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Abstract: Heavy metal pollution is currently an increasing threat to the ecological environment, and
the development of novel absorbents with remarkable adsorption performance and cost-effectiveness
are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel
(CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide
(NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of
modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze
the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of
CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maxi-
mum adsorption capacity was high—up to 114.6 mg/g under optimized conditions. Notably, the
subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold
deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly,
the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material
even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should
also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering
metal ions.

Keywords: thermo-responsive; Pb(II)-imprinted; cassava starch; adsorption; hydrogel

1. Introduction

Accompanied by the rapid development of industrial society, heavy metal pollution
has become an increasingly severe threat to ecological environment due to its extremely
high toxicity, carcinogenicity, and biological enrichment tendency. As a major type of wide
spread pollutants on the earth, lead ions (Pb(II)) stem from the industrial effluents from
metal smelting, mining, painting, battery, and leather industries [1]. To effectively diminish
the consistency of Pb(II) in aquatic environment, different treatments have been therefore
developed, including chemical precipitation, electrochemical process, ion exchanging,
membrane separation, adsorption method, etc. [2,3]. It is noteworthy that the adsorption
method is considered a highly promising approach featured with simplified operation,
flexible design, and convenience for recycle [4,5]. To date, many types of adsorbents have
been attempted for adsorption of Pb(II), e.g., carbon nanotubes [6], ferro-manganese binary
oxide [7], and kaolinite [8]. However, the employment of these materials is commonly
restricted by specific adverse aspects such as complicated production processes, high costs,
etc. Therefore, it is of great significance to develop a more competitive adsorbent for Pb(II)
on the premise of superior adsorption property and low production cost.

Ion-imprinted technology (IIT), developed from molecular imprinting technology
(MIT), is a specialized technique for synthesis of ion-imprinted polymer (IIP) that could be
employed as an efficient adsorbent with outstanding capacity of selective recognition and
adsorption of heavy metal ions [9]. During the preparation process of IIP, the target template
ions firstly coordinate with functional monomers to form complexes that further proceed to
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be polymerized with the presence of a cross-linking agent. After removal of template ions,
the specific binding sites would be formed, highly matching the template ions with unique
size, charge, coordination number, geometrical shape, and functional groups [10,11]. To
date, relevant efforts have been pursued to promote the applications of IIP for selective
recognition and recombination of target heavy metal ions from their aqueous solution.
For instance, the imprinted material fabricated by bacterial cellulose (matrix) and N-
isopropyl acrylamide (temperature-sensitive monomer) exhibited a maximum adsorption
capacity of Cu2+ as 140.9 mg/g, if pre-embedding Cu2+ as template ions. Moreover, its
high selectivity was also reflected by the fact that it could selectively adsorb Cu2+ to
a high level of 81.9 mg/g from a solution coexisted with seven other interfering ions
(0.5–9.0 mg/g) [12]. Recently, a novel Pb(II)-imprinted polymer (MnFe2O4@SiO2/GO-IIP)
applying magnetic and lamellar graphene oxide was successfully synthesized by surface
ion-imprinted technique. Its maximum adsorption capacity of Pb(II) in aqueous solution
was achieved as 58.8 mg/g within 30 min and more remarkably the resultant adsorbent
could be readily separated by a permanent magnet. Furthermore, its high stability and
reusability had also been verified from the results of regeneration experiments [13].

Recently, green polymer-based hydrogels have drawn extenstive attention for their ver-
satile potentials in the applications of biomedicine and environmental remediation [14,15].
They could also be served as base materials for IIP, whose chemical structure varies fol-
lowing the changes of external-environment factors (e.g., temperature, pH, illumination,
electromagnetic effect, etc.) [16]. Take the currently most investigated one, namely thermo-
responsive hydrogel as an example, its interior and exterior structure would be sponta-
neously varied when the ambient temperature changes. Chen et al. reported successfully
synthesizing a thermo-magneto-responsive poly (N-isopropyl acrylamide)-magnetite com-
posite hydrogel and its adsorption of Cr3+ occurred primarily in the temperature range of
25–50 ◦C. When the temperature dropped below 25 ◦C, desorption of Cr3+ turned out to be
the prevailing process. The maximum adsorption efficiency was achieved as 60.9% when
the initial concentration of Cr3+ was 20 mg·L−1 [17].

