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Transcriptomics of chicken cecal 
tonsils and intestine after infection 
with low pathogenic avian 
influenza virus H9N2
Nadiyah Alqazlan1, Mehdi Emam2, Éva Nagy1, Byram Bridle1, Mehdi Sargolzaei1,3 & 
Shayan Sharif1*

Influenza viruses cause severe respiratory infections in humans and birds, triggering global health 
concerns and economic burden. Influenza infection is a dynamic process involving complex biological 
host responses. The objective of this study was to illustrate global biological processes in ileum and 
cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus 
(LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-
infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing 
analyses to characterize differentially expressed genes and overrepresented pathways. Statistical 
analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 
12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed 
by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and 
HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 
and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils 
at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock 
response. Research on these candidate genes and pathways is warranted to decipher underlying 
mechanisms of immunity against LPAIV in chickens.

Avian influenza viruses (AIVs) pose major public health threats and significant economic losses to the poultry 
industry1,2. AIVs possess an error-prone RNA polymerase making them susceptible to reassortment, which 
occasionally results in the emergence of zoonotic viruses3,4. Low pathogenic (LP) AIVs of subtype H9N2 are 
widespread pathogens of poultry. They are listed by the World Health Organization as a zoonotic influenza virus 
and ranked by Centers for Disease Control and Prevention (CDC) as potential pandemic viruses5,6. A novel 
influenza A (H7N9) virus is likely to have acquired six viral segments from circulating avian H9N2 viruses7.

The subtype of the virus is a critical factor in understanding the host’s ability to regulate the immune responses 
against AIV8–11. LPAIVs principally replicate in the avian respiratory and gastrointestinal tract (GIT), causing 
mild signs of illness12. Replication of LPAIVs in the GIT disrupts the gut microbiota and dysregulates type I 
interferons (IFN)13–15. The GIT plays a critical role in immune homeostasis, balancing the protection of the host 
against invading pathogens and interacting with commensal microbiota16–18. The well-developed gut-associated 
lymphoid tissues in the GIT are the first line of defence against invading pathogens and consist of various lym-
phoid cells found in Peyer’s patches, cecal tonsils and epithelial lining and lamina propria of the GIT19. Peyer’s 
patches are located at the anti-mesenterial side of the chicken jejunum, and one Peyer’s patch is consistently found 
in ileum at the proximal ileocecal transition20. Peyer’s patches epithelium has specialized cells called M cells that 
overlay follicles of defined T and B cell areas. Cecal tonsils are located at the cecum–rectum junction and have 
a structure similar to Peyer’s patches20,21. Antigen recognition through M cells or by direct antigen sampling by 
macrophages and dendritic cells induce intestinal immune responses22,23.

There has been significant interest in understanding how influenza viruses interact with their host. To this end, 
several studies have interrogated transcriptomics of host responses to LPAIV and highly pathogenic AIV24–26. 
These studies have revealed a complex network of immune responses initiated by avian influenza viruses, at cellu-
lar and tissue levels, in the respiratory tract24,27–30, ileum8,31, dendritic cells25 and chicken embryonic fibroblasts32. 
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It has become evident that avian influenza viruses trigger the innate receptors of their host. Pattern-recognition 
receptors (PRRs) are the host’s innate immune sensors, and at least three distinct classes of PRRs recognize 
influenza virus infection33,34. This recognition leads to secretion of cytokines, chemokines and antimicrobial 
peptides by cells, including dendritic cells and macrophages. Additional immune responses occur at immuno-
logical induction sites, including activation of IFN-stimulated genes (ISG)35,36. Remarkably, viral mechanisms 
antagonizing Toll-like receptor-mediated signaling by influenza viruses have not been described37. However, 
the influenza virus non-structural 1 (NS1) protein limits type I IFN responses. Deletions in influenza virus NS1 
provoke augmented caspase‐1 activity post-infection of macrophages resulting in enhanced secretion of inter-
leukin (IL)‐1β and IL-18, which indicates an antagonizing function of NS137. Viral NS1 also targets melanoma 
differentiation-associated protein 5 (MDA5) and directly interferes with the function of different ISGs37,38.

The increasing appreciation of the complexity of GIT immune responses has increased research efforts to 
decipher the mechanisms behind their induction and regulation. However, there is still a paucity of information 
about underlying mechanisms of chicken immunity against pathogens, including AIV in the GIT. The largest 
lymphoid aggregates of avian gut-associated lymphoid tissue are cecal tonsils. Along with Peyer’s patches in the 
intestine, cecal tonsils elicit protective immune responses against bacterial and viral pathogens in avian species. 
Therefore, the present study was designed to examine gene expression in ileum and cecal tonsils, as potential 
sites for virus replication and induction of immune responses. Our findings could facilitate the development of 
effective measures to enhance immunity against AIV in poultry.

