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Cooperators forgo their own interests to benefit others. This reduces their

fitness and thus cooperators are not likely to spread based on natural selec-

tion. Nonetheless, cooperation is widespread on every level of biological

organization ranging from bacterial communities to human society. Math-

ematical models can help to explain under which circumstances cooperation

evolves. Evolutionary game theory is a powerful mathematical tool to depict

the interactions between cooperators and defectors. Classical models typically

involve either pairwise interactions between individuals or a linear superposi-

tion of these interactions. For interactions within groups, however, synergetic

effects may arise: their outcome is not just the sum of its parts. This is because

the payoffs via a single group interaction can be different from the sum of any

collection of two-player interactions. Assuming that all interactions start from

pairs, how can such synergetic multiplayer games emerge from simpler pair-

wise interactions? Here, we present a mathematical model that captures the

transition from pairwise interactions to synergetic multiplayer ones. We

assume that different social groups have different breaking rates. We show

that non-uniform breaking rates do foster the emergence of synergy, even

though individuals always interact in pairs. Our work sheds new light on

the mechanisms underlying such synergetic interactions.
1. Introduction
Cooperators benefit others bearing a cost to themselves [1,2]. However, from a

Darwinian perspective, cooperation is difficult to explain, as natural selection

promotes selfishness rather than cooperation [3–7]. The evolution of cooperation

has often been approached through the lens of two-player games that depict

the simplest form of social dilemmas [8–10]. The study of games such as the

Prisoner’s Dilemma, or alternatives such as the Stag-Hunt game [11], has

provided insightful views on which mechanisms are likely to promote

cooperation—e.g. spatial reciprocity, direct reciprocity, indirect reciprocity, kin

selection and group selection [12–14]. However, the simplicity of two-player

games is a double-edged sword, as these pairwise games may fail to capture

the intricacies of complex interactions in real social and biological systems.

Cooperation typically involves multiple interaction partners at the same time

rather than a collection of pairwise interactions. For instance, when interacting

cells form a multicellular organism, a superposition of pairwise interactions is

insufficient to capture the intricacies of the complex organism. This is because

an interaction among all the cells is not just a sum of pairwise interactions. Syner-

getic interactions—the whole being more than the sum of its parts—may be

essential to explain cooperation in such biological systems. Therefore, understand-

ing how synergetic interactions emerge is an important part of our understanding

cooperation in more realistic interaction scenarios between multiple actors.
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Figure 1. Additive pairwise interactions and synergetic interactions. Additive
pairwise interactions mean that a group interaction is equal to the sum of
pairwise interactions in payoff. Synergetic interactions refer to the non-equiv-
alence in payoff between the above two ways. For instance, given three
individuals in a set, their payoff can be calculated either by three pairwise
interactions (right-hand side) or by one group-level interaction (left-hand
side). If both methods lead to the same payoff, then the multiplayer
game can be expressed as three additive pairwise interactions. As a conse-
quence there is no synergy (a). On the other hand, if the payoffs are
different, the group-level interaction is not anymore a combination of
pairwise games. In this case, a synergetic interaction emerges (b).

evolving networks
m = 2

evolving sets
m = 3

(b)(a)

Figure 2. Set dynamics for sets of size m ¼ 2 (a) and m ¼ 3 (b). Note that
two individuals can interact more than once for sets, which is usually not
assumed for networks. Blue and red dots represent strategies A and B
respectively. When m ¼ 2 (a) ‘sets’ are actually ‘links’ and the overall struc-
ture is a network [32]. In this case, interactions are strictly pairwise, hence
there is no synergetic effect in the payoffs. (b) The case with m ¼ 3, which is
the minimum set size that illustrates the emergence of synergetic inter-
actions. With probability 1 2 w a set is selected at random (dashed
lines). This set breaks up with probability ki, where i is the number of strat-
egy A individuals in the set. If the set breaks, a randomly chosen individual is
expelled. In order to keep the size of the set constant, another random
individual is incorporated into the updated set (dashed lines).
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General multiplayer games, which cannot be decomposed

into pairwise interactions, can represent such synergy effects.