In the current study, we designed and prepared a cassava starch based Pb(II)-imprinted
thermo-responsive material (CPIT) by the combination of IIT and thermo-responsive tech-
nology via a gradient heating polymerization methodology. N-isopropylacrylamide (NI-
PAM) was applied as the thermo-responsive monomer, which was also reported to be
an important monomer material for preparation of graft copolymers [18,19]. In addition,
Pb(II) and cassava starch were adopted as target template ions and substrate, respectively.
Then, CPIT was obtained after thorough removal of template ions Pb(II) with deionized
water below its phase transition temperature. Compared with the existing heavy metal
adsorbents, this type of intelligent material is aiming to effectively and selectively adsorb
Pb(II) from wastewater by simple temperature controlling. The eco-friendly regeneration
of CPIT realized by cold water rinsing is attributed to its unique thermo-responsibility.
When the temperature is lower than the phase transition temperature of CPIT, the material
swells and releases the adsorbed Pb(II). In turn, if the treatment temperature is higher
than the phase transition temperature of CPIT, the material shrinks and regenerates the
recognition sites for Pb(II). In addition, the structural information and property of CPIT had
been revealed in terms of phase transition behavior, morphology, characteristic functional
groups, and thermal stability. Its adsorption and desorption performance of Pb(II) as well
as the corresponding adsorption mechanism were also studied prior to the investigation
of selective adsorption capacity on Pb(II) with existence of other interfering metal ions.
Moreover, the regeneration experiments of CPIT were carried out to evaluate its potentials
for large scale applications. It is expected that the current work might serve as a theoretical
and practical guide for preparation of other types of adsorbents aiming for different scenar-
ios by applying specific template ions or substrates, which would definitely promote the
industrialized applications of ion-imprinted polymers.
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2. Materials and Methods
2.1. Materials

Cassava starch (CS) was purchased from Hainan Herixiang Food Co., Ltd. (Haikou China). N-
isopropyl acrylamide (NIPAM), ammonium persulfate (AP), and N, N′-methylenebisacrylamide
(BIS) were supplied from Macklin Biochemical Co., Ltd. (Shanghai, China). Potassium
chloride, sodium chloride, lead nitrate, and nitric acid were purchased from Guangzhou
Chemical Reagent Co., Ltd. (Guangzhou, China).

2.2. Characterization

Thermal behavior of CPIT was determined by a Q100 differential scanning calorimeter
(Setara Instruments, Lyon, France) under N2 atmosphere in the range from 10 ◦C to 80 ◦C.
Both the heating and cooling rates were set as 10 ◦C/min. FTIR spectra of CS, NIPAM, and
CPIT were analyzed with a TENSOR 27 FTIR spectrometer (Bruker Corporation, Karlsruhe,
Germany) by KBr pellet method. All spectra were recorded in the range from 4000 cm−1 to
500 cm−1. Thermal stability of poly (N-isopropyl acrylamide) (PNIPAM) and CPIT was
evaluated by using a SDT Q600 thermogravimetric analyzer (TA Instruments, New Castle,
DE, United States) under a nitrogen atmosphere and test temperature was programed from
10 to 880 ◦C with a heating rate as 10 ◦C/min. The surface morphology of lyophilized CPIT
was observed by using an S-3000N scanning electron microscope (Hitachi, Tokyo, Japan)
with an accelerating voltage of 10 kV.

2.3. Preparation of CPIT

CPIT was polymerized by a gradient heating procedure [20]. Its detailed preparation
process and the mechanisms of adsorption and desorption of Pb(II) are presented in
(Figure 1). Briefly, 1.00 g CS, 0.15 g BIS, 2.11 g AP, a certain amount of NIPAM and Pb(II)
solution (2 mg/mL), and 100 mL deionized water were successively added to a three-
necked round-bottom flask that was submerged into a water bath with magnetic stirring.
The reaction was initiated at 30 ◦C and lasted for 3 h. After that, the temperature was
controlled at 40 ◦C, 50 ◦C, and 60 ◦C for 1 h each, and then maintained at 70 ◦C for 3 h.
CPIT was obtained after rinsing the resultant product thoroughly with deionized water
(5 ◦C) under vacuum filtration to remove the pre-imprinted Pb(II) and then stored at 10 ◦C
for future use. It was determined that around 99% of the trapped template ions had been
rinsed off according to the purification step mentioned above.
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2.4. Adsorption Performance and Mechanism of CPIT

The effects of adsorption temperature, adsorption time, pH value of initial solution,
and initial concentration of Pb(II) were investigated by single factor experiments. During
each run of adsorption, a given amount of wet CPIT (equivalent to 0.1 g dry weight) together
with 20 mL lead nitrate solution (initial concentration of Pb(II): 0.05–2.0 mg/mL) was intro-
duced into a 50 mL beaker. After adsorption by CPIT under pre-set conditions, the Pb(II)
concentration of the resultant solution was determined by a TAS-990SUPER AFG flame
atomic adsorption spectrophotometer (Beijing Purkinje General, Beijing, China). The actual
(Qt) and equilibrium (Qe) adsorption capacity were calculated by Equations (S1) and (S2)
(Supplementary Materials).

The pseudo-first-order and pseudo-second-order models were used to simulate the
adsorption kinetics of CPIT following Equations (S3) and (S4) (Supplementary Materials).
Furthermore, the isothermal adsorption data was fitted by Langmuir and Freundlich
models, expressed by Equations (S5) and (S6) (Supplementary Materials).

2.5. Desorption and Regeneration of CPIT

Pretreat a certain amount of CPIT in 1.7 mg/mL Pb(II) solution for 1.5 h to realize
saturated adsorption. Later, the treated sample was rinsed with deionized water for
three times under vacuum microfiltration to release Pb(II). Selection of suitable desorption
conditions in terms of desorption temperature (5–30 ◦C), desorption time (5–30 min), and
rinsing times (1–5) were also studied by single factor experiments and the desorption
efficiency (D%) was determined according to Equation (S7) (Supplementary Materials). The
regeneration of CPIT was carried out by applying all the suitable desorption conditions
screened above. The process of adsorption-desorption was repeated up to 10 times for
evaluating the adsorption capacity and desorption efficiency of the ultimate product.

2.6. Selective Adsorption of CPIT

A fixed amount of CPIT was submerged in a mixed solution containing Pb2+, Cd2+,
Mg2+, Ca2+, Cu2+, Fe3+, Na+, and K+. The initial concentration of each metal ion was
prepared as 1.7 mg/mL. After adsorption for 1.5 h at 55 ◦C, the resultant sample was
treated according to the similar procedure as described in Section 2.4.

3. Results and Discussion
3.1. Characterization of CPIT

The thermo-responsibility of different CPIT samples was reflected from their individ-
ual DSC thermograms. To better optimize the amounts of CS and NIPAM for preparation of
CPIT, different molar ratios of anhydroglucose units (AGU) in CS to NIPAM were adopted.
The mole number of AGU in CS (denoted as nAGU) was obtained by dividing the mass
of CS by the moalr mass of AGU (162 g/mol). As demonstrated in (Figure 2a,b), there
are no obvious endothermic or exothermic peaks observed for CPIT1 (nAGU:nNIPAM = 1:3)
and CPIT2 (nAGU:nNIPAM = 1:4) during corresponding heating or cooling process. This
might be due to the fact that a relatively low amount of NIPAM could not contribute
to a desired degree of polymerization, which is the prerequisite of achieving reversible
thermo-responsibility. It is necessary to note that, when the molar ratio of NIPAM to AGU
further increases up to 5, as for CPIT3 (nAGU:nNIPAM = 1:5), an evident endothermic peak
appears at 34.3 ◦C during heating scan from 20 ◦C to 60 ◦C. Besides, an exothermic peak
is also emerged around 30.2 ◦C from its cooling scan. The above results indicated that a
reversible thermo-responsive structure had been formed in CPIT by applying a proper
molar ratio between AGU and NIPAM as 1:5.
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The surface morphology of CPIT samples after adsorption and desorption of Pb(II) is
presented in (Figure 3). As shown in (Figure 3a,b), the surface of CPIT loaded with Pb(II) is
full of concave–convex structures, but with limited small voids. On the contrary, a large
number of holes evenly distributed in the sponge-like sample is observed in (Figure 3c,d).
This obvious difference in surface morphology accounts for the fact that the thermo-
responsibility of CPIT had been realized. In practical application, the voids existing in CPIT
shrink, recognize, and adsorb Pb(II) when the temperature increases. As a consequence, the
pores present in CPIT would be gradually filled up and disappear. When the material cools
down, resulting in a more expanded and loosened structure, which facilitates desorption of
Pb(II) and reappearance of the pores. In general, the purpose of adsorption or desorption
could be readily manipulated by adjusting the ambient temperature higher or lower than
its corresponding PTT.
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Figure 3. SEM images of CPIT samples after different treatments. (a) After adsorption of Pb(II) at
70 ◦C with high magnification; (b) After adsorption of Pb(II) at 70 ◦C with low magnification; (c) After
desorption of Pb(II) at 10 ◦C with high magnification; (d) After desorption of Pb(II) at 10 ◦C with
low magnification.

The FTIR spectra of CS, NIPAM, and CPIT are illustrated in (Figure 4). For CS, the
broad peak around 3421 cm−1 is the O–H stretching vibration of hydroxyl groups. The
adsorption peaks at 2929 cm−1 and 1653 cm−1 are attributed to the C–H and C=O stretching
vibrations from glucosl units in CS, respectively [21,22]. Regarding NIPAM, a characteristic
absorption peak at 3298 cm−1 refers to the N–H stretching vibration of amino groups and
the absorption of C–H stretching vibration at 2975 cm−1 originates from the methyl groups.
The absorption peaks at 1653 cm−1 and 1624 cm−1 are related to C=O stretching vibration
of amide I band and C=C stretching vibration, respectively. Moreover, the absorption peaks
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of N–H bending vibration and C–N stretching vibration from amide groups are overlapped
around 1547 cm−1. 3079 cm−1 is the overtone band of N-H bending vibration [23]. In the
spectrum of CPIT, the adsorption bands at 3421 cm−1, 3298 cm−1, 3079 cm−1, 1653 cm−1,
and 1547 cm−1 are corresponding to O–H stretching vibration, N–H stretching vibration,
N–H overtone, C=O stretching vibration, and N–H bending vibration, respectively. It is
worth noting that the characteristic absorption peaks stemming from CS and NIPAM are
also observed in the spectrum of CPIT, e.g., the C=O stretching vibration (1653 cm−1) and
the N–H bending vibration (1547 cm−1).

Polymers 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. FTIR spectra of CS, NIPAM, and CPIT. 

The thermal stabilities of CS, CPIT, and PNIPAM are shown in (Figure 5). In general, 
the weight loss occurring below 120 °C is corresponding to the removal of free and bound 
water for all test specimens. In addition to that, a primary weight loss stage observed for 
CS is ranging from 250 °C to 430 °C and the temperature for maximum weight loss rate 
(TDTGmax) is 319 °C (Figure 5b). For PNIPAM, its thermal decomposition process could be 
described as two periods: (i) 202–315°C with TDTGmax as 288 °C; (ii) 315–469 °C with TDTGmax 

as 416 °C (Figure 5b). These two weight loss stages are resulted from the degradation of 
amide groups and backbones of PNIPAM, respectively [24,25]. Compared with CS and 
PNIPAM, the DTG curve of CPIT is featured as three weight loss steps (First: 202–312 °C, 
TDTGmax: 278 °C; Second: 312–369 °C, TDTGmax: 352 °C; Third: 369–469 °C, TDTGmax: 414 °C), 
which is obviously different from the outcome of simply overlapping the curves of CS and 
PNIPAM. In other words, during the preparation process of CPIT, the NIPAM monomer 
did get grafted onto the molecular chains of CS and then further self-polymerized to pro-
long the chains of PNIPAM, instead of physical blending of CS and PNIPAM. Therefore, 
all the weight-loss characteristics of PNIPAM has been incorporated in the DTG curve of 
CPIT. Moreover, an additional weight loss interval observed for CPIT ranging from 312–
369 °C (the second step), to a large extent, owing to the presence of segments crosslinked 
between CS and PNIPAM. 

 
Figure 5. TG (a) and DTG (b) curves of CS, CPIT, and PNIPAM. 

  

4000 3500 3000 2500 2000 1500 1000 500

1624

2929
CS

NIPAM  

 

Tr
an

sm
itt

an
ce

Wavelength (cm-1)

CPIT

3421

3298

2975

1653

1547

3079

Figure 4. FTIR spectra of CS, NIPAM, and CPIT.

The thermal stabilities of CS, CPIT, and PNIPAM are shown in (Figure 5). In general,
the weight loss occurring below 120 ◦C is corresponding to the removal of free and bound
water for all test specimens. In addition to that, a primary weight loss stage observed
for CS is ranging from 250 ◦C to 430 ◦C and the temperature for maximum weight loss
rate (TDTGmax) is 319 ◦C (Figure 5b). For PNIPAM, its thermal decomposition process
could be described as two periods: (i) 202–315 ◦C with TDTGmax as 288 ◦C; (ii) 315–469 ◦C
with TDTGmax as 416 ◦C (Figure 5b). These two weight loss stages are resulted from the
degradation of amide groups and backbones of PNIPAM, respectively [24,25]. Compared
with CS and PNIPAM, the DTG curve of CPIT is featured as three weight loss steps (First:
202–312 ◦C, TDTGmax: 278 ◦C; Second: 312–369 ◦C, TDTGmax: 352 ◦C; Third: 369–469 ◦C,
TDTGmax: 414 ◦C), which is obviously different from the outcome of simply overlapping
the curves of CS and PNIPAM. In other words, during the preparation process of CPIT,
the NIPAM monomer did get grafted onto the molecular chains of CS and then further
self-polymerized to prolong the chains of PNIPAM, instead of physical blending of CS and
PNIPAM. Therefore, all the weight-loss characteristics of PNIPAM has been incorporated
in the DTG curve of CPIT. Moreover, an additional weight loss interval observed for CPIT
ranging from 312–369 ◦C (the second step), to a large extent, owing to the presence of
segments crosslinked between CS and PNIPAM.
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3.2. Adsorption Performance of CPIT on Pb(II)
3.2.1. Effect of Temperature on Pb(II) Adsorption by CPIT

The adsorption capacity of CPIT towards Pb(II) increases first and then drops within
the temperature range from 35 ◦C to 70 ◦C, during which the maximum value of Qt is
acquired as 5.5 mg/g when 55 ◦C is applied (Figure 6a). This phenomenon is reasonable
since low temperature (e.g., 35 ◦C) favors CPIT in a more swollen and loosened state.
Consequently, the pores with enlarged size are not conducive to capture Pb(II). When
the temperature gradually rises, the hydrogen bonds between the material and water
molecules would be impaired, causing the CPIT to shrink. The persistent reduction in
pore size response from 35 ◦C to 55 ◦C is beneficial for the adsorption and retention of
Pb(II). After achieving the maximum Qt value at 55 ◦C, however, the adsorption capacity
of CPIT declines sharply, ascribed to the over-shrinked pore size which adversely affects
the embedding of Pb(II). Moreover, the tendency of desorption under high temperature
should be another reason.

3.2.2. Effect of Adsorption Time on Pb(II) Adsorption by CPIT

A rapid growth of adsorption capacity is observed when the adsorption time is
prolonged up to 1.5 h, and the maximum Qt value is achieved as 6.9 mg/g (Figure 6b).
During the early stage of adsorption, there are a large number of effective recognition
sites available both on the surface and inside the structure of CPIT. This fact is in line with
the potent increasing trend of adsorption capacity from 0 to 1.5 h. Later, as the amount
of adsorbed Pb(II) continues to accumulate, majority of the recognition sites would be
occupied, leaving less amount of hollow recognition sites. Moreover, the adsorbed Pb(II)
from the recognition sites would also repel the dissociated ones in solution via electrostatic
repulsion, so the adsorption rate would gradually decrease until attaining equilibrium.
Based on the discussion above, a suitable adsorption time could be selected as 1.5 h.

3.2.3. Effect of pH Value on Pb(II) Adsorption by CPIT

The adsorption capacity of CPIT on Pb(II) also varies according to different initial pH
value of the Pb(II)-containing solution. When the pH value is only 3, the surface of CPIT
would be extensively protonated, resulting in strong charge repulsion towards positively
charged Pb(II) [26]. In this occasion, less amount of Pb(II) would overcome the charge
repulsion force to be adsorbed by CPIT, and thus the adsorption capacity is fairly low
as 3.2 mg/g (Figure 6c). As the pH value climbs up, the electrostatic attraction instead
of charge repulsion takes a major role in propelling dissociated Pb(II) towards CPIT [27].
Additionally, controlled polymerization of CPIT with amide groups capable for metal-ion
chelation takes part in the capture of Pb(II) [28]. The maximum adsorption capacity is
acquired as 8.2 mg/g, when pH value reaches 5.5 (Figure 6c). It is necessary to point out
that further elevation of pH value unexpectedly decreases the adsorption capacity. The
reason is largely due to the partial hydrolysis of Pb(II) into Pb(OH)2 that possesses fairly
low solubility in a weak acid environment and therefore adversely impacts the adsorption
capacity of CPIT [29].
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3.2.4. Effect of Initial Pb(II) Concentration on Pb(II) Adsorption by CPIT

Generally speaking, higher concentration of initial Pb(II) aqueous solution benefits the
achievement of higher adsorption capacity of Pb(II). When the initial Pb(II) concentration
reaches 1.7 mg/mL, the adsorption capacity climbs to a plateau (114.6 mg/g), much higher
than the values achieved by applying a silica-based molecularly imprinted mesoporous
polymer (23.8 mg/g) [30] and a chitosan-based composite membrane (76.6 mg/g) [31].
However, there is no evident increase of Qe value for CPIT if the initial Ph(II) concentration
exceeds 1.7 mg/mL.
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3.3. Adsorption Mechanism of CPIT

The adsorption kinetics of CPIT was studied by pseudo-first-order and pseudo-second-
order models. Relevant simulation parameters and results are summarized in (Figure 7) and
(Table 1). In comparison to the pseudo-first-order model (R2 = 0.9502), the pseudo-second-
order model (R2 = 0.9948) is more fitting to the adsorption process of CPIT, which indicates
that the adsorption process is primarily driven by the chemical adsorption between the
imprinted cavities from CPIT and Pb(II) via coordination, hydrogen bonds, and electrostatic
interaction [32]. The correlation between the equilibrium concentration of Pb(II) in solution
and the maximum adsorption capacity at equilibrium are fitted by the Langmuir and
Freundlich adsorption isotherm models, respectively (Table 2). As shown in Table 2, the
adsorption of Pb(II) by CPIT is better fitted by Freundlich model, reflected by its higher
fitting degree (RF

2 = 0.9839). This indicates that the removal of Pb(II) is driven by a
heterogeneous multi-molecular layer adsorption [33].
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Table 1. Fitting results on Pb(II) adsorption by using pseudo-first-order and pseudo-second-order
models.

Samples
Pseudo-First-Order Model Second-Order Dynamic

k1 R2 Qe k2 R2 Qe

CPIT 0.0005 0.9502 7.0554 0.0086 0.9948 7.6046

Table 2. Parameters of Langmuir and Freundlich adsorption isotherms of Pb(II) adsorption.

Adsorption Isotherms of Pb(II)

Samples
Langmuir Model Freundlich Model

KL (L/mg) Qm (mg/g) RL
2 KF (L/mg) n RF

2

CPIT 0.0008 189.39 0.9250 0.5006 1.3298 0.9839

3.4. Desorption Performance of CPIT

Compared with currently environment-unfriendly desorption approaches, e.g., using
nitric acid as an eluting agent [34], CPIT exhibits outstanding superiority to realize desorp-
tion via cold deionized water rinsing. As shown in Figure 8a, the desorption efficiency of
CPIT decreases with the elevation of temperature and the maximum value is achieved as
93.8% when the temperature is controlled at 5 ◦C. As mentioned before, low temperature
enlarges the pore size of active recognition sites and meanwhile weakens the interactions
between Pb(II) ions and CPIT molecular chains, which eventually promotes the desorption
of Pb(II). As demonstrated in Figure 8b, the desorption efficiency increases rapidly from
5 to 10 min of immersion time, and gradually closes to the equilibrium when the time
exceeds 10 min. Besides, the effect of rinsing times on desorption is also plotted in Figure 8c.
As expected, the desorption efficiency of CPIT does elevate with the increment of rinsing
times and finally reaches the plateau (around 93.8%) after being rinsed three times.

Since the adsorption process of Pb(II) exhibits a better fitting to heterogeneous multi-
molecular layer adsorption, the Pb(II) on the surface layer is preferentially desorbed during
rinsing. Later, the Pb(II) embedded in the inner layer would be gradually desorbed due to
multiple factors—e.g., the expansion of polymer chains, the destruction of the interaction
between ions and polymer functional groups, and the enlarging of pores [35]. Therefore,
the suitable desorption conditions could be summarized as 5 ◦C of desorption temperature,
10 min of immersion, and three rinsings.
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3.5. Selective Adsorption Capacity of CPIT

In addition to the remarkable adsorption capacity of CPIT on single solute solution of
Pb(II), its ability of selective adsorption of Pb(II) from solution containing multiple ions was
also investigated. As demonstrated in (Figure 9), CPIT exhibits an outstanding capacity of
selective adsorption of Pb(II) up to 97.9 mg/g from a solution containing eight metal ions
in total (namely, Cu2+, Mg2+, Ca2+, Pb2+, Cd2+, Na+, K+, and Fe3+), while the adsorption
efficiency of other seven ions is in the range from 2.0 to 9.7 mg/g. This result is rational,
for all the active sites were previously imprinted by Pb(II), and all these cavities may not
be suitable for matching the metal ions with different diameters and/or charge numbers.
However, the presence of other metal ions would inevitably interfere the adsorption of
Pb(II) in a minor extent.
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Figure 9. Selective adsorption capacity of CPIT on Pb(II) from a mixed metal-ion solution containing
eight metal ions (namely Cu2+, Mg2+, Ca2+, Pb2+, Cd2+, Na+, K+, and Fe3+).

3.6. Regeneration of CPIT

A slight reduction trend is observed for both Qe value and desorption efficiency of
CPIT with increased recycle times (Figure 10). After 10 recyclings, the adsorption capacity
still remained at 101.1 mg/g compared with 114.6 mg/g of the pristine material. The
desorption efficiency, on the other hand, drops from 93.8% to 84.4%. This is mainly due to a
trace amount of Pb(II) remaining in the eluted material after each time of desorption, which
brings about the accumulated reduction of effective adsorption sites in CPIT. In general,
the maximum adsorption capacity of CPIT is still lower than that of magnetic activated
carbon [36] and some other recently reported adsorbent [37], but its greatest advantages
could be highlighted as an eco-friendly generation process simply by cold water (5 ◦C)
rinsing instead of acid/base treatment. Moreover, its adsorption and desorption efficiency
could still remain 88.2% and 90.1% of its starting values after 10 recyclings, more remarkable
than those of some other high-performance adsorbents recently documented [37,38].
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4. Conclusions

Via a gradient heating procedure, a cassava-based Pb(II)-imprinted thermo-responsive
hydrogel (CPIT) had been successfully prepared by applying cassava starch as the substrate,
N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the
template ions. The reversible thermo-responsibility of the obtained material had been
revealed in the range from 30.2 ◦C to 34.3 ◦C and the maximum adsorption capacity and
desorption efficiency of Pb(II) were determined as 114.6 mg/g and 93.8%, respectively.
Moreover, CPIT also exhibits superior capacity in selective adsorption and regeneration.
Its adsorption capacity of Pb(II) still remains 88.2% of the value of starting material after
10 recyclings. Therefore, this novel type of intelligent bio-based adsorbent has tremendous
application potential in the field of heavy metal sewage treatment.
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