
NeuroImage: Clinical 30 (2021) 102682

Available online 21 April 2021
2213-1582/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Preserved fractal character of structural brain networks is associated with 
covert consciousness after severe brain injury 

Andrea I. Luppi a,b,*, Michael M. Craig a,b, Peter Coppola a,b, Alexander R.D. Peattie a,b, 
Paola Finoia a,c, Guy B. Williams b,d, Judith Allanson b,e, John D. Pickard b,c,d, David 
K. Menon a,d, Emmanuel A. Stamatakis a,b 

a Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom 
b Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom 
c Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom 
d Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom 
e Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke’s Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Disorders of consciousness 
Brain injury 
Diffusion MRI 
Fractal 
Brain network 
Cognitive-motor dissociation 

A B S T R A C T   

Self-similarity is ubiquitous throughout natural phenomena, including the human brain. Recent evidence in-
dicates that fractal dimension of functional brain networks, a measure of self-similarity, is diminished in patients 
diagnosed with disorders of consciousness arising from severe brain injury. Here, we set out to investigate 
whether loss of self-similarity is observed in the structural connectome of patients with disorders of con-
sciousness. Using diffusion MRI tractography from N = 11 patients in a minimally conscious state (MCS), N = 10 
patients diagnosed with unresponsive wakefulness syndrome (UWS), and N = 20 healthy controls, we show that 
fractal dimension of structural brain networks is diminished in DOC patients. Remarkably, we also show that 
fractal dimension of structural brain networks is preserved in patients who exhibit evidence of covert con-
sciousness by performing mental imagery tasks during functional MRI scanning. These results demonstrate that 
differences in fractal dimension of structural brain networks are quantitatively associated with chronic loss of 
consciousness induced by severe brain injury, highlighting the close connection between structural organisation 
of the human brain and its ability to support cognitive function.   

1. Introduction 

Self-similarity is ubiquitous throughout natural phenomena – from 
the progressively branching structure of trees, rivers and blood vessels, 
to the human brain being a network composed of nested sub-networks. 
Self-similarity across scales can be quantified in terms of fractal 
dimension, the extent that the same organisation can be observed across 
levels of detail, i.e. when considering the whole system or “zooming in” 
on its parts. Importantly, it has been argued that self-similar (fractal) 
organisation may be the key property that enables the human brain to 
balance its competing needs for functional integration and differentia-
tion, whereby a backbone of self-similar modules is turned into a “small 
world” by the addition of weaker connections (Gallos et al., 2012a, 
2012b). 

Indeed, previous research has revealed the neurobiological relevance 

of variations in anatomical and functional fractal dimension. Anatomi-
cally, fractal dimension of grey and white matter structures has been 
associated with cognitive outcomes – not only in the healthy brain, but 
also in aging or disease (Im et al., 2006; King et al., 2009; Mustafa et al., 
2012; Tae et al., 2005). Functionally, electroencephalography (EEG) and 
functional MRI can provide estimates of fractal dimension in both space 
and time, which have been shown to reflect cognitive performance 
(Bornas et al., 2013), the altered state of consciousness induced by 
psychedelics (Varley et al., 2020a) and also loss of consciousness due to 
natural sleep or different anaesthetics (Ruiz de Miras et al., 2019; Varley 
et al., 2020c). 

Crucially, fractal dimension of functional brain networks has 
recently been shown to distinguish between disorders of consciousness 
(DOC) of different severity, whether arising from anoxic or traumatic 
brain injury (Varley et al., 2020b). This evidence is especially relevant 
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because fractal dimension can be viewed as quantifying a system’s 
complexity: it has been shown to correlate with other measures of spatial 
and temporal complexity, such as entropy and compressibility (Chen, 
2020; Varley et al., 2020c). Importantly, complexity is increasingly 
recognised as a fundamental requirement for the brain’s ability to sup-
port a wide variety of conscious states (Carhart-Harris, 2018; Carhart- 
Harris et al., 2014; Luppi et al., 2020a; Tononi et al., 1994). 

To date, investigations of fractal dimension in states where con-
sciousness is diminished or lost (e.g. sleep, anaesthesia, DOC) have 
focused on functional neuroimaging signals (Klonowski et al., 2005; 
Ruiz de Miras et al., 2019; Spasic et al., 2011; Varley et al., 2020c, 
2020b). Whereas no major reorganisation of brain structure is expected 
to occur as a result of the temporary loss of consciousness induced by 
sleep or anaesthesia, disorders of consciousness typically involve severe 
brain injury, including reorganisation of white matter fibers and their 
network organisation (Cavaliere et al., 2015; Fernández-Espejo et al., 
2012; 2011;; Kuceyeski et al., 2016; Lant et al., 2016; Newcombe et al., 
2010; Wang et al., 2018; Weng et al., 2017; Wu et al., 2018; Zheng et al., 
2017). 