In this paper, synergetic interactions refer to the non-equival-

ence between a single interaction as a group (one multiplayer

game) and the sum of a number of pairwise interactions (sev-

eral two-player games; figure 1). A multiplayer game can

display broader and richer dynamics than the traditional

two-player counterparts [15–22]. In particular, it can exhibit

payoff nonlinearities and can thus account for the synergetic

effects that are intrinsic to group interactions. Although the

emergence of synergetic interactions among multiple players

is key to cooperation [16,23], we lack fundamental understand-

ing on how such complex synergetic interactions occur in the

first place [24]. The emergence of a matrix multiplayer game,

which is directly connected to social dilemmas, is seldomly

addressed, but similar questions have been discussed in the

context of knockout contests [25,26]. Here, we present a math-

ematical model that captures the emergence of such synergetic

multiplayer games from simple pairwise interactions.
2. Results
2.1. Model description
We consider a structured population of N individuals, assorted

into l sets [27], each consisting of m individuals. Individuals can

have a different number of set memberships and play one of

two strategies, A or B. An individual accumulates the payoff

through interactions within all the sets it belongs to. These

interactions are always pairwise and the payoff depends on

the set configuration, i.e. the numbers of individuals playing

A and B in the set. At every time-step, either the strategy of

an individual or the set structure is updated. With probability

w, the strategy of an individual is updated. In that case, two
individuals are randomly chosen and one imitates the other’s

strategy with a probability that increases with the payoff differ-

ence. Individuals with higher payoffs are more likely to be

imitated [28–30]. With probability 1 – w, a set is randomly

chosen. In that case, the set may break up with probability

ki—where i is the number of strategy A individuals in the set,

ranging from 0 to m. As a consequence, ki determines the fragi-

lity of a set, which in turn depends on the set composition [31].

If the set breaks, a randomly chosen individual—which

belongs to at least one other set—is expelled. In order to keep

the size of the set constant, another random individual is

incorporated into the set (figure 2).

Although our model is simple, it captures two fundamental

aspects. Firstly, the set structure mimics the social interactions

which is an intrinsic characteristic of biological systems and

human societies. For instance, the set size could be based on

the diffusion rate of the public goods secreted by cooperative

cells [33,34]. The overall structure also allows us to consider

an organization of arbitrary size, from a small patch to a

large assembly. Secondly, individuals only interact in pairs

and payoffs are additive. Therefore, the payoff of an individual

is nothing but the sum of the corresponding pairwise inter-

actions. Thus, there are no imposed synergetic effects via the

payoff accumulation process. Instead, they can only emerge

from the dynamics of the population structure.
2.1.1. Pairwise games between two strategies
If the size of the sets is two, m ¼ 2, the population structure is

equivalent to a network, where a ‘set’ becomes a ‘link’

(figure 2). In this case, the accumulated payoffs can still be cap-

tured by a pairwise interaction, hence there are no synergetic
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multiplayer interactions [32,35]. Although our analytical frame-

work is general enough to allow the study of any set size, we

focus for simplicity on the case where m ¼ 3, that is, when the

sets contain three individuals. Let us assume that for two indi-

viduals playing strategy A, each one obtains a payoff of a.

Similarly, for two individuals playing strategy B, each one

obtains a payoff of d. For two individuals playing different strat-

egies, the individual using strategy A obtains the payoff b and

the individual using strategy B obtains the payoff c. Given

that there are three individuals in every set, the payoff of an

individual within a set is determined by two pairwise inter-

actions. Therefore, the payoff of an individual playing

strategy A in a set with i other individuals playing A is given

by ai ¼ aiþ bð2� iÞ. The payoff of an individual playing strat-

egy B in a set with i other individuals playing A is given by

bi ¼ ciþ dð2� iÞ. Note that for m ¼ 3, i ¼ 0, 1, 2. Given that

the breaking probability of a specific set may depend on the

number of A individuals within the set, the set dynamics

allows for non-uniform breaking probabilities across the sets.