Results
RNA‑seq data analysis.  The average number of reads that passed the quality control was 23.7 and 25.5 
million reads per sample for cecal tonsils and ileum, respectively. The average percentage of reads uniquely 
mapped to the chicken reference genome was 89.7% and 91.7% of the reads for cecal tonsils and ileum, respec-
tively.

Global profiles of DE genes in chicken infected with low pathogenic AIV subtype H9N2.  Tran-
scriptomic changes were detectable in cecal tonsils and peaked at 24 hpi.  Comparing the gene expression in 
cecal tonsil tissues between infected and non-infected groups, the highest number of DE genes was 24 hpi and 
reduced to near baseline at 72 hpi (Table 1; Fig. 1A). The significant changes were also illustrated for DE genes 
with volcano plots (Fig. 2).

At 12 hpi (Fig. 1A), there were no DE genes between AIV-infected and non-infected chickens’ cecal tonsil 
tissues (FDR < 5%). However, using FC-based significance (FC < 1.5), we found a downregulated gene (FGF19), 
which is involved in mitogen-activated protein kinase (MAPK)1/MAPK3 signaling and cytokine signaling in 
immune system pathways.

Changes in DE genes began in cecal tonsils at 24 hpi (Fig. 1A). Ninety-five genes had a significant fold-change 
in expression (84 upregulated, 11 downregulated) (Table 1). The fold-change of gene expression between infected 
and non-infected groups ranged from 7.27 to -3.41. The gene with the highest upregulation was a novel gene 
called T-complex protein 1 subunit gamma-like. This gene is an orthologue of turkey’s CCT3 (Chaperonin Con-
taining T-complex protein 1 subunit 3) gene and encodes for a chaperonin member containing TCP1 complex. 
T-complex protein 1 (TCP1) is a chaperonin class of protein involved in intracellular assembly and folding of 
various proteins. Specifically, this protein’s gamma subunit plays a crucial role in folding and assembling cytoskel-
eton proteins, exploited by viruses during early viral infection. TCP1 is also a cytosolic HSP60 family protein. 
Another gene with significant upregulation was the early endosome antigen 1-like, a novel long non-coding 
RNA (lncRNA). We also found upregulation of HSPs (HSP90AA1, HSPH1, HSPA8) and some genes involved in 
innate immune and antiviral responses, including IFN-inducible genes and ISGs (DDX60, IFI6, RSAD2, IFIT5, 
MX1, OASL, CMPK2, RNF213, ERAP1, IFIH1, STAT1, DHX58, IFITM5 (interferon-induced transmembrane) 
and C1S (complement C1s)). The MX1 gene prevents the import of nuclear material into viral nucleocapsids, 

Table 1.   Significant gene expression changes following influenza infection. Cecal tonsils, ileum. FC, fold 
change; ↑, upregulated; ↓, downregulated.

Tissue

Differentially expressed genes

12 h post-infection 24 h post-infection 72 h post-infection

Number of DE genes FC > 1.5

Cecal tonsils
0 95 1

0 84↑;11↓ 1↑

Ileum
3 90 25

3↑ 76↑;14↓ 18↑;7↓

Highest upregulated gene: Description
Cecal tonsils –

ENSGALG00000039205 Novel gene 
T-complex protein 1 subunit gamma-
like

ENSGALG00000001000 /HSPA5

Ileum ENSGALG00000039269/ RNF213 ring 
finger protein 213

ENSGALG00000052514 Novel gene 
early endosome antigen 1-like ENSGALG00000049807 Novel gene

Highest downregulated gene: Descrip-
tion

Cecal tonsils – ENSGALG00000029747 /ST3GAL4 –

Ileum –
ENSGALG00000026229/PIGY 
phosphatidylinositol glycan anchor 
biosynthesis class Y

ENSGALG00000004346/P2RY4 
pyrimidinergic receptor P2Y4
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which is known to have a disruptive effect on influenza A viruses by disrupting lipid rafts of the virus. CMPK2 
is involved in the differentiation of monocytes and is involved in metabolism. The ERAP1 gene is involved in 
class I major histocompatibility complex (MHC)-mediated antigen processing and presentation. The DNAJA1 
gene is an important paralog of DNAJA4, and response to heat and protein folding are some of its related anno-
tations (GO:0,009,408, GO:0,006,457). C1S was an upregulated gene in the present study and is involved in the 
innate immune system and regulation of complement cascade pathways. A novel chicken gene characterized as 
an orthologue to human USP18, was upregulated. This novel chicken gene is involved in interferon signaling, 
antiviral mechanisms by IFN-stimulated genes and ISG15. Another novel chicken gene, described as guanylate 
binding protein 1, was also upregulated and among its GO term was cellular response to interferon-gamma. 
Downregulated genes in cecal tonsils at 24 hpi included a novel gene (an orthologue of human SAA gene). This 
gene is expressed in granulocytes and involved in the biological process of acute-phase responses (GO:0,006,953, 
acute inflammatory response to infection) and the innate immune system pathway (R-GGA-168249).

At 72 hpi, only HSPA5 had a significant upregulated expression (FDR < 5%) (Fig. 1A; Table 1). The FDR 
threshold was set to 10% to examine genes under a relaxed level of significance. Five HSPs were significantly 
different at this level. Additionally, one of these upregulated genes was CIDEC (with the greatest FC > 1.5). 
CIDEC (cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector c) is involved in regulating 
the apoptotic process. The DOP1B gene was among the results for both FC > 1.5 and FDR < 10% and is known 
to increase during responses to infections.

Transcriptomic changes were detected in the ileal tissue at 12 hpi and peak at 24 hpi.  Differential gene expression 
in ileal tissue samples of infected chickens was detected as early as 12 hpi, and further increased at 24 hpi and 
then decreased 72 hpi (Fig. 1B; Table 1). This changing dynamic and the number of significant changes were 
somewhat different from the cecal tonsil samples; the number of DE genes at 72 hpi was maintained above ileum 
baseline. The differences in DE genes and changing dynamics for each time point post-infection were further 
illustrated in volcano plots, which give a more detailed display of the magnitude of changes in contrast to the 
measure of statistical significance (Fig. 2).

In ileum at 12 hpi, only three genes were significantly upregulated (FC > 1.5). RNF213 is related to class I 
MHC-mediated antigen processing and presentation pathways and adaptive immune system pathways. TRANK1 
is a protein-coding gene, and its GO annotations for molecular functions include protein binding and ATP 
(Adenosine Triphosphate) binding. RNF213 and TRANK1 have orthologues in humans. NCKAP5 is involved 
in the formation and modification of the microtubules.
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Figure 1.   The number of significantly differentially expressed genes in the cecal tonsils and the ileum. 
Significantly differentially expressed genes in the cecal tonsils (panel A) and the ileum (panel B) following 
influenza virus infection (significant p-value of False Discovery Rate (FDR) controlled at 5%) over time. Blue 
bars indicate the number of upregulated genes, and the red bars indicate the number of downregulated genes.
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At 24 hpi, the number of gene expression changes in ileum increased substantially (Fig. 1B). Ninety genes had 
significant fold-changes (76 genes upregulated, and 14 genes downregulated) (FDR < 5% and FC > 1.5; Table 1). 
The fold-change of gene expression between infected and non-infected groups ranged from 2.38 to − 1.41. 
The gene with the greatest significant upregulation was the early endosome antigen 1-like, a novel lncRNA. 
The significant upregulation of RNF213 and TRANK1 continued from 12- to 24-hpi time point. There was 
also augmented expression of antiviral factors, including innate immune responses, IFN-inducible genes and 
ISGs (IFIT5, IFI6, IFIH1 (MDA5), IFITM5, IFI27L2, STAT1, MX1, DHX58, DDX60, and OASL). The RSAD2 
gene was also one of the top upregulated genes. GO terms for RSAD2 were related to (1) defence responses to 
viruses, (2) CD4+ αβT cell activation and differentiation, (3) negative regulation of protein secretion and viral 
genome replication and (4) positive regulation of Toll-like receptor (TLR) 7/9 signaling pathways and T-helper 
2 cell cytokine production. The ZBTB32 gene was also among the significantly upregulated genes; its GO terms 
were related to negative regulation of transcription by RNA polymerase II. The ZBTB32 orthologue in humans 
is ZBTB16, which is involved in the adaptive immune system and class I MHC-mediated antigen processing 
and presentation pathways. Heat-shock protein genes were also among the top results of upregulated genes, 
including HSPH1, HSPA2, HSP90AA1, HSPB9, HSPA4L and HSPA8. The C1R gene was also upregulated. It is 
involved in complement activation and the classical antibody-mediated complement activation pathway. TLR3 
was upregulated in this study. This gene encodes TLR 3, which recognizes double-stranded RNA and plays a 
vital role in pathogen recognition and activation of innate immunity.

Among the significantly downregulated genes in ileum at 24 hpi were GNLY, CD3D, CST7, PTPN7, WAS and 
XCL1. GNLY, CD3D and CST7 are involved in the innate immune system. The PTPN7 annotation was cytokine 
signaling in the immune system, and WAS is involved in the Fc-gamma receptor-dependent phagocytosis path-
way. XCL1 is involved in chemokine-mediated signaling pathways, G protein-coupled receptor signaling pathway, 
and cellular responses to IFN-gamma, IL-1 and tumour necrosis factor.

Of the 37 DE genes in ileum of infected chickens at 72 hpi, 25 genes had significant fold-changes (Table 1). 
HSPs were in the top results (HSPH1 (HSP110), HSP90AA1 (HSP90), HSPA4L, HSPA5 and HSPA8 (HSP70)). 

Figure 2.   Volcano plots showing changes in gene expression. Volcano plots showing changes in the expression 
of individual genes over time (12, 24, and 72 h post-infection) in the cecal tonsils and the ileum. The number of 
genes decreased linearly as the fold change increased. Genes with p-values of False Discovery Rate at < 5% and 
fold change of > 1.5 or < -− 1.5 are depicted in red.
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Additionally, PDK4, CHAC1, DNAJA4 and DNAJA1 were upregulated. In mice with severe influenza, inhibition of 
PDK4 using a therapeutic agent results in prevention of multiorgan failure39. CHAC1 gene annotations included 
the intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress, which usually results 
from the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum lumen 
(GO:0,070,059), and negative regulation of the Notch signaling pathway (GO:0,045,746). Like cecal tonsils results, 
DNAJA4 and its paralog DNAJA1 gene were also upregulated in ileum at 72 hpi. The DNAJA4 gene has related 
annotations, including unfolded protein binding and HSP binding (GO:0,051,082, GO:0,031,072). TGIF1 gene 
was upregulated and involved in signaling by the transforming growth factor (TGF)-β receptor complex pathway.

The genes that were most downregulated in ileum at 72 hpi included P2RY4, which is involved in the G 
protein-coupled receptor signaling pathway. ELF3 was also downregulated, and one of its gene ontogeny bio-
logical processes terms was inflammatory response to infection (GO:0,006,954). ELF1 is a protein encoded by 
the ELF1 gene, which is a paralog of ELF3 gene and regulates broad antiviral responses distinct from the type 
I IFN response40.

Functional annotation analysis.  Functional analysis of Reactome pathways of DE genes.  Functional 
annotation analysis of Reactome pathways using the PANTHER overrepresentation test among significantly 
upregulated genes resulted in three statistically significant (FDR < 5%, Fisher’s exact test) Reactome pathways in 
cecal tonsils and ileum at 24 hpi. In both tissues, the highest enriched pathway was the ISG15 antiviral mecha-
nism (Table 2).

Functional analysis of gene ontology of DE genes.  Functional annotation analysis of GO using the PANTHER 
overrepresentation test among upregulated genes gave results in cecal tonsils at 24 hpi and ileum at 24 and 72 
hpi. In cecal tonsils at 24 hpi, the significantly upregulated genes were classified into 27 biological processes 
and 27 molecular functions with FDR of < 5% (Supplementary Tables 7 and 8) according to the GO project, 
respectively. The top 10 results of enriched biological processes are shown in Fig. 3A. The main GO categories of 
biological processes for the upregulated genes were protein ADP (Adenosine Diphosphate)-ribosylation, posi-
tive regulation of PRR signaling pathways, positive regulation of cytokine production (e.g. positive regulation of 
type I IFN production) and regulation of viral life cycle (e.g. negative regulation). The top 10 results of enriched 
molecular functions are shown in Fig. 3B. The GO terms of the molecular functions for the upregulated genes 
included protein folding chaperone, single-stranded RNA binding and HSP binding.

In ileum at 24 hpi, the upregulated genes were classified into 30, 21 and one functional groups (FDR < 5%) 
of biological processes, molecular functions and cellular components, respectively (Supplementary Tables 9, 10 
and 11). The top 10 results of enriched biological processes are shown in Fig. 3A. The main GO categories of the 
biological processes were regulation of PRR signaling pathways, positive regulation of cytokine production (e.g. 
IFN-β), negative regulation of viral process (e.g. negative regulation of viral genome replication) and response 
to stress (e.g. defense response to virus). The top 10 results of enriched molecular functions are shown in Fig. 3B. 
The GO terms of the molecular functions included protein folding chaperone, double- and single-stranded RNA 
binding, chaperone binding and unfolded protein binding. Figure 3C shows the cellular component (cytosol) as 
the only enriched GO term relevant to ileum at 24 hpi.

In ileum at 72 hpi, the DE upregulated genes were classified into 19 biological processes, 19 molecular func-
tions and one cellular component at FDR < 5% (Supplementary Tables 12, 13 and 14) according to the GO pro-
ject, respectively. The top 10 results of enriched biological processes are shown in Fig. 3A. The main biological 

Table 2.   Functional annotation analysis of Reactome pathways using PANTHER. Overrepresentation analysis 
was performed on PANTHER. The analysis was performed on upregulated genes of significant gene changes 
in each tissue at each time point by filtering genes with a fold change of + /− 1.5 and significant P-value of False 
Discovery Rate (FDR) controlled at 5%. IFN interferon, ISG IFN-stimulated genes.

Reactome pathