IFN-
a2b

IFN-b Yes Anti-proliferative, anti-angiogenic, stimulation of immune response Yes Yes
IFN-d No Anti-proliferative effects No No
IFN-ϵ Yes TNF- a pathway activation, ROS generation No No
IFN-z
(Limitin)

No MHC class I expression, increases cytotoxic T lymphocyte activity, anti-proliferative
effects

No No

IFN-k Yes Increases IFN-b production No No
IFN-t No IL-6/IL-8 expression and secretion No No
IFN-w Yes MHC I molecule production, innate immune cytokine production, phagocytosis Yes - veterinary uses No
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other processes. ISGs are also involved in both positive and
negative feedback loops within the IFN signalling system, with
the potential to increase or decrease IFN signalling, depending
on cellular context such as mutational status (34).

IFN signaling results in the transcription and translation of
cell death-inducing ISGs, and it has been hypothesized that IFN-
a works by potentiating Tumour Necrosis Factor (TNF)-induced
apoptosis through suppression of nuclear factor-kb (NF-kb)
(35). Co-treatment of AML cell lines with TNF-a and IFN-a
increased apoptosis compared to IFN-a alone, indicating IFN-a
enhancement of TNF-a apoptosis via distinct and common
pathways (36). Increased IFN production has been shown to
inhibit activity of NF-kb through the NIK/TRAF2 pathway, yet,
this can be somewhat of a ‘double-edged sword’, with this
pathway also implicated in cellular protection against IFN-
mediated apoptosis (37). Furthermore, IFN-mediated NF-kb
inhibition leads to downregulation of cellular Myc (c-Myc) by
increasing IFIT3 (RIG-G) gene expression, promoting apoptosis
and inducing cell cycle arrest, via enhancement of CD95/Fas
expression, triggering increased cellular caspase 3 activity (38–
40). Indeed, IFN-a has been known to sensitize cells to TRAIL-
induced apoptosis, through activation of DR5 receptor-mediated
death signaling and subsequent suppression of TRAIL-mediated
NF-kb activation (41).

NF-kb is also responsible for the production of cytokines in
response to the detection of cytosolic DNA. Through the
stimulator of interferon genes (STING) pathway, activation of
interferon regulatory factor 3 (IRF-3) and NF-kb leads to
transcription of ISGs and cytokines. This includes IFN-a and
IFN-b, and STING activation ultimately promotes varying
mechanisms of cell death, including apoptosis (42–44). It can
therefore be argued that the STING pathway activation of NF-kb
forms an opposing mechanism, perhaps to maintain homeostasis
as well as desensitizing the body to further IFN stimulation (45).
This could also explain why some IFN therapies require frequent
administration of IFNs to maintain a therapeutic effect.
Nevertheless, the STING pathway presents itself as a promising
target to promote immunity in cancer, including the treatment of
AML (46).

It has been proposed that antiproliferative effects stimulated
by Type I IFN on cancerous cells can enhance the immune
response in mouse models of haematological malignancies (47),
through induction of cell cycle arrest. This is largely through an
increase in p21 activity, as well as CDK2 inhibition, though
perhaps to a lesser extent (48, 49). Type I IFN-mediated cell cycle
arrest in S phase appears to be regulated through IRF9 (48–50).
Increased levels of IRF9 have been attributed to increased TRAIL
activity, which itself is an ISG (50, 51).

Type I IFNs can also negatively regulate angiogenesis, thereby
reducing oxygen supply to malignant cells. This can be through
increased transcription of anti-angiogenic factors, including the
ISGs IRF7 and PML. Alternatively, Type I IFNs can reduce
production of pro-angiogenic factors, including basic fibroblast
growth factor (bFGF), a factor increased in myeloid leukaemia
(52, 53). Furthermore, it has been suggested that IFN therapy
could reduce levels of pro-angiogenic vascular epidermal growth
Frontiers in Oncology | www.frontiersin.org 4
factor (VEGF), which is a biomarker used for CML severity (54,
55). Again, this primarily occurs through IFN-mediated
reduction in VEGFA and HIF1a transcription, with lower
levels of VEGF mRNA detected in tumour samples following
Type I IFN therapy, as compared to diagnostic samples (52, 56).

Immunomodulatory effects of Type I IFNs can be mediated
through dendritic cells, with Type I IFNs driving activation and
maturation of dendritic cells (57). Following IFN-stimulated
dendritic cell maturation, there can be an increase in MHC
molecule production and antigen presentation to CD8+ T cells,
thereby promoting CD8+ T cell mediated responses, ultimately
leading to tumour destruction (58). Furthermore, IFN-
stimulated dendritic cell maturation also induces expression
of costimulatory ligands CD80 and CD86 (59–61). CD80 and
CD86 are needed for full T cell activation, through their
binding to CD28. Furthermore, increased CD80 expression
induces IRF-7 expression, thereby stimulating further Type I
IFN production, in somewhat of a positive feedback
mechanism. Such pathway can be mediated by TRADD,
TRAF3 and TANK activation, as well as IFN-b and IRF3 (31,
60, 62). Aside from these aforementioned signalling pathways,
IFN-a also increases production of pro-inflammatory
cytokines, including IL-1b, IFN-g and TNF-a (31, 63). As
previously stated, increased TNF-a contributes to increased
apoptosis seen in response to Type I IFN. Thus, it can
be deduced that, unsurprisingly, there is synergy between
the various IFN-stimulated pathways, converging in key
elements responsible for the apoptotic, anti-angiogenic,
immunomodulatory and antiproliferative responses.
DO IFNs REDUCE THE RATES OF
AML RELAPSE?

Treatment options for AML patients rely heavily on a
combination of anthracyclines (e.g. daunorubicin, idarubicin)
and the pyrimidine nucleoside cytarabine (64), which deliver an
unsatisfactory 5-year survival rate of <20% in older patients (65–
68). A goal of treating AML is obtaining a complete remission
and preferably eradicating MRD, which is defined as the
presence of residual leukaemic cells in bone marrow (BM) or
peripheral blood (PB) in patients who have achieved
morphologic complete remission (69). MRD positivity is
associated with increased relapse risk and shorter survival in
AML (70–73). One recent study found that measuring the
transcript levels of RUNX1/RUNX1T1 fusion gene in AML
patients with MRD (post-HCT) allowed for a significant
discrimination between patients that would continue remission
or enter relapse (74). Other studies have supported this finding
and argue that monitoring MRD using transcript levels of
RUNX1/RUNX1T1 fusion gene is favourable over the
measurement of other mutations including c-KIT mutations
for the risk stratification of AML patients with MRD (75). IFN
therapy could potentially target the leukaemic stem cells (LSCs)
at the root of AML development and relapse. It has been
October 2021 | Volume 11 | Article 769628

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Healy et al. Interferon Therapy for Myeloid Malignancies
demonstrated that IFN-a triggers cell cycle entry in dormant
HSCs (76). This raises the possibility that treating AML patients
with IFN could force quiescent LSCs to proliferate, and thus
amenable to standard chemotherapy. It has been shown that
MRD-directed IFN-a treatment was able to significantly
decrease the risk of cumulative incidence of relapse and
improve survival in MRD-positive AML patients post-HCT,
compared to MRD patients with no intervention (77, 78).
Indeed, a recent retrospective study examined the use of IFN
maintenance therapy following induction and consolidation
chemotherapy in favourable-risk AML patients. Of patients
who were MRD positive at baseline measurements, 78% of
those treated with IFN-a2b became MRD negative, after a
median time of 5.5 months. In contrast, only 27% of patients
not treated with IFN-a2b (monitored only) showed MRD
conversion from positive to negative. This corresponded to an
increase in relapse-free survival, with 87% IFN-a2b treated
patients relapse free after 4 years, compared to 56% in the
control group (79). An ongoing phase I/II trial has
demonstrated that pegylated IFN-a, when administered
prophylactically after myeloablative conditioning in an AML
cohort at high risk for relapse, did not significantly alter toxicity
or acute graft versus host disease (GVHD) risk and produced
relatively low rates of relapse suggesting a robust graft versus
leukaemia (GVL) response (80). Separately a recent trial has
explored the use of IFN-a2b therapy following MRD detection
post induction and consolidation chemotherapy. A significant
decrease in the number of patients with MRD in the IFN-a2b
treated group was reported after a median follow-up time of 5
months, compared to a significant increase in patients with MRD
detection in the trial arm that did not receive IFN after
chemotherapy (patients observed only) (81). Importantly,
event-free survival was also considerably higher in the IFN-
a2b treated patients. IFN therapies to prevent relapse in AML
potentially offer significant benefit to AML patients and this
warrants further study.
IFNs FOR TKI RESISTANT CML PATIENTS

TKIs including imatinib, nilotinib, dasatinib, bosutinib, and
most recently ponatinib, are the current preferred treatment
for CML patients, and have dramatically improved the outcome
of CML patients (82). Despite the success of TKIs, there is still a
possibility that some CML patients become resistant to front-line
treatment with imatinib, and to second generation TKIs (e.g.
nilotinib, dasatinib) through the BCR-ABL T315I mutation
wherein only third generation TKIs (e.g. ponatinib) are
efficacious. Even still, resistance to imatinib has been seen since
the earliest trials and has recently been shown for third-
generation TKIs (83, 84). IFN therapy for the treatment of
CML pre-dates TKI therapy, and is characterized by its ability
to induce haematologic remission and durable cytogenetic
response (85). Combination therapy of IFNs with cytarabine
for many CML patients showed promising results, however the
Frontiers in Oncology | www.frontiersin.org 5
advent of TKIs meant that IFN therapy was largely replaced (86).
The IRIS trial compared the use of imatinib or IFN-a plus
cytarabine. Whilst there was no significant difference in survival
after 18 months between either group, patients treated with IFN-
a and cytarabine showed a markedly poorer cytogenetic
response, coupled with a greater risk of disease progression,
compared to those who received imatinib alone. Indeed, many
patients who initially received IFN-a and cytarabine crossed over
to imatinib therapy (9, 87, 88). Response to imatinib continued
over 5 years, with a complete cytogenetic response seen in 69% of
all patients who received imatinib (and up to 96% in those still
taking imatinib after 5 years) (87). However, approximately 17%
patients did lose complete cytogenetic response over the follow-
up period (9).

This is in line with current understanding which suggests that
TKIs are not entirely curative as monotherapies in CML, as LSC
exposure to many TKIs fails to induce apoptosis in the most
primitive quiescent CML LSCs (89, 90). Combined therapy of
IFN-a with TKIs could address this issue by stimulating
cytotoxic T cells to target LSCs refractory to standard TKI
therapy. Initial studies comparing patients treated with
imatinib and IFNa, to those treated with imatinib alone,
showed that the combination therapy resulted in a higher rate
of complete cytogenetic remission at 6 months, and similar rates
at 4 years (91). Similarly, a trial of imatinib and IFN-a
combination therapy showed 75% of patients showed sustained
remission following imatinib discontinuation at 2.4 years (92).
However, other trials involving the combination of IFNs with
imatinib have shown mixed results, with no improvement in
cytogenetic response rates or progression-free survival and
increased adverse events (93, 94). For example, in extended (10
year) follow-up of the aforementioned IRIS trial, patients treated
with imatinib alone had similar overall and progression-free
survival than those treated with imatinib and IFN-a (95).

Whilst imatinib is considered a ‘game-changing’ drug for the
extremely high survival rate it is associated with, second
generation TKIs have shown further improvements in these
rates in certain cases (10). IFN-a combination therapy with
the second generation TKI dasatinib has also shown promising
results (96). Low dose pegylated IFN-a following dasatinib
treatment was well tolerated, and demonstrated rapid increased
response rates with major molecular response (MMR) rate of
89% after 18 months. Encouragingly pegylated IFN-a was well
tolerated in this study, and further investigation is warranted
with second generation TKIs. Earlier studies of combination
therapy comprising pegylated IFN-a formulations with imatinib,
had shown good clinical response (significantly higher MMR of
82% compared to 54% for imatinib monotherapy after 12
months), yet were associated with toxicity also in a majority of
patients (54). NiloPeg, a small 2011 phase II trial looking at the
use of nilotinib and IFN-a2a showed a good molecular response
in patients treated with this regimen (64% after 12 months),
although adverse effects were, again, a frequent occurrence (97).
The currently ongoing TIGER trial of nilotinib combination
therapy with pegylated IFN-a is attempting to address these
concerns, and will evaluate the feasibility of discontinuing drug
October 2021 | Volume 11 | Article 769628
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therapy in patients showing stable deep molecular response after
nilotinib versus IFN maintenance therapy (98).
TREATING MPNs WITH IFNs

The WHO classification system for MPNs includes seven
subcategories (3), but more commonly this refers to the JAK2
mutation-enriched diseases polycythaemia vera (PV), essential
thrombocythaemia (ET) and primary myelofibrosis (PMF). PV is
characterized by an elevated red blood cell mass (and potentially
overproduction of white blood cells and platelets). PV is also
associated with an increased risk for thromboembolic events,
leukaemic transformation, and/or myelofibrosis.

Type I IFN signalling can contribute to the pathology of
MPN, as well as being used as a therapeutic, as mentioned
previously. In PMF, levels of IFN-a , and associated
proinflammatory cytokines such as IL-1b, can be increased
compared to healthy bone marrow or plasma. This contributes
to the inflammatory phenotype associated with PMF (99). This
coincides with the effects of TET2mutations, which are common
in MPNs and are also associated with inflammation (100). In a
similar way, whilst myelodysplastic syndrome (MDS) has a vast
range of causes, increased pro-inflammatory signalling is
thought to be a key driver, again mediated by Type I IFNs.
Type I IFN-associated genes were found to be upregulated in
MDS patients’ bone marrow, including IRF-7 and ISG-15,
suggesting their involvement in MDS pathology (101).

Standard therapy for PV involves phlebotomy and
cytoreductive drugs (hydroxyurea, busulfan) but recently IFN-
a and JAK1/2 inhibitors have been examined as potential
treatments (102, 103). Although busulfan has been effective
over long periods (104), resistance to hydroxyurea is associated
with increased mortality and progression to more advanced
MPNs or secondary AML (13). IFN therapy is an accepted
alternative to hydroxyurea or busulfan in PV, and is
particularly useful for younger patients or those who are
pregnant (105, 106). In fact, IFN-a2 has been shown to induce
haematological responses in about 80% of PV patients while also
reducing splenomegaly, and relieving pruritus (107). A study of
patients treated with IFN-a compared to a control group showed
an MMR of 89%, with a stable circulating JAK2mutated allele (%
V617F) in the other 11% of patients (108).

Recent trial data have demonstrated that 76% of advanced PV
patients treated with IFN-a2a showed complete haematologic
response, while the complete molecular response rate was 19% at
42 months (109). Similarly, good efficacy for pegylated IFN-a in
hydroxyurea resistant patients was seen, with an overall response
rate of 60% at 12 months (110). Significantly this trial was based
on relatively broad inclusion criteria e.g., advanced age,
prolonged disease duration, and a high prevalence of
splenomegaly. However, 14% of patients discontinued therapy
due to adverse events. However, the PROUD-PV and
Continuation-PV trials revealed a need for prolonged IFN-a
therapy as a means of reaching both molecular response and
Frontiers in Oncology | www.frontiersin.org 6
complete haematological response. Whilst therapy with
ropeginterferon-alfa-2b (pegylated form of IFN-a2b) increased
the proportion of patients achieving complete haematological
response and improved disease burden after 36 months
compared to those patients treated with hydroxyurea (53%
versus 38%), this was not the case after shorter time periods
(46% versus 51% at 12 months). Thus, there is a need for
sustained treatment with IFN-a to achieve best response).
Importantly, the toxicity profile associated with prolonged
ropeginterferon-alfa-2b therapy was not significantly worse
than that of hydroxyurea (111).

Primary Myelofibrosis (PMF) can be classified into two
stages: pre-fibrotic (pre-PMF) and fibrotic PMF (overt-PMF)
diagnosed by bone marrow morphology, fibrosis grade and
clinical features including leukoerythroblastosis, anaemia and
splenomegaly (112). Aside from HCT, there are limited
treatment options for very high- and high-risk patients and 10-
year survival is estimated at <13%. The use of JAK2 inhibitors is
considered mostly palliative, and the treatment of clinical
features includes the use of androgens, hydroxyurea and
ruxolitinib (113). However, IFNs may provide a means of
increasing the survival of patients with PMF. Preliminary
results of a Phase II study using a combination therapy
between pegylated IFN-a and ruxolitinib on 50 MPN patients
(32 PV and 18 PMF patients), most of whom were resistant and/
or intolerant to IFN-a as a monotherapy, saw complete
haematologic responses in 44% and 58% of PV and PMF
patients respectively (114). Despite a 20% discontinuation rate
for this trial, there is clear indication that the inflammatory
mediated toxicity which often limits IFN-a was reduced by
ruxolitinib, known for its potent anti-inflammatory properties.
It is also reported that levels of the V617F allele declined
significantly in both groups. This supports previous findings
that monitoring the %V617F is a reliable marker for MPNs and
the detection of MRD.

Essential thrombocythaemia (ET) is a clonal MPN
characterized by excess production of platelets and mature
hyperlobulated megakaryocytes, with the presence of mutations
in JAK2, CALR, or MPL and the absence of BCR-ABL (3). Most
ET patients have a normal life expectancy, and the goals of
treatment are the prevention of thrombotic and bleeding
complications while minimizing the risk of progression, the
effective control of systemic symptoms, and the appropriate
management of complications and risk situations (105).
Treatment of ET typically involves combinations of aspirin,
ticlopidine, hydroxyurea and anagrelide to reduce platelet
number and manage clotting (115, 116). IFN therapy in ET is
also effective for reducing platelet numbers while also reducing
the risk of thrombotic complications (107, 117) but does not
appear to restore polyclonal haematopoiesis (118). Studies that
will directly compare pegylated IFN-a2a to hydroxyurea in ET
and PV are currently ongoing (110). Initial reports show an
overall response rate of 69% for pegylated IFN-a2a in ET
patients at 12 months, with acceptable safety profile (major
thrombotic events at 1 year was 1%, with no major
bleeding events).
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A recent study comprising patients with PV, PMF or ET
indicated IFN-a has a stronger effect on HSCs than mature blood
cells. Within this compartment, those with JAK2 V617F-mutated
HSCs responded better than those with other mutations, such as
CALR. This is thought to be a result of the JAK2 V617F
increasing the sensitivity of HSCs to IFN signalling, through
increased ISG activation (119). Whilst it has been widely
understood that IFN-a can reduce the HSC compartment
through cell cycle activation and subsequent HSC exhaustion,
recent findings suggest this is only the case in JAK2 V617F
mutated HSCs. In contrast, JAK2 wild-type HSCs generally
remain quiescent in the presence of IFN-a. This is consistent
with the ability of IFN-a to arrest the cell cycle in bulk tumor
cells (48). Current understanding suggests IFN-a-mediated
promotion of JAK2 V617F-mutated HSC cell cycle not only
exhausts the cells, but uses induces differentiation to the
erythroid lineage, making them susceptible to IFN-a-mediated
apoptosis (120). Nevertheless, the effects of IFN-a demonstrated
here may not be wholly specific to the V617F mutant, since stem
cell derived erythrocytes containing JAK2 with exon 12
mutations (also causing constitutive JAK2 activation, as seen in
PV) were also sensitive to IFN-a treatment (121).
CONCLUSIONS & FUTURE DIRECTIONS

Similar to symptoms experienced during normal IFN release in the
presence of a foreign pathogen, acute toxicity to IFN therapy usually
presents as flu-like symptoms including nausea, fatigue, and
myalgia (122). Most side effects associated with IFN therapy are
dose-dependent, and these can be mitigated by administering low
dose pegylated-IFNs in addition to managing inflammation with
NSAIDs. Acute toxicity is experienced by nearly all patients, while
sub-acute and chronic side effects have been reported in almost all
organ systems throughout the body. A 2018 study conducted byMo
et al. using IFN-a for the treatment for MRD in AML for example,
reported that all patients reported transient fevers and six patients
(14%) showed grade ≥3 toxicity, two of which were haematological
(77). A study of CML patients treated with low-dose pegylated IFN-
a reported that 20% and 25% of patients experienced grade 3-4
neutropenia and thrombocytopenia in the first 12 months
respectively (96). While some toxicity is still observed, pegylated
IFNs show increased patient tolerance, and modify the
immunological, pharmacokinetic and pharmacodynamic
properties of the drug to minimize off-target adverse effects and
increase efficacy (123). Pegylated IFN-a lengthens plasma half-life
and reduces sensitivity to proteolysis, allowing it to be administered
less frequently (122).

It is important that other adverse events in IFN therapy
including flu-like symptoms and myalgia are also controlled
using anti-inflammatory drugs. A common trend throughout the
studies discussed herein is a high percentage of patients who do
not complete IFN therapy because it is not well tolerated
alongside chemotherapy, which can be as high as 61% of
patients discontinuing treatment (54).
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Another confounding factor for IFN therapy is the variability
of the bone marrow niche between patients. IFN therapy relies
on the innate, non-specific immune system to induce an immune
response meaning it is not well tailored to one specific individual.
This may partially explain why the responsiveness to IFN
therapy in a small patient group varies greatly. To account for
this, larger studies such as the TIGER study (98) are vital to
better understand the causes for intolerance and resistance
to therapy.

There is also a considerable economic barrier for uptake of
IFN therapy. Analysis has shown that imatinib is a cost-effective
first line therapy versus IFN-a plus low-dose cytarabine for
newly diagnosed CML (124). If significant cohorts of patients
will ultimately discontinue IFN therapy in favour of TKIs, then
coupled with cost-based concerns, then IFNs become less
favourable drugs to develop.

It is apparent in AML that carefully targeted IFN therapy can
provide a significant improvement to patient outcome especially
in the management of MRD (27, 77, 78). The sensitization of
leukaemic cells in the bone marrow niche by IFNs to classic
chemotherapy agents will possibly improve the prospects of
many AML patients should the treatment become more widely
available (Figure 2), especially in patients post-HCT for the
eradication of MRD. This is an extremely important goal, as
multiple studies have shown the presence of MRD is associated
with increased relapse risk and shorter survival in both paediatric
and adult AML (71).

Similarly in CML, further development of IFN therapy
provides an opportunity alongside current standards.
Continuing focus on development of novel TKIs targeting
BCR-ABL has meant that IFN therapy has not advanced
greatly over the last decade for CML patients. There is
potential for IFN therapy as a combination therapy with TKIs
to sensitize cells and aid the action of the primary treatment. Just
as in the case of AML, targeting the LSC to overcome resistance
to TKIs is a fundamental goal and essential to achieving long-
term remissions.

In PV and PMF, where the side effects of IFNs are tolerated,
treatment using IFNs in combination with JAK2 inhibitors is
certainly a possibility for the prevention of disease progression to
other myeloid malignancies. As in AML, the use of IFNs for the
treatment of PV and PMF to control MRD post-HCT would be
beneficial for patients.

In conclusion, the benefits of using IFN therapy for the
treatment of myeloid malignancies warrants further research.
Despite intolerance seen in many small studies, IFNs are to be
considered as an alternative therapy to traditional chemotherapy
regimens or in combination with existing regimens for the
sensitization of leukaemic cells to treatment and the reduction
of MRD. It is important that other formulations of IFNs are
developed in addition to pegylation, as this will determine
whether pharmaceutical companies recognize this therapy as a
reliable candidate for future treatment – the findings of large,
ongoing Phase III trials will become a critical turning point. In
short, the re-emergence of IFN therapy does indeed provide new
October 2021 | Volume 11 | Article 769628
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FIGURE 2 | Management of Clonality and MRD in AML/CML with IFN therapy. AML and CML are clonal diseases, presenting at diagnosis with a m
mutations as triangles within cells) which develop due to mutations in the haematopoietic stem and progenitor pool generating the LSC. Initial thera
patients with a first-generation tyrosine kinase inhibitor (TKI) against the BCR-ABL oncogene (pink triangle), such as imatinib, will reduce the bulk of
is not uncommon for resistant clones to persist that are refractory to this treatment. Later generation TKIs (e.g. nilotinib, dasatanib, ponatinib) may e
green circle) drive resistance to novel TKIs. Similarly, initial ‘7+3’ therapy in AML (7 day treatment with the pyrimidine analogue cytarabine, in conjun
days) and HMA-therapy (hypomethylating agent) in MDS will eradicate the bulk of leukaemic blasts (such as those containing initiating mutations; ye
therapies (including those with signalling mutations; blue and orange circles) will drive relapse in MDS/AML patients, as well as transformation from
in myeloid malignancies is critical to preventing relapse. Therapies based on IFNs could target the clones resistant to front-line therapies and deliver
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hope for leukaemia patients, more specifically in the treatment
of MRD.
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