To demonstrate that our simple model can indeed capture

the emergence of synergy, we consider two aspects: the

accumulated payoff of both types and the evolutionary

dynamics between the two strategies. We find that non-uniform

breaking probabilities across the sets foster the emergence of

synergetic multiplayer interactions. In other words, when the

fragilities of the sets are non-uniform we find that (i) the

expected accumulated payoff of both strategies is consistent

with the one of a typical multiplayer game that cannot be

decomposed into a pairwise game and (ii) the evolutionary

dynamics of the strategies exhibit two internal equilibria of

selection, which is impossible in a two-player game.

The calculation of the average accumulated payoff in the

general case is challenging, even though the model is simple.

We overcome this problem by assuming that the probability

with which the strategy is updated is small, w� 1. This

could for example be the case in microbial communities

with scarce resources. The mobility rate is high in this case,

resulting in a large number of structural changes for each

reproduction event. As a consequence, the set structure can

reach its stationary state—which determines the accumulated

payoffs—before a strategy update occurs. Importantly, the

average accumulated payoffs for both strategies are consistent

with the payoffs of the following 3-player game in a well-

mixed population, up to a positive rescaling factor (see the

electronic supplementary material, appendix, §2.1):

Opposing A players 0 1 2

A
a0

k1

a1

k2

a2

k3

B
b0

k0

b1

k1

b2

k2

ð2:1Þ

Here ai=kiþ1 is the payoff for an individual using strategy A
when it meets i opponents using strategy A. Equivalently,

bi/ki is the payoff for an individual using strategy B when it

meets i opponents using strategy A. The payoff table in

equation (2.1) has two important features. First, the derived

multiplayer game is of the same size as that of the set,

which implies that the complexity of the game is naturally

bounded by the set size. Second, the payoff entries are pro-

portional to the product of the accumulated payoff in a set

and its lifetime.

The evolutionary outcome of both strategies can be calcu-

lated by the replicator equation if the population size is
sufficiently large (see the electronic supplementary material,

appendix, §2.2) [36]. Qualitatively, this outcome would also

arise for a large number of microscopic update mechanisms

[30,37]. The replicator equation is given by

_xA ¼ xAð1� xAÞðfA � fBÞ, ð2:2Þ

where

fA ¼
X2

i¼0

ai

kiþ1

2
i

� �
xi

Að1� xAÞ2�i ð2:3Þ

and fB ¼
X2

i¼0

bi

ki

2
i

� �
xi

Að1� xAÞ2�i ð2:4Þ

are the average accumulated payoffs for strategy A and B.

Here, xA is the fraction of individuals using strategy A. On

the one hand, intuitively, an individual playing strategy A
obtains ai ¼ aiþ bð2� iÞ via two pairwise interactions in a

set consisting of i other strategy A players (i ¼ 0, 1, 2). The

probability of finding the set consisting of i other strategy A

player is proportional to 1
kiþ1

2
i

� �
xi

Að1� xAÞ2�i. Here, 1/kiþ1

is the average duration time of the sets consisting of i þ 1

strategy A individuals. Thus, the average accumulated

payoff of strategy A individual is given by the weighted

sum of as, which leads to fA, i.e. equation (2.3). On the

other hand, equation (2.3) can be interpreted in another

way: it represents the payoff of the strategy A individuals

of the 3-player game based on equation (2.1) in a well-

mixed population. An equivalent argument applies for the

average accumulated payoff of strategy B, i.e. equation (2.4).

Therefore, the dynamics of the pairwise game under active

set dynamics can be captured by a multiplayer game in a

well-mixed population. The internal equilibria of this

equation are the roots of the equation fA 2 fB ¼ 0. Based on

the initial fraction of individuals using strategy A, these equi-

libria determine where an infinite population would end up,

depending on the initial fractions of each strategy.

The above results on the accumulated payoffs and the

evolutionary dynamics of strategies hold for any set fragilities

ðk0, k1, k2, k3Þ. In the following, we apply these results to

homogeneous and heterogeneous set fragilities to address

when and how synergetic interactions emerge.

Whenever the fragility of the sets is constant, k0 ¼ k1 ¼
k2 ¼ k3, fA is proportional to 2ðaxA þ bð1� xAÞÞ based on

equation (2.3). This is nothing but the sum of two pairwise inter-

actions. In this case, all the sets have the same duration. This

suggests that a random sampling of sets leads to a well-mixed

like population structure. Therefore, the average accumulated

payoff of strategy A is the sum of payoffs arising from the

two pairwise interactions. In other words, equation (2.1) is iden-

tical to the original pairwise game, even though it is formally a

3-player game (see the electronic supplementary material,

appendix, §2.2). Therefore, there is no synergy effect in

payoff. Given that the replicator equation is equivalent to the

one of the pairwise game, there is at most one internal equili-

brium with the same position and stability. Figure 3a shows

the agreement between the analytical approximation and a

simulation of the full model.

However, when fragilities are not homogeneous across

the sets, equation (2.1) becomes a 3-player game, which

cannot be decomposed into additive pairwise interactions

(figure 3b). In this case, the payoff of an individual interacting

with two opponents is not equal to the sum of the two
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Figure 3. Accumulated payoffs for the Stag-Hunt game and the equilibria of
the selection gradient for two fragility scenarios. The full/empty circles on top
of each panel show the analytical approximation for the stable/unstable equi-
libria of the replicator dynamics. (a) For uniform breaking rates, the
accumulated payoffs for both strategies match the ones of a pairwise
game. Thus, the payoffs change linearly with the fraction of A individuals
and the replicator equation predicts just the single internal equilibrium of
the pairwise game. (b) When the breaking rates depend on the set configur-
ation, the payoffs for both strategies become nonlinear. The more A
individuals a set has, the less likely it breaks up. The payoffs for both strat-
egies have two intersections, which lead to two internal equilibria. This
illustrates that non-uniform interactions can lead to the emergence of syner-
getic interactions. There is a perfect agreement between simulations (dots)
and analytical approximation (lines). (Parameters: Stag-Hunt game with a
¼ 2, b ¼ 1, c ¼ 1.5 and d ¼ 7. Population size, N ¼ 500, number of
sets, l ¼ 1000, probability of a strategy update, w ¼ 1023. Selection inten-
sity, b ¼ 0.1. See Methods for the simulation details.)
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Figure 4. Expected payoffs for individuals using strategies A (a) and B (b) in
groups of different compositions. The two insets within each plot show the
effective payoff entries of the emergent 3-player game equation (2.1) for a
frequency of 0.5. Main panels: theoretical predictions for the payoff within
the three set configurations of each individual, equations (2.3) and (2.4)
(lines), agree well with the accumulated payoff obtained by simulation (sym-
bols). This in turn proves that the synergetic three-player game is intrinsically
captured by equations (2.3) and (2.4) even term by term. (a) Inset: payoffs
for equal abundance of both strategies. An individual with strategy A gains
less if it interacts in a set which has one individual with strategy A than if it
were in the synergy free case (grey, dashed). (b) Inset: an individual with
strategy B gains much more if it interacts in a set which has one individual
with strategy A than if it were in the synergy free case (grey, dashed). Here,
the payoffs in the synergy free cases are the average values of the two payoff
entries for the focal individual interacting with zero and two A individuals.
Thus, the interaction can no longer be decomposed into multiple pairwise
interactions, which is how every individual obtains its payoff microscopically.
(Parameters are the same as that in figure 3b. The inner panels are obtained
by simulation via setting the frequency of individuals using strategy A to be
one half. See Methods for simulation details.)
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pairwise interactions (figure 4). The intuition is given as

