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Abstract: Candida albicans is a commensal opportunistic yeast, which is capable of colonising many
segments of the human digestive tract. Excessive C. albicans overgrowth in the gut is associated with
multiple risk factors such as immunosuppression, antibiotic treatment associated with changes to
the gut microbiota and digestive mucosa that support C. albicans translocation across the digestive
intestinal barrier and haematogenous dissemination, leading to invasive fungal infections. The C.
albicans cell wall contains mannoproteins, β-glucans, and chitin, which are known to trigger a wide
range of host cell activities and to circulate in the blood during fungal infection. This review describes
the role of C. albicans in colonic inflammation and how various receptors are involved in the immune
defence against C. albicans with a special focus on the role of mannose-binding lectin (MBL) and TLRs
in intestinal homeostasis and C. albicans sensing. This review highlights gut microbiota dysbiosis
during colonic inflammation in a dextran sulphate sodium (DSS)-induced colitis murine model and
the effect of fungal glycan fractions, in particular β-glucans and chitin, on the modification of the gut
microbiota, as well as how these glycans modulate the immuno-inflammatory response of the host.
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1. Introduction

Candida albicans is a commensal yeast and a natural saprophyte of the human diges-
tive tract and vagina [1,2]. The digestive tract is considered to be the main reservoir for
infection [3,4]. It is known that candidaemia and disseminated candidosis are usually
endogenous and mainly originate from the gut microbiota [4]. Excessive colonisation of the
digestive mucosa by C. albicans is associated with risk factors such as immunodeficiency
and changes to the digestive tight junction, intestinal barrier and gut microbiota dysbio-
sis following treatment with antibiotics, radiotherapy or immunotherapy (Figure 1) [5].
These factors favour translocation of the yeast across the epithelial barrier and possible
haematogenous dissemination resulting in serious disseminated infections [2]. C. albicans
possesses a cell wall rich in glycans. This cell wall is the first contact between the yeast and
its host and plays an important role in modulation of the immune response of the host [6].
Interaction between Candida and host cells is critical for initial fungal colonisation of the
host and for induction of different processes leading to infection [4].

The cell wall of C. albicans is a complex layered and dynamic structure [7]. The structure
of the C. albicans cell wall consists of deep layers of chitin and more or less dense β-1,3
and β-1,6 glucans in the intermediate layers [8]. Chitin is a β(1,4)-linked homopolymer of
N-acetylglucosamine that folds in an anti-parallel manner forming intra-chain hydrogen
bonds [9]. These chitin microfibril chains are covalently attached to β(1,3)-glucan to form
the inner skeleton of the C. albicans cell wall [9]. The surface of the cell wall is covered with
phosphopeptidomannan (PPM), which is not linked covalently [10]. C. albicans is capable
of synthesising β-mannosyls, which are associated with α-mannosyls in PPM, while they
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are expressed electively and associated non-covalently at the cell wall surface in a secreted
glycolipid named phospholipomannan (PLM) [10]. In his review of the C. albicans cell wall,
Poulain describes the link between C. albicans and Crohn’s disease (CD) [4].

Numerous C. albicans cell wall adhesins have been shown to exert an influence on
epithelial attachment, including Als3 (a member of the C. albicans agglutinin-like sequence)
and Ssa1 (a member of the heat-shock protein family), which induce epithelial cell endocy-
tosis of C. albicans hyphae by binding to the epithelial receptor E-cadherin [11,12]. Addition-
ally, Als3 and Ssa1 are recognised by the epidermal growth factor receptor (EGFR/HER1)
and HER2 that induce epithelial cell endocytosis of C. albicans (Figure 1) [13].
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Figure 1. Schematic representation of some mechanisms that promote the passage of C. albicans
through the intestinal barrier. (i) Dysbiosis, associated or not with inflammatory lesions of the
intestinal mucosa and effraction of the intestinal barrier; (ii) a decrease in watertightness of the
epithelium (tight junctions) and mucus layer; (iii) endocytosis by M cells (microfold cells) situated in
the intestinal epithelium, dendritic cells or macrophages; (iiii) endocytosis by epithelial cells, such
as the interaction between Als3 or Ssa1 on the hyphal surface of C. albicans and epithelial cells of
E-cadherin.