Structural brain networks comprise white matter fibers providing 
physical connections between brain regions (the “connectome”) 

(Hagmann et al., 2008; Sporns et al., 2005), which constitute the scaf-
folding for communication of information across the brain (Bettinardi 
et al., 2017; Deco and Jirsa, 2012). By exploiting anisotropic diffusion of 
water molecules along axonal bundles, diffusion-weighted magnetic 
resonance imaging (DWI) enables the study of white matter pathways in 
the brain in vivo and non-invasively (Le Bihan and Johansen-Berg, 
2012). Structural networks are also less susceptible than functional 
ones to confounds such as momentary arousal levels, and tend to exhibit 
higher reproducibility within individuals (Lawrence et al., 2018), which 
may provide additional prognostic value. However, it is presently un-
known whether fractal dimension of structural brain networks is altered 
in patients suffering from DOCs as a result of severe brain injury. 

To address this question, here we compared the fractal dimension of 
structural brain networks obtained from DWI data of N = 20 healthy 
controls, N = 11 patients diagnosed as being in a minimally conscious 
state (MCS), and N = 10 patients suffering from unresponsive wake-
fulness syndrome/vegetative state (UWS), who had lost consciousness 
chronically after severe hypoxic or traumatic brain injury (Fig. 1). 
Although previous investigations of fractal dimension of brain networks 
required the networks to be binarized (Varley et al., 2020b), we capi-
talised on a recently developed measure of fractal dimension for 

Fig. 1. Overview of the analysis. (a) Data processing pipeline for each individual. After reconstruction and deterministic tractography of the DWI data, the Schaefer 
scale 1000 parcellation (Schaefer et al., 2018) was applied to obtain a connectivity matrix indicating the number of white matter streamlines between each pair of 
cortical regions (representing the individual’s structural connectome); a structural brain network was then constructed, and finally its fractal dimension was 
computed. (b) Three 1000 × 1000 adjacency matrices, representing the structural connectome of representative individuals from the healthy control group, the MCS 
group, and the UWS group. 
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weighted networks, which allows edge weights (here, number of white 
matter streamlines between brain regions) to be taken into account, 
without discarding this potentially valuable information (Wei et al., 
2013). Our aim was to investigate whether the structural brain networks 
of patients with chronic DOCs exhibit reduced fractal dimension, and 
whether it differs based on diagnostic category (MCS vs UWS). Finally, 
we sought to determine whether preserved fractal dimension of struc-
tural brain networks is associated with the DOC patients’ ability to 
provide evidence of covert consciousness, by capitalising on the avail-
ability of task-based functional MRI data from the same cohort of DOC 
patients. 

2. Materials and methods 

2.1. Ethics statement 

All clinical investigations were conducted in accordance with the 
Declaration of Helsinki, and ethical approval for this study was provided 
by the National Research Ethics Service (National Health Service, UK; 
LREC reference 99/391). 

2.2. Patients with disorders of consciousness 

A sample of 71 DOC patients with chronic disorders of consciousness 
were recruited from specialised long-term care centres between January 
2010 and December 2015. Patients from this cohort have been studied 
before, in the context of functional MRI analyses (Luppi et al., 2020b, 
2019; Varley et al., 2020b). To be considered for inclusion in the study, 
patients must have been diagnosed with a disorder of consciousness, and 
written informed consent was obtained from their legal representative. 
Patients were excluded from participation if they could not be trans-
ported to Addenbrooke’s Hospital (Cambridge, UK), if any medical 
condition made it unsafe for the patient to participate (this decision was 
made by clinical personnel blinded to the specific aims of the study), or 
if any reason made the patient unsuitable to enter the MRI scanner 
environment (e.g. non-MRI-safe implants). Further exclusion criteria 
were significant pre-existing mental health problems, or insufficient 
fluency in the English language prior to injury. Patients spent a total of 
five days (including arrival and departure days) at Addenbrooke’s 
Hospital, where each of them underwent clinical and neuroimaging 

testing. Brain scanning took place at the Wolfson Brain Imaging Centre 
(Addenbrooke’s Hospital, Cambridge, UK); medication prescribed to 
each patient was maintained during scanning. 

Since this study focused on whole-brain structural networks, 
coverage of most of the brain was required, and we followed the same 
criteria as in our previous studies (Luppi et al., 2020b, 2019) whereby 
before analysis took place, patients were systematically excluded if an 
expert neuroanatomist blinded to diagnosis judged that they displayed 
excessive focal brain damage (over one third of one hemisphere), or if 
brain damage led to suboptimal segmentation and normalisation, or if 
patients displayed excessive head motion in the scanner (defined as 
more than 3 mm translation or 3 degrees rotation). One additional pa-
tient was excluded due to incomplete acquisition of diffusion-weighted 
images. A total of 21 adults (13 males; 17–70 years; mean time post 
injury: 13 months) meeting diagnostic criteria for unresponsive wake-
fulness syndrome/vegetative state (UWS; N = 10) or minimally 
conscious state (MCS; N = 11) due to brain injury were included in this 
study (Table 1). 

2.2.1. Clinical assessment 
Coma Recovery Scale-Revised (CRS-R) assessments were recorded at 

least daily for the five days of admission. If behavioural responses were 
not indicative of awareness at any time, patients were classified as UWS. 
In contrast, patients who exhibited simple automatic motor reactions (e. 
g., scratching, pulling the bed sheet), visual fixation and pursuit, or 
localisation to noxious stimulation, were classified as being in a mini-
mally conscious state (MCS) (note that due to the limited size of our 
sample of MCS patients, we do not sub-divide these patients into MCS- 
and MCS+) (Bruno et al., 2011; Wannez et al., 2018) (Table 1). 

2.2.2. Identification of responsiveness to mental imagery tasks 
In addition to clinical diagnosis, which is based on overt behavioural 

responsiveness, we also stratified patients in two groups (FMRI+ and 
FMRI-) based on their ability to perform mental imagery tasks on 
command during fMRI scanning (Luppi et al., 2020b; Craig et al., 2021), 
using an established methodology that has previously been applied to 
DOC patients and healthy individuals (Fernández-Espejo et al., 2014; 
Monti et al., 2010; Owen et al., 2006). The rationale for this approach is 
that some patients may fail to exhibit overt behavioural responses due to 
motor impairments rather than because they are unconscious, and 

Table 1 
Demographic and clinical information for patients with Disorders of Consciousness.  

Sex Age Months post injury Aetiology Diagnosis CRS-R Score Tennis Spat Nav Classification Scan 

M 46 23 TBI UWS 6 no evidence no evidence FMRI- 12 dir 
M 57 14 TBI MCS 12 no evidence no evidence FMRI- 12 dir 
M 35 34 Anoxic UWS 8 no evidence no evidence FMRI- 12 dir 
M 17 17 Anoxic UWS 8 no evidence positive FMRI+ 12 dir 
F 31 9 Anoxic MCS 10 no evidence no evidence FMRI- 12 dir 
F 38 13 TBI MCS 11 positive no evidence FMRI+ 12 dir 
M 29 68 TBI MCS 10 SMA+ ve PPA+ ve FMRI+ 63 dir 
M 23 4 TBI MCS 7 SMA+ ve no evidence FMRI+ 63 dir 
F 70 11 Cerebral bleed MCS 9 no evidence no evidence FMRI- 63 dir 
F 30 6 Anoxic MCS 9 PMC+ ve no evidence FMRI+ 63 dir 
F 36 6 Anoxic UWS 8 no evidence PPA+ ve FMRI+ 63 dir 
M 22 5 Anoxic UWS 7 no evidence no evidence FMRI- 63 dir 
M 40 14 Anoxic UWS 7 no evidence no evidence FMRI- 63 dir 
F 62 7 Anoxic UWS 7 no evidence no evidence FMRI- 63 dir 
M 46 10 Anoxic UWS 5 no evidence no evidence FMRI- 63 dir 
M 21 7 TBI MCS 11 no evidence no evidence FMRI- 63 dir 
M 67 14 TBI MCS 11 SMA+ ve PPA+ ve FMRI+ 63 dir 
F 55 6 Hypoxia UWS 7 no evidence no evidence FMRI- 63 dir 
M 28 14 TBI MCS 8 positive positive FMRI+ 63 dir 
M 22 12 TBI MCS 10 no evidence no evidence FMRI- 63 dir 
F 28 8 ADEM UWS 6 no evidence no evidence FMRI- 63 dir 

CRS-R, Coma Recovery Scale-Revised, obtained closest to the scan; UWS, Unresponsive Wakefulness Syndrome; MCS, Minimally Conscious State; TBI, Traumatic Brain 
Injury; FMRI-, negative responders to mental imagery tasks; FMRI+, positive responders to either mental imagery task; SMA, supplementary motor area; PPA, par-
ahippocampal place area; PMC, pre-motor cortex. 
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responsiveness to fMRI tasks can reveal this “covert consciousness” – 
although of course it is important to note that absence of fMRI respon-
siveness does not constitute conclusive evidence of unconsciousness 
(MacDonald et al., 2015). 

The first mental imagery task (referred to as the “tennis task”) 
involved motor imagery, whereby each patient was asked to “imagine 
being on a tennis court swinging their arm to hit the ball back and forth 
with an imagined opponent” (Luppi et al., 2020b; Monti et al., 2010; 
Owen et al., 2006). The second mental imagery task (referred to as the 
“navigation task”) involved spatial imagery, whereby the patient was 
required to imagine walking around the rooms of their house, or the 
streets of a familiar city, and to visualise what they would see if they 
were there (Luppi et al., 2020b; Craig et al., 2021). Each task was 
structured to comprise five cycles, alternating 30 s of imagery and 30 s of 
rest, during which patients were instructed to just stay still with eyes 
closed. Each block of mental imagery was cued with the spoken word 
“tennis” or “navigation”, respectively, whereas the rest blocks were cued 
with the word “relax”. 

For each patient, classification into FMRI+ and FMRI- groups was 
based on the results of univariate fMRI analysis conducted on both the 
motor and spatial mental imagery tasks (using FSL version 5.0.9; https 
://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). For each functional scan, a general 
linear model was used to contrast periods of rest and active imagery 
(Monti et al., 2010). 

If a patient’s fMRI activation was significantly greater than rest in 
task-relevant regions (cluster-forming voxel-level threshold of z > 2.3, 
cluster-corrected p < 0.05) during either or both of the two mental 
imagery tasks, this was taken as evidence that the patient was per-
forming the task (and therefore responding to command), and the pa-
tient was classified as FMRI+, constituting evidence of covert 
consciousness. We identified N = 8 such FMRI+ patients. Conversely, N 
= 13 patients did not respond to either task, and therefore failed to 
provide evidence of covert consciousness; we designated these patients 
as “FMRI-” (Craig et al., 2021) (Table 1). 

2.3. Healthy controls 

We also acquired diffusion MRI data from N = 20 healthy volunteers 
(13 males; 19–57 years), with no history of psychiatric or neurological 
disorders. The mean age was not significantly different between healthy 
controls (M = 35.75; SD = 11.42) and DOC patients (M = 38.24; SD =
15.96) (t(39) = − 0.57, p = 0.571, Hedges’s g = − 0.18; permutation- 
based t-test). 

2.4. Acquisition of diffusion-weighted data 

As the patients’ data were acquired over the course of several years, 
two different diffusion-weighted image acquisition schemes were used. 
The first acquisition scheme (used for the N = 6 patients whose data 
were acquired earliest in time) used an echo planar sequence (TR =
8300 ms, TE = 98 ms, matrix size = 96 × 96, 63 slices, slice thickness =
2 mm, no gap, flip angle = 90 degrees). This included diffusion sensi-
tising gradients applied along 12 non-collinear directions with 5b-values 
that ranged from 340 to 1590 s/mm2 and 5b = 0 images (Correia et al., 
2009). The more recent acquisition scheme (used for the more recently 
scanned patients, and for all healthy controls) instead involved the use 
of 63 directions with a b-value of 1000 s/mm2. Both DWI acquisition 
types have been used before in the context of structural connectivity 
analysis in DOC patients (Wang et al., 2018; Zheng et al., 2017); note 
that none of the four patient sub-groups considered here (MCS, UWS, 
FMRI+ and FMRI-) was exclusively made up of patients whose data had 
been acquired in one of the two sequences (Table 1). Nevertheless, to 
account for this potential confound, we also included acquisition type as 
a covariate of no interest. 

2.5. DWI preprocessing 

The diffusion data were preprocessed with MRtrix3 tools (Tournier 
et al., 2019). After manually removing diffusion-weighted volumes with 
substantial distortion (Zheng et al., 2017), the pipeline involved the 
following steps: (i) DWI data denoising by exploiting data redundancy in 
the PCA domain (Veraart et al., 2016) (dwidenoise command); (ii) 
Correction for distortions induced by eddy currents and subject motion 
by registering all DWIs to b0, using FSL’s eddy tool (through MRtrix3 
dwipreproc command); (iii) rotation of the diffusion gradient vectors to 
account for subject motion estimated by eddy (Leemans and Jones, 
2009); (iv) b1 field inhomogeneity correction for DWI volumes (dwi-
biascorrect command); (v) generation of a brain mask through a com-
bination of MRtrix3 dwi2mask and FSL BET commands. The number of 
motion-corrupted volumes was significantly different between healthy 
controls (mean = 0) and DOC patients (mean = 3.5 ±3.8), t(39) = -4.13, 
p < 0.001; therefore, the number of removed volumes was included as a 
covariate of no interest in our analysis. 

2.6. DTI data reconstruction and fiber tracking 

DTI data were reconstructed from the preprocessed DWIs using DSI 
Studio (www.dsi-studio.labsolver.org), which implements the model- 
free q-space diffeomorphic reconstruction (QSDR (Yeh et al., 2011)). 

QSDR is especially well-suited for comparisons between groups (Tan 
et al., 2019a; Yeh et al., 2013, 2011), by reconstructing the distribution 
of the density of diffusing water in standard space, thereby preserving 
the continuity of fiber geometry for subsequent tracking (Yeh et al., 
2011). Indeed, QSDR has successfully been used to investigate structural 
networks in healthy individuals (Gu et al., 2015) as well as brain-injured 
patients (Gu et al., 2017), including patients with disorders of con-
sciousness (Tan et al., 2019b). After reconstructing diffusion-weighted 
images in each subject’s native space, QSDR computes values of quan-
titative anisotropy (QA) in each voxel, which are used to nonlinearly 
warp the brain to DSI Studio’s template QA volume in Montreal 
Neurological Institute (MNI) space. Spin density functions (SDFs) were 
then reconstructed in the standard space, using a mean diffusion dis-
tance of 1.25 mm with three fiber orientations per voxel (Yeh et al., 
2011). 

After QSDR reconstruction, 1,000,000 streamlines between brain 
regions were tracked with DSI Studio’s high-performing “FACT” deter-
ministic algorithm. We adopted previously established parameters (Gu 
et al., 2017, 2015; Luppi and Stamatakis, 2021; Medaglia et al., 2016): 
angular cutoff = 55◦, step size = 1.0 mm, tract length between 10 mm 
(minimum) and 400 mm (maximum), no spin density function 
smoothing, and QA threshold determined by DWI signal in the cerebro- 
spinal fluid. Streamlines with improper termination locations were 
automatically screened by DSI Studio’s algorithm using a white matter 
mask, obtained by applying a default anisotropy threshold of 0.6 Otsu’s 
threshold to the anisotropy values of the spin density function (Gu et al., 
2015; Luppi and Stamatakis, 2021; Medaglia et al., 2016). 

2.7. Structural network construction 

A network consists of two basic elements: nodes, and the edges 
connecting them. To construct structural brain networks, we computed 
the number of streamlines between each pair of 1000 cortical regions of 
interest (ROIs), derived from the largest scale of the Schaefer multi-scale 
atlas (Schaefer et al., 2018). The Schaefer-1000 atlas has been used in 
recent analyses of brain fractal dimension in healthy individuals (Varley 
et al., 2020a) and also DOC patients (Varley et al., 2020b). Nevertheless, 
to demonstrate the robustness of our analysis to atlas choice, we used the 
largest scale of the Lausanne atlas, with the same number of cortical 
ROIs (Cammoun et al., 2012). For this analysis, the Lausanne parcels 
were dilated by 2 voxels to extend them to the grey-matter-white matter 
interface, following previous tractography work using the same 
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parcellation (Gu et al., 2015; Medaglia et al., 2016). We also replicated 
our results using a smaller scale of the Schaefer atlas with 400 ROIs, to 
demonstrate their robustness to parcellation size. As further validation 
analysis, we also employed a different tractography procedure, whereby 
probabilistic tractography implemented in the MRtrix3 toolbox (Tour-
nier et al., 2019) was used to track 1,000,000 streamlines in each sub-
ject’s native space, and subsequently FSL’s flirt tool was used to bring the 
MNI-space Schaefer-1000 cortical parcellation (Schaefer et al., 2018) 
into each subject’s native space using an affine transformation (rather 
than a nonlinear one, as applied by DSI Studio), to quantify the number 
of streamlines between each pair of regions in native space. 

ROIs represent the nodes of the brain network. Then, edges between 
nodes were selected using the Efficiency Cost Optimisation (ECO) cri-
terion, which is designed to optimise the trade-off function J between 
wiring cost ρ and overall network efficiency (i.e. the sum of global ef-
ficiency Egand mean local efficiency Elof the network) (De Vico Fallani 
et al., 2017): 

J =
Eg + El

ρ (1) 

Because it highlights the network’s topological organisation, ECO 
has excellent ability to discriminate between groups with different 
network topologies, including controls and patients, across different 
datasets and imaging modalities (MRI, EEG) (De Vico Fallani et al., 
2017). Additionally, it was recently shown that ECO is most effective at 
producing topologically representative brain networks, whose topology 
is robust to atlas type and size, for both binary and weighted networks 
(Luppi and Stamatakis, 2021). Here, the weight of the connection be-
tween pairs of nodes was quantified as the number of streamlines be-
tween them. For our validation analysis, we also constructed binary 
networks, by setting all non-zero edge weights to unity. 

2.8. Self-similarity across scales: Fractal dimension from box covering 
algorithm 

For all but the simplest real-world systems, fractal dimension cannot 
be computed analytically. Thus, a variety of so-called box-covering al-
gorithms for complex networks (BCAN) have been developed as a means 
to approximate a network’s fractal dimension (Kim et al., 2007; 
Schneider et al., 2012; Song et al., 2007; Wei et al., 2013). These mea-
sures work by covering the network with the minimum possible number 
NB of “boxes” of a given size lB. For binary networks, a box is a collection 
of connected nodes whose distance (minimum number of edges that 
need to be traversed to move between them, also known as the shortest 
path) is less than the box size (Kim et al., 2007; Schneider et al., 2012; 
Song et al., 2007; Wei et al., 2013). 

For a network of N0 nodes, power-law fit between the box size lB and 
the minimum number NB of boxes of that size that are required to fully 
“tile” the network, is then used to estimate the network’s fractal 
dimension dB (Kim et al., 2007; Schneider et al., 2012; Song et al., 2007; 
Wei et al., 2013): 

NB(lB) = N0lB
− dB (2)  

2.8.1. Box-covering algorithm for weighted networks 
Fractal dimension is influenced by connection weights (Wei et al., 

2013). Since the strength of structural connectivity (number of white 
matter streamlines) differs across brain regions, here we rely on an 
improved box-covering algorithm that allows the information about 
connection weights to be taken into account (Wei et al., 2013), although 
we also validate our results using binary networks. 

The key aspect of this box-covering algorithm for weighted networks 
(BCANw), is that values of the box size lB1 …lBn are not necessarily in-
tegers; rather, the various box sizes are obtained by progressively 
accumulating the minimum distance between nodes (shortest path), 
starting from the smallest individual shortest path, up to a maximum box 

size lBn for which the network diameter (longest shortest path) is 
exceeded (Wei et al., 2013). 

For each value of the box size lB, we can obtain a network composed 
of all the shortest paths dij > lB from the original network; the number of 
boxes NB is then computed by applying a graph-coloring algorithm to 
this new network, such that NB is equal to the number of colors required 
to fully color the graph (Wei et al., 2013). Thereafter, fractal dimension 
is computed from power-law fit of number of boxes versus size of boxes, 
as per Equation (1) (log–log plots of box number vs box size for each 
participant are shown in Supplementary Figs. 1-4). 

In box-covering approaches, the box size can be considered as the 
lens through which the network is being observed: a smaller size in-
dicates that the system is being observed at higher resolution, and 
therefore at a smaller scale. Intuitively, in a network with fractal char-
acter the structure of boxes covering a given portion of the network 
should be preserved in the structure of larger boxes covering the entire 
network. In other words, if a system exhibits fractal character, then 
“zooming in” on its parts should reveal the same structure that charac-
terises the whole. For this reason, fractal dimension constitutes a mea-
sure of similarity across scales. 

2.9. Statistical analysis 

Statistical significance of differences in fractal dimension based on 
diagnosis was assessed by conducting a three-way analysis of covariance 
(ANCOVA), testing for the effect of interest (diagnostic condition, with 
three levels: control, MCS and UWS) while controlling for DWI sequence 
type (12 vs 63 directions) and number of removed volumes due to 
motion corruption, as covariates of no interest. Upon finding the effect 
of interest to be statistically significant, we conducted post-hoc tests 
using three pairwise comparisons between the conditions (control vs. 
MCS, control vs. UWS, and MCS vs. UWS) while still controlling for DWI 
sequence type and number of removed volumes. We adopted the method 
of Benjamini and Hochberg (Benjamini and Hochberg, 1995) to control 
the false discovery rate across these three pairwise comparisons, at a 
two-sided alpha value of 0.05. The same covariates of no interest (DWI 
sequence type and number of removed volumes) were also included 
when comparing FMRI+ and FMRI- patients. To ensure the robustness of 
our results, we also carried out a validation analysis without including 
the covariates and using permutation-based testing to ensure robustness 
to outliers (two-sided between-subjects t-tests with 10,000 permuta-
tions); effect size was estimated using Cohen’s d. 

3. Results 

3.1. Reduced fractal dimension in patients with disorders of consciousness 

We compared weighted fractal dimension of structural brain net-
works across N = 20 healthy controls and N = 21 DOC patients 
belonging to different diagnostic categories (N = 11 MCS and N = 10 
UWS). Analysis of covariance indicated a significant effect of condition 
(control, MCS, UWS) on weighted fractal dimension (FD): F(2,36) =
19.53, p < 0.001. Follow-up FDR-corrected pairwise tests indicated that 
UWS patients had significantly lower fractal dimension of structural 
brain networks than both healthy controls and MCS patients (Fig. 2 and 
Table 2). The difference between DOC patients with different aetiologies 
(traumatic vs anoxic injury) was not significant at the standard alpha 
value of 0.05, although this result should be interpreted with caution 
given the small group sizes (Supplementary Table 1). 

3.2. Preserved fractal dimension in patients exhibiting functional MRI 
evidence of consciousness 

Intriguingly, Fig. 2 reveals that out of 8 FMRI+ DOC patients, i.e., 
those who were able to demonstrate evidence of consciousness by 
responding to mental imagery tasks, 6 have a structural fractal 
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dimension in the range of healthy controls. 
We therefore investigated whether ability to provide evidence of 

consciousness by successfully performing mental imagery tasks in the 
MRI scanner (Monti et al., 2010; Owen et al., 2006) is associated with 
preserved fractal dimension of the structural connectome. Indeed, we 
found that the structural brain networks of FMRI+ patients had signif-
icantly higher weighted fractal dimension than those of FMRI- patients 
(Table 3), who had failed to provide evidence of consciousness in terms 
of responsiveness to mental imagery tasks (note that classification as 
FMRI+ or FMRI- is independent of overt motor responses, i.e. the cri-
terion on which patients’ diagnoses are based). 

3.3. Validation of results 

To ensure the robustness of our results, we repeated our main anal-
ysis with permutation testing, without including the covariates of no 
interest. The results replicated our main analysis, including the signifi-
cant difference between FMRI+ and FMRI- patients, but also identified a 
significant difference (FDR-corrected) between healthy controls and 
MCS patients (Supplementary Figure 5 and Supplementary Table 2), 
which had become narrowly non-significant in our main analysis, after 
accounting for the covariates. 

To further ensure that our results were not critically dependent on 

our choice of parcellation type, parcellation side, or edge definition, we 
varied each of these aspects in turn: we replicated our analyses with the 
largest scale of the Lausanne parcellation (with 1000 cortical nodes) 
(Cammoun et al., 2012); with the 400-ROI version of the Schaefer par-
cellation (Schaefer et al., 2018); with binary rather than weighted edges; 
and with edges derived from probabilistic tractography performed in 
native space (Supplementary Figures 6–9 and Supplementary Tables 3- 
6); all these further analyses were controlled for the same covariates of 
no interest (DWI acquisition type and number of motion-corrupted 
scans). 

Compared with our main analysis, alternative analyses using 400 
nodes or binary edges both found additional significant differences 
(FDR-corrected) between healthy controls and MCS patients; 
conversely, fewer statistically significant differences were observed with 
the Lausanne parcellation and with alternative tractography: in both 
cases, the difference between MCS and UWS patients failed to reach 
statistical significance. Nevertheless, all analyses consistently revealed 
significant reductions in the fractal dimension of structural networks in 
UWS patients compared with healthy controls, demonstrating the 
robustness of this effect. Crucially, across our validation analyses the 
majority of FMRI+ patients consistently exhibited structural fractal 
dimension in the range of healthy controls, significantly higher than 
FMRI- patients. 

4. Discussion 

Here, we investigated whether the fractal dimension of structural 
brain networks is reduced in patients suffering from disorders of con-
sciousness due to severe brain injury. Supporting previous findings 
pertaining to functional brain networks (Varley et al., 2020b), our re-
sults indicate that impaired consciousness is reflected in a reduction in 
the self-similarity across scales (fractal dimension) of the brain, when 
viewed as a network of anatomical connections. Specifically, the struc-
tural connectomes of patients with more severe disorders of conscious-
ness (UWS as opposed to MCS) are less self-similar across scales. The 
observation of reduced structural fractal dimension in patients suffering 
from disorders of consciousness is robust to how nodes and edges in the 
networks are defined. Some of our alternative approaches also identified 
subtler differences between healthy controls and MCS patients, and 

Fig. 2. Reduced structural fractal dimension across 
disorders of consciousness. Violin plots indicate the 
distribution of weighted fractal dimension of struc-
tural brain networks for healthy controls (CTRL), 
minimally conscious patients (MCS), and patients 
diagnosed with unresponsive wakefulness syndrome 
(UWS). Circles with “+” signs indicate DOC patients 
who provided evidence of covert consciousness by 
performing mental imagery tasks in the scanner. 
White circle, median; blue center line, mean; box 
limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range. * p < 0.05; *** p < 0.001, FDR- 
corrected across three pairwise comparisons. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   

Table 2 
Statistical comparisons of weighted fractal dimension between pairs of condi-
tions, using the Schaefer-1000 parcellation.  

Contrast Estimate SE tStat EffSize pVal 

CTRL vs MCS − 0.035  0.019 − 1.845 − 0.331  0.076 
CTRL vs UWS − 0.154  0.021 − 7.315 − 1.336  <0.001 
MCS vs UWS − 0.068  0.027 − 2.535 − 0.553  0.021  

Table 3 
Statistical comparisons of weighted fractal dimension between FMRI+ and 
FMRI- DOC patients, using the Schaefer-1000 parcellation.  

Contrast Estimate SE tStat EffSize pVal 

FMRI+ vs FMRI- − 0.064  0.026 − 2.463 − 0.537  0.025  
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between MCS and UWS patients (although replication in a larger sample 
will be required). We note that in order to avoid reductions in our 
limited sample size, we included in this analysis DTI data from two 
different DTI acquisitions. However, we explicitly controlled for this 
potential confound in our statistical models. Additionally, we are reas-
sured by the fact that both acquisition cohorts comprised MCS and UWS 
patients, with both traumatic and anoxic brain injury, and including 
both FMRI+ and FMRI- patients. 

Though widely used to clinically assess a patient’s level of con-
sciousness, behavioural responsiveness to commands relies on patients’ 
ability to carry out the required motor actions. As a result, clinical 
diagnosis of DOC patients is fraught with difficulties, and up to 40% of 
misdiagnoses have been reported (Naci et al., 2017). By bypassing the 
need for motor responses, mental imagery tasks in the scanner have 
proved efficacious to detect residual, “covert” consciousness despite a 
patient’s inability to overtly execute motor responses (Monti et al., 
2010; Owen et al., 2006). 

It has been argued that fractal organisation is crucial in balancing the 
brain’s opposing needs for integration and differentiation (Gallos et al., 
2012b, 2012a; Ruiz de Miras et al., 2019) – two key requirements for 
consciousness, according to leading theoretical work (Balduzzi and 
Tononi, 2008; Tononi et al., 1994). Crucially, fractal dimension of the 
structural connectome was associated not only with clinical diagnosis 
(based on overt behavioural responsiveness), but also with patients’ 
ability to provide evidence of consciousness by performing mental im-
agery tasks in the MRI scanner (Monti et al., 2010; Owen et al., 2006). 

Intriguingly, these results complement recent evidence from func-
tional MRI in the same patients (Luppi et al., 2020b), which showed that 
the brain dynamics of FMRI+ patients are not significantly different 
from those of healthy controls – whereas both healthy controls and 
FMRI+ patients are significantly different from FMRI-, whose brain 
dynamics resemble those of anaesthetised volunteers. The technique 
used in that study (Luppi et al., 2020b), known as “connectome har-
monic decomposition”, relates brain dynamics to the underlying con-
nectome (Atasoy et al., 2016). Although a group-average healthy 
connectome was used (Luppi et al., 2020b), future connectome har-
monic research may seek to identify whether the difference in fractal 
character of patients’ individual connectomes may contribute to explain 
the corresponding differences in brain dynamics. 

Thus, the present findings support the notion that severe brain injury 
may induce loss of consciousness due to compromised information 
transmission and processing capabilities of the human brain, as is also 
suggested by work using functional approaches (Luppi et al., 2019; 
Varley et al., 2020b). Importantly, fractal dimension of the structural 
connectome is based entirely on brain anatomy rather than function, 
and therefore measuring the structural fractal dimension does not 
impose any linguistic, volitional or cognitive demands on patients – in 
fact, it does not even depend on patients’ levels of arousal, which is 
crucial for functional data and assessment of responsiveness. Addition-
ally, structural brain networks may be expected to be less variable over 
time than functional ones, which are known to be inherently dynamic 
and variable from moment to moment (Allen et al., 2014; Demertzi 
et al., 2019; Luppi et al., 2019; Zamani Esfahlani et al., 2020); indeed 
structural networks may exhibit higher reproducibility over time than 
functional ones (Lawrence et al., 2018), which may provide additional 
advantages as a prognostic tool. Future longitudinal studies may 
investigate whether recovery of consciousness is associated with a cor-
responding recovery of fractal dimension of the structural connectome, 
and whether the latter is predictive of the former within individual 
patients. 

Although the small sample size of the present study warrants caution 
and calls for replication in larger cohorts, we tentatively propose that 
this neuroanatomical measure may represent a useful addition to 
behavioural assessments in the clinic: DOC patients whose structural 
fractal dimension is comparable to that of a healthy brain, may be 
especially promising candidates for more in-depth examination, such as 

by means of mental imagery tasks in the scanner (Monti et al., 2010; 
Owen et al., 2006; Craig et al., 2021), task-free paradigms (Naci et al., 
2017), or other indices of residual consciousness such as the Perturba-
tional Complexity Index (Casali et al., 2013). Of course, some FMRI- 
patients exhibited preserved fractal dimension, and not all FMRI+ pa-
tients had high levels of structural fractal dimension. Likewise, some 
FMRI+ patients were behaviourally characterised as unresponsive (UWS 
diagnosis), as were some patients with relatively preserved fractal 
dimension. Such variability is not surprising: DOCs are highly hetero-
geneous conditions, not only in terms of severity, but also varying in the 
cause, location and extent of brain damage. 

Therefore, it is important to emphasise that here we do not advocate 
for assessment of structural fractal dimension as being an alternative to 
either clinical assessment or fMRI task-based assessment of covert con-
sciousness: rather, we view these various measures as providing com-
plementary insights. Likewise, here we do not claim that high fractal 
dimension of the structural connectome is either sufficient nor necessary 
for the presence of consciousness – although the present findings do 
suggest that an association exists between these aspects, in line with 
theoretical proposals. Future work employing personalised medicine 
approaches and computational modelling (Cofré et al., 2020; Kringel-
bach and Deco, 2020; Luppi et al., 2021) may provide additional insights 
into the origin and clinical significance of this association, by identifying 
patient-specific sources of reduced structural fractal dimension. 

4.1. Conclusion 

Overall, we demonstrate that disorders of consciousness arising from 
severe brain injury correspond to reduced self-similarity across scales in 
the network organisation or the brain’s anatomical connections. How-
ever, we also show that structural fractal dimension is preserved in 
patients who are able to provide evidence of consciousness by per-
forming mental imagery tasks in the scanner. It is our hope that this 
measure may prove to have prognostic value in the clinic, com-
plementing measures that rely on patients’ ability to overtly or covertly 
respond to commands. 
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