follows: let us assume that the strategy B individuals are

very likely to leave the sets when the other co-players in the

set are all of strategy B (k0 ! 1). In this case, almost all the

payoffs strategy B individuals obtain are via the set configur-

ations where there is at least one strategy A individual. The

short duration of pure B sets leads to the effective payoff of

strategy B individuals in a set consisting of two-strategy B
co-players to be approximately zero. On the other hand,

once there is such a set, a strategy B individual gets 2d via

two pairwise interactions. The inconsistency between zero

and 2b emerges from non-uniform interactions. Consequently,

the presence of non-uniform set breaking probabilities gener-

ates synergetic payoffs. Synergy emerges exclusively as a

result of the evolutionary dynamics of the set structured popu-

lation. In addition to this, the replicator equation has two

internal equilibria, which is not possible in pairwise inter-

actions (figure 3b). A necessary condition for the emergence
of two equilibria is that the sign of the effective payoff differ-

ence ai=kiþ1 � bi=ki changes twice with the increase in the

number of opponents using strategy A, i [38,39]. A more

detailed analysis of the conditions that lead to two internal

equilibria can be found in the electronic supplementary

material, appendix, §2.2. If one of the two equilibria is

stable, the other has to be unstable. Given this, our model

can explain both the maintenance of biodiversity and phenoty-

pic dominance within the same framework, despite being

composed of pairwise interactions which do not lead to

these phenomena per se.

2.1.2. Pairwise games between n strategies
The model can be extended to account foran arbitrary number of

strategies, n, instead of only two. In the pairwise interactions

with n strategies or an n � n game, the non-uniform breaking
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probabilities also generate synergetic multiplayer interactions.

Although the analytical calculations are more intricate due to

the increased number of set configurations, we find that the

payoff matrix of the emergent multiplayer game is consistent

with the one of an n-strategy m-player game (electronic

supplementary material, appendix, §3.1). Interestingly, the

intuition behind these payoff entries is the same as the ones of

the two-strategy case, as they still represent the product of

the additive payoffs via pairwise interactions and the duration

of that set. In addition to this, the n-strategy m-player game

has, at most, (m 2 1)n21 isolated internal equilibria, whereas

the original n � n pairwise game has at most one isolated

internal equilibrium (electronic supplementary material,

appendix, §3.2). The dynamics in our model are thus rich

enough to capture complex phenomena exhibited by social

and biological systems.
 e
13:20160282
3. Discussion
Synergy refers to the idea that the whole is greater than the

sum of its parts. Interestingly, the word synergy means

‘cooperation’ in ancient Greek. In the simplest case of con-

stant selection, payoffs are fixed and not dependent on any

interactions. Departing from this, one usually considers pair-

wise games, which lead to a linear dependence of payoffs on

the relative abundance of strategies. This linear dependence is

also reflected in linear multiplayer games, which can thus be

decomposed into a collection of pairwise games. Here, we

explicitly consider multiplayer games, where generically

payoff becomes a polynomial function of the relative abun-

dance of strategies. In particular, we are interested in

whether the payoff of a multiplayer game is different from

the outcome of the sum of the underlying pairwise inter-

actions (figure 1). If this is the case, we speak of the

emergence of synergetic interactions among multiple players.

Synergetic interactions are found in a plethora of different

contexts such as in genes [40], microbial populations [41], and

even social and economic systems. With this in mind, we pre-

sent a minimal model that shows how synergetic interactions

can emerge in a system based on pairwise interactions. An

example for such a situation is the production of extracellular

products by cooperating cell types, which glue individuals

together; see [42] for a related theoretical analysis. This

glue production would increase the lifetime of cooperator

groups compared to groups with few cooperators. However,

our model is intended as a minimal way to showcase the

emergence of multiplayer interactions and not as a model

of a particular biological instance.

From an evolutionary perspective, synergy is a cornerstone

of fraternal evolutionary transitions [43]—e.g. the emergence

of multicellularity [1]. The non-uniform breaking rates which

are a feature of our model can mimic the migration rates of

cells in different environments. This leads to a synergetic inter-

action where a group of cells perform differently from the sum

of cell–cell interactions. Given this, it appears that fitness

differences—not driven by group size, but by group compo-

sition—could be a key to understand how multicellular

organsims perform as a whole.

It is worth highlighting that the sets in the model are not

proxies for a new level of selection, but represent the inter-

action range of individuals. Owing to these restrictions, our

approach is not a suitable model for egalitarian and filial
transitions [44]. Those transitions involve individuals of

different species and therefore require asymmetric games [36].

On the other hand, our model does allow one to explore the

emergence of synergetic interactions from pairwise interactions

analytically. We assume that the strategy of the individuals and

the interaction structure change over in time. The results show

that non-uniform set breaking rates, which depend exclusively

on the configuration of these sets, lead to payoff nonlinearities.

These are consistent with the dynamics of a multiplayer game,

even though individuals always play a pairwise game and no

group selection effects are present. These findings rely on two

conditions: (i) sets must contain more than two individuals and

(ii) the breaking rates must depend on the configuration of the

sets, and hence be non-uniform.

In our model, individuals interact in sets. The set structure

is a generalization of network structure. In that case, individ-

uals interact in groups with more than two members. This

resembles microbial communities in biology or clubs and

families in human societies. Thus, a set is a more general

assumption than a network (figure 2). Furthermore, individ-

uals in our model are allowed to adjust both their strategies

and their partners. This mechanism proves to be an efficient

way to promote and stablize cooperation in networks with

pairwise interactions [24,35,45–51]. Consistent with those

studies, our dynamical set model can yield an assortment of

cooperators. This paves the way not only to resist the invasion

of defectors, but also to invade defectors. A mathematical limit-

ation of our work is the assumption of the fast set dynamics.

With this approximation, our model cannot be applied to

settings such as microbial communities with abundant

resources. In that case, the mobility rate is typically low, result-

ing in a very small number of structural changes for each

reproduction event.

Our model shows how the aggregation of individuals can

lead to complex interactions that cannot be disentangled into

simpler interactions anymore. The natural world has many

examples for such situations, where a complexity can no

longer be decomposed.
4. Methods
4.1. The Fermi updating rule
We use the Fermi update rule, given by the following algorithm

[28,29,52]:

(i) randomly select a focal individual, f *, and denote its

payoff as p f � ;

(ii) randomly select another individual as a role model, r*,

among all the individuals in the sets individual f * is in

and denote the payoff of r * as pr� ; and

(iii) f * switches to the strategy of r * with probability

(1þ exp½�bðpr� � p f� Þ�)�1.

4.2. Accumulated individual payoffs
Each data point is the average of 100 independent realizations.

Every realization takes 106 generations. In each realization, for

the first 104 generations, only set dynamics occurs to start from

a natural set configuration. For the remaining generations, at

every step, with probability w ¼ 1023 we compute the average

accumulated payoff of each strategy. Otherwise, with probability

1 – w, set dynamics happens. At the end of each realization, we

compute the mean value of all the average accumulated payoff.
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This allows us to calculate average payoffs in an equilibrium of

the set structure for a given abundance of each strategy.

4.3. Accumulated group payoffs
Each data point is the average of 100 independent realizations.

Every realization takes 106 generations. In each realization, for

the first 104 generations, only set dynamics occurs. For the

remaining generations, at every step, with probability w ¼ 1023

we compute the average accumulated payoff of each strategy

within a set with 0, 1 and 2 strategy A opponents. Otherwise,

with probability 1 2 w, set dynamics happens. At the end of
each realization, we compute the mean value of all the average

accumulated payoff.
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