2. Role of C. albicans in Colonic Inflammation

The role of yeasts in modulation of colonic inflammation has received growing in-
terest from researchers for two reasons. The first concerns the yeast C. albicans, which is
both a frequent commensal of the digestive tract and an opportunistic pathogen [3]. The
second concerns a possible link between C. albicans and CD [4,14,15]. Different clinical and
experimental studies have revealed that infection with C. albicans can generate a panel of
anti-glycan antibodies, described under the acronyms ASCA (anti-Saccharomyces cerevisiae
antibodies), ALCA (anti-laminaribioside) and ACCA (anti-chitobioside), which are serolog-
ical markers of CD [6,14,16,17]. CD is a chronic transmural inflammatory bowel disease
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(IBD) that most commonly affects the distal ileum and colon but may occur in any part of
the digestive tract [18].

The mechanisms responsible for the development of CD result from the interaction
between genetic susceptibility, environmental factors, infectious factors and/or immuno-
logical mechanisms. Chronic intestinal inflammation in CD is probably related to changes
in gut microbiota composition and dysbiosis of the gut fungal microbiota [19].

Li et al. showed that fungal richness and diversity were significantly elevated in
the inflamed mucosa compared to the non-inflamed mucosa in CD patients [19]. From
an experimental point of view, the involvement of C. albicans overgrowth in mucosal
damage was explored in a murine model of dextran sulphate sodium (DSS) induced
pre-inflammation of the colon [20]. In this DSS model, C. albicans exacerbates colonic
inflammation induced by DSS in mice and conversely, DSS colitis promotes C. albicans
overgrowth [20]. In parallel, C. albicans overgrowth in mice with DSS-induced colitis
generated ASCA, suggesting that circulating C. albicans mannan can induce the production
of these glycan antibodies during intestinal inflammation [3,20].

This DSS model, which promotes the overgrowth of C. albicans, was also used to
investigate the role of the gut microbial environment and the beneficial effects of probiotics
on colonisation by Candida spp. and inflammation [15]. Saccharomyces boulardii, a variety
of S. cerevisiae, known as a non-pathogenic yeast, is recognised to have a beneficial probiotic
effect when administered orally as a lyophilised preparation to treat antibiotic-associated
diarrhoea, acute infectious gastroenteritis and Clostridioides difficile infection [21,22]. After
repeated administration, S. boulardii reaches steady-state concentrations in the colon within
3 days and is completely eliminated from stools 2–5 days after discontinuation [23]. In
the DSS-induced colitis model, the administration of S. boulardii decreased colonisation by
C. albicans as well as colonic inflammation in mice, with a reduction in pro-inflammatory
cytokine expression and a difference in expression of TLR2 [15]. This study revealed that
oral administration of S. boulardii promotes the elimination of C. albicans, reduces mucosal
injury mediated via TLR and modulates cytokine expression [15].

In addition, among the dozen strains of S. cerevisiae (industrial yeasts used in human
and animal foodstuffs) tested, one S. cerevisiae strain was found to have probiotic properties
and was able to reduce both C. albicans overgrowth and colonic inflammation in mice [24].
Surprisingly, some yeast strains closely related to S. cerevisiae caused mucosal injury and
mouse mortality [24]. Subsequently, the cell wall components (mannan and β-glucans) of
S. cerevisiae exhibiting probiotic properties were extracted in order to define the molecular
basis for the beneficial or deleterious effects of these components on the host immune
response [24]. These studies revealed that in contrast to mannan, extracts of β-glucans
(derived from S. cerevisiae or even C. albicans), described classically as pro-inflammatory,
had beneficial activities against colonic inflammation and colonisation by C. albicans [24].
The strain of S. cerevisiae chosen in this study was used in a clinical trial in patients with
irritable bowel syndrome (IBS) [25]. Treatment with this yeast gave promising results in
these IBS patients via a reduction abdominal pain/discomfort scores [25]. By contrast, in
a recent study showing that colonisation with S. cerevisiae enhanced the metabolism of
purine, leading to an increase in uric acid production, Sendid et al. showed no correlation
between the level of uric acid and ASCA levels in a clinical study of a cohort of CD patients,
indicating that S. cerevisiae is not involved in the increase in uric acid levels in patients with
CD [26].

The contribution of β-Mans to the virulence of Candida spp., in particular C. glabrata,
a species frequently isolated in human disease, was explored using the DSS-induced colitis
model [27]. Like C. albicans, C. glabrata is a pathogenic yeast that causes severe infections in
humans, including bloodstream and mucosal infections [28,29]. C. glabrata is a significant
clinical problem in immunocompromised patients where it can disseminate from the gut to
cause systemic candidosis [30]. Systemic C. glabrata infections are associated with a higher
mortality than C. albicans infections [31]. In the DSS-induced colitis model, C. glabrata
deficient in β-Mans was less virulent than the parental strain in terms of colonisation,
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mortality rate and clinical and histological scores for intestinal inflammation, suggesting
that β-Mans play a crucial role in the processes of pathogenesis/virulence of C. glabrata
during intestinal inflammation [27].

The C. albicans transition from blastoconidia to hyphal forms plays a crucial role in
C. albicans pathogenesis and this transition affects the fungal cell wall composition and
immune reactivity [32,33]. Different virulence factors are expressed by the C. albicans hyphal
form, including the Sap family of secreted aspartyl proteases, cell surface adhesins like
Als3, Hwp1 and Hyr1, the pore-forming toxin (candidalysin) and pH-regulated antigen
1 (Pra1) [32–34]. Witchley et al. showed that C. albicans strains lacking SAP6 or the
transcription factor Ume6 exhibited high colonisation fitness in the mouse gut [35]. In mice
with DSS-induced colitis, vaccination of mice with C. albicans Als3 protein (NDV-3A) did
not affect C. albicans morphology or intestinal fungal burden, but NDV-3A decreased C.
albicans-associated damage [36].

Several classes of pattern recognition receptors (PRRs) have been implicated in the
recognition of C. albicans pathogen-associated molecular patterns (PAMPs), including inte-
grins, TLRs and C-type lectin receptors (CLRs), and excellent reviews have been published
on this subject (Figure 2) [37–39]. These PRRs play a crucial role in the initiation of the
innate immune response against pathogenic yeasts and in modulation of the inflammatory
response [39]. With regards to integrins, αMβ2 and αXβ2 have been implicated in the
recognition of the C. albicans cell wall [40–42]. Mice deficient in these integrins displayed
increased susceptibility to systemic infection by C. albicans [40,41]. In terms of CLRs, C.
albicans is recognised by several CLRs, including galectin-3, dectin-1 and mannose-binding
lectin (MBL) [37]. It has been shown that galectin-3 recognises β-Mans of C. albicans [43]. In
the DSS model, the potentialisation of inflammation induced by C. albicans was under the
control of galectin-3 as well as TLR2 in mice, emphasising the role of these two receptors in
the recognition of C. albicans [20]. In addition to galectin-3, dectin-1 recognises β-1,3-glucans
of C. albicans [37,44]. Mice lacking dectin-1 are more susceptible to DSS-induced colitis than
wild-type mice, indicating the result of altered responses to endogenous fungi [45].
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3. Role of MBL and TLRs in Intestinal Homeostasis and C. albicans Sensing

MBL is a soluble lectin present in serum [46]. It is mainly synthesized by hepato-
cytes before being released into blood circulation [46]. MBL is composed of a terminal
amino region rich in cysteine followed by a collagenous region, a type C lectin (terminal
carboxy domain) and what is known as the carbohydrate-recognition domain (CRD) at
the C-terminal [47]. MBL induces activation of the lectin complement pathway after mi-
croorganism recognition through the CRD [48,49]. The MBL CRD senses polysaccharide
patterns, such as D-mannose, N-acetylglucosamine and L-fucose, on different clinically
relevant pathogens [50–52]. MBL circulates in the form of a hetero complex with MBL-
associated serine protease (MASP) 1, 2 and 3 [53]. Only one form of human MBL has been
characterised, while two forms of MBL (A and C) are found in rodents and monkeys [54].
Additionally, MBL-A has been considered to be the serum form while MBL-C has been
called the liver form in rodents [55]. Choteau et al. reported that expression of MBL
was observed in human intestinal epithelial cells (biopsies of colon from the operating
room) and that this MBL expression was mediated by PPARγ and influenced by C. albicans
sensing (Figure 3) [56]. In a murine model, the expression of two forms of MBL (A and
C) was demonstrated in epithelial cells from the stomach, caecum and colon of C57BL/6
mice [56]. This expression was increased when the mice were colonised by C. albicans
although serum levels did not vary [56]. A deficit of MBL favoured colonisation by C.
albicans and dissemination of the yeast in the presence of DSS-induced colitis [56].
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Figure 3. Expression of MBL in epithelial cells in response to C. albicans sensing and PPARγ activation.
Epithelial cells produced MBL after C. albicans sensing alone or with PPARγ agonist pioglitazone
treatment [56]. PPARγ and TLR sensing by C. albicans led to MBL production in the epithelial cells.

MBL can interact with other receptors of the innate immune system, such as TLR2 and
TLR4 [57]. It has also been demonstrated that MBL reacts with TLR2 during infection with
Staphylococcus aureus [58]. It is well known that TLRs are crucial innate immune components
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that recognise C. albicans PAMPs [59]. Mutations and dysregulation of TLRs are important
factors that contribute to predisposition and susceptibility to IBD [60]. Different studies
have shown that TLR activation by commensal bacteria contributes to colonic homeostasis
and tolerance induction in the gut [61–63].

The role of TLR1, TLR2 and TLR6 has been explored in the DSS-induced colitis
model [64]. TLR2, associated with TLR1 or TLR6, is involved in the recognition of C. albicans
and maintenance of the intestinal barrier [64]. Additionally, TLR1 and TLR2 participate in
the defence against colonisation/infection by C. albicans, with deficiency of these receptors
leading to dissemination of the yeast. Conversely, TLR6 favours intestinal colonisation
by C. albicans [64]. These experimental studies suggest that MBL and TLR1/TLR2/TLR6
regulate the expression of pro-inflammatory cytokines involved in Th1 and Th17 responses
during colonic inflammation and play a crucial role in establishing a balanced immune
response against C. albicans [56,64].

In addition to these experimental studies, a clinical study focused on the quantitative
and qualitative variations in MBL in patients with CD and their possible link with the
persistence of colonic inflammation. The study on 256 CD patients demonstrated that
the MBL2 gene was associated with a quantitative deficit of MBL and a qualitative deficit
of the MBL-MASP complex in healthy subjects and patients [65]. This polymorphism
rs5030737 of the MBL2 gene was associated with high levels of ASCA in CD patients
and was frequently associated with severe forms of the disease [65]. These experimental
and clinical data demonstrate intestinal production of MBL for the first time, which is
modulated by colonisation with C. albicans. They confirm the role of MBL and TLRs in
intestinal homeostasis and defence against C. albicans. Furthermore, the clinical study on
the group of CD patients demonstrated that a fault in the functional activity of the MBL-
MASP complex in CD patients with polymorphisms of the genes for MBL2 and NOD2
could lead to a severe phenotype of the disease [65].

4. Impact of Colonic Inflammation on the Gut Microbiota and How a Decrease in
Anaerobic Bacteria Populations Promote Fungal Overgrowth

The gut microbiota constitutes a natural barrier against the proliferation of oppor-
tunistic pathogens [66]. The current leaning is in favour of a predominant role of intestinal
microbiota in the initiation and persistence of CD lesions. The role of the saprophytic
gut microbiota as an initiator was strongly suspected from several studies conducted in
animals that developed inflammatory colitis, where the presence of the gut microbiota was
essential for the development of inflammation. Thus, mice (IL-10 knockout) developing
inflammation of the intestinal mucosa under normal breeding conditions did not develop
colitis under germ-free conditions [67,68]. Bacteria belonging to the phyla Bacteroidetes
and Firmicutes dominate the gut and, to a lesser extent, species from Proteobacteria and
Actinobacteria. Frank et al. demonstrated that patients with chronic IBDs had a decrease in
bacteria of the phyla Bacteroidetes and Firmicutes and an excess of bacteria of the phyla
Actinobacteria and Proteobacteria [69]. This imbalance in the intestinal microbiome is
known as dysbiosis. Li et al. showed that the expansion of fungal diversity is most likely a
consequence of bacterial microbiota imbalance in CD [19]. In intensive care units, alteration
of the dynamic balance between the fungal and bacterial microbiota is often observed after
antibiotic or immunosuppressive therapy [70].

In the DSS-induced colitis model, an increase in Proteobacteria, mainly Escherichia
coli, was observed during colonic inflammation and fungal overgrowth (Figure 4) [71,72].
Evidence showed that E. coli populations likely profit from increased oxygen availability
in the inflamed colonic mucosa and exploit the inflamed gut environment to acquire a
growth advantage when compared to anaerobic bacteria like Lactobacillus or Bifidobacte-
ria [71,73]. These experimental observations are consistent with clinical studies showing
that CD-associated E. coli with pro-inflammatory properties is adhesion-invasive E. coli
(AIEC) [74]. AIEC increased in about 38% of patients with active CD compared to 6% in
healthy subjects [74].
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mice with DSS-induced colitis and fungal overgrowth. Average proportions of each phylum were
determined from two previous studies reporting the results in healthy mice (control), mice treated
with DSS and mice with DSS and fungal overgrowth [71,72].

The gut microbiota can modulate the immune response through diverse microbial
metabolites, including the production of short-chain fatty acids (SCFAs; e.g., acetate, bu-
tyrate and propionate) that exert several effects on host metabolism and the immune
system [66]. SCFAs are produced from indigestible carbohydrates such as dietary fibre
and resistant starch [66]. Mechanistically, SCFAs activate signalling pathways through
cell surface G-protein coupled receptors (GPCRs) like GPR41 (free fatty acid receptor 3;
FFAR3), GPR43 (free fatty acid receptor 2; FFAR2) and GPR109A (hydroxycarboxylic acid
receptor 2; HCAR2) to induce signalling cascades that control immune functions [66,75]. In
terms of the role of SCFA in antifungal activity, sodium butyrate inhibited both the growth
and filamentation of C. albicans and enhanced the antimicrobial actions of macrophages
in response to C. albicans sensing [76]. Metabolites secreted by some human gut-derived
microbes exert antifungal activity against C. albicans [76,77]. Garcia et al. showed that the
gut microbial metabolome has antimicrobial properties via inhibition of both C. albicans
filamentation and fungal invasion of human colonic epithelial cells [77].

The effect of C. glabrata overgrowth on the gut microbiota has been also investigated
in the DSS-induced colitis model [71]. This study showed an increase in populations of E.
coli, Enterococcus faecalis and Bacteroides vulgatus, as well as a reduction in populations of
anaerobes in particular, Lactobacillus johnsonii, Bacteroides thetaiotaomicron and Bifidobacterium
animalis [71]. This bacterial reduction was more pronounced for populations of L. johnsonii
during proliferation of C. glabrata. In line with this study, it has been shown that Lactobacilli
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antagonised C. albicans virulence in an in vitro gut model by shedding of C. albicans hyphae
from the epithelial surface [78].

The cell wall of C. glabrata underwent modification during its passage through the
digestive tract and showed a significant increase in cell wall chitin and β-Mans [71]. C.
glabrata cell wall modification is more related to colonic inflammation than to bacterial
dysbiosis, since this modification occurs in the days corresponding to the onset of inflam-
mation and not while the bacterial population changes [71]. According to these findings, C.
glabrata deficient in chitin synthase-3 caused less inflammation than the parental strain in
the DSS-induced colitis model [71].

Given that B. thetaiotaomicron and L. johnsonii populations are greatly disturbed during
the development of colitis and C. glabrata overgrowth, oral administration of L. johnsonii
and B. thetaiotaomicron restored the imbalance between aerobic and anaerobic populations
of mice challenged with C. glabrata and treated with DSS [79]. Additionally, restoration
of these two bacteria attenuated the inflammatory parameters revealed by a significant
decrease in clinical and histological scores for inflammation (Figure 5). L. johnsonii and B.
thetaiotaomicron also reduced the expression of pro-inflammatory mediators and enhanced
anti-inflammatory cytokine responses [79]. Additionally, high chitinase-like protein-1
activation, which promotes the elimination of C. glabrata from the gut, was observed in
these mice (Figure 5). Further investigation demonstrated that B. thetaiotaomicron induced
degradation of C. glabrata α-mannan in the cell wall mediated via mannosidase-like ac-
tivities while L. johnsonii exhibited chitinase-like activity, which was correlated with the
degradation of chitin and the elimination of C. glabrata (Figure 5) [79].
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B. thetaiotaomicron and L. johnsonii increased IgA secretion in the colon, which was
correlated with a decrease in E. coli, E. faecalis and C. glabrata populations in mice [79]. In
line with this observation, the absence of secretory IgA increased C. albicans hyphal growth
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in the mouse gut, suggesting that IgA is involved in the control of fungal commensalism
in the gut [36,80,81]. Doron et al. showed that IgA produced in the gut plays a role in
regulating intestinal fungal commensalism and offers a protective mechanism that might
be dysregulated in CD patients [80].

5. Effect of Fungal Glycans on the Modulation of Intestinal Inflammation and C.
albicans Overgrowth

Chitin has been shown to have anti-ulcer, anti-tumour and anti-inflammatory activ-
ities [82–84]. Wagner et al. reported that oligosaccharides derived from chitin have the
potential to induce IL-10 secretion through NOD-2 and TLR-9 signalling, favouring atten-
uation of the inflammatory response [85]. In terms of chitin digestion, chitin-degrading
enzymes, known as chitinases, and chitinase-like proteins are produced by humans and
other mammals [86,87]. These chitinases and chitinase-like proteins play a crucial role in
the digestion of chitin-containing food and the immune defence against chitin-containing
pathogens and parasites [86,87]. Evidence shows that high chitinase-3 like-protein expres-
sion was correlated with C. glabrata elimination from the gut (Figure 5) [71]. Additionally,
oral administration of chitin in the DSS-induced colitis model reduced the number of
aerobic bacteria and proliferation of C. glabrata, and decreased the impact of colitis medi-
ated by the expression of TLR-8, dectin-1 and PPARγ and anti-inflammatory mediators
(Figure 6) [71]. These observations are consistent with recent experimental studies, which
showed that the anti-inflammatory effects of chitin are dependent on both TLR-2 and CD14
in the DSS-induced colitis model [88].
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Figure 6. Impact of treatment with fungal chitin on the modulation of intestinal inflammation, C.
glabrata overgrowth and the gut microbiota [71].

Like chitin, the molecular structure of β-glucans plays a crucial role in the immunologi-
cal activities of mice and can modulate the activation or inhibition of leukocyte receptors [7].
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β-Glucan has been shown to boost the host’s defence against bacterial, viral and pathogenic
fungal infections [89]. Oral administration of β-glucans to mice diminished the prolifera-
tion of aerobic bacteria, in particular populations of E. coli and E. faecalis, while populations
of L. johnsonii and B. thetaiotaomicron increased significantly [72]. Treatment with β-glucans
increased the production of IL-10 mediated by PPARγ, promoting the attenuation of colitis
and elimination of C. glabrata [72]. In line with this study, soluble β-glucan fractions from
either S. cerevisiae or C. albicans exhibited a potent anti-inflammatory effect against colonic
colitis induced by DSS in mice, indicating that oral administration of β-glucans can boost
the immune response by restoring the gut microbiota and offering therapeutic perspectives
for intestinal disorders and invasive fungal infections.

6. Role of Novel Antifungal Compounds on the Modulation of Inflammatory
Parameters and Candida Overgrowth in the DSS-Induced Colitis Model

Resistance of C. albicans to antifungal drugs has increased considerably over the
past three decades [90]. Most of the antifungal drugs available for clinical use target
ergosterol, the major sterol present in fungal membranes, the biosynthesis of ergosterol
or β-glucan biosynthesis [91]. The echinocandin antifungals (caspofungin, micafungin
and anidulafungin) are cyclic hexapeptide agents that affect fungal cell wall biosynthesis
by inhibition of β-1,3 glucan synthase [91]. Echinocandins are fungicidal against the
majority of Candida spp. The fungicidal polyenes (e.g., amphotericin B) bind ergosterol in
fungal cytoplasmic membranes to form membrane-spanning channels that allow leakage of
essential intracellular components and fungal cell death [90,92]. The triazoles (fluconazole,
itraconazole, voriconazole and posaconazole) are fungistatic antifungal drugs against
Candida spp. They constitute the major class of antifungal drugs in clinical use [91]. The
triazoles are heterocyclic synthetic compounds that inhibit fungal cytochrome P45014DM,
which is involved in the conversion of lanosterol to ergosterol. Some C. glabrata strains
exhibit intrinsic resistance to azoles and even susceptible strains rapidly acquire resistance,
prompting clinicians to recommend echinocandin drugs as a first-line treatment for C.
glabrata infections [93]. Currently, C. glabrata resistance to echinocandins is increasing and
this rise is accompanied by a parallel increase in azole resistance, leading to the selection
of multidrug-resistant strains [94,95]. Most alarming are the recent global outbreaks of
C. auris, which exhibits increased resistance to all antifungal drug classes so that these
antifungals are not effective therapeutic options [91,96].

Exposure of C. albicans to antifungal drugs triggers stress responses that allow Can-
dida cells to benefit from different cellular responses, such as the development of muta-
tions, gross chromosomal rearrangements, overexpression of multidrug efflux pumps and
modulation of the cAMP protein kinase A (PKA) or Ca2+-calmodulin-calcineurin path-
ways [90,92]. The stress responses mediating triazole resistance activate the cyclic AMP
(cAMP)-protein kinase A (PKA) signalling pathway [91]. Dumortier et al. showed that N-[2-
(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), a PKA inhibitor, reduced
the viability of C. albicans and decreased the expression of pro-inflammatory cytokines and
innate immune receptors in colonic epithelial Caco-2 cells and macrophages [97]. Addition-
ally, H89 decreased colonic inflammation in mice with DSS-induced colitis and allowed
elimination of C. albicans from the gut [97]. In line with these observations, 2,3-dihydroxy-
4-methoxybenzaldehyde (DHMB), a key intermediate in the synthesis of some natural
compounds, including the antibacterial agents (±)-isoperbergin and perbergin, was effi-
cient against clinically isolated caspofungin- or fluconazole-resistant C. albicans strains [98].
DHMB decreased the clinical and histological scores for colonic inflammation and favoured
elimination of C. albicans from the intestine in the DSS-induced colitis model [98]. These
data were corroborated by a decrease in number of aerobic bacteria, while populations of
anaerobic bacteria were re-established in mice treated with DHMB [98].

In conclusion, colonic inflammation is involved in compositional changes to the mu-
cosal bacterial microbiota and dysbiosis of the gut fungal microbiota. When the mechanisms
that control the growth of these commensal organisms are disturbed, it is important to
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investigate whether a reduction in fungal colonisation/infection is due to: (i) gut microbial
metabolites or probiotic strains such as S. boulardii, for which a beneficial effect has been
reported on colonisation and dissemination of C. albicans and on intestinal inflammation;
(ii) the use of fungal glycans as prebiotics, particularly chitin or β-glucans; (iii) a build-up
and restoration of anaerobic bacteria, in particular L. acidophilus (L. johnsonii), B. thetaiotaomi-
cron and B. animalis; or (iv) biosourced anti-inflammatory/anti-fungal compounds. These
strategies may lead to the development of new and exciting ways to modulate colonic
inflammation and control fungal overgrowth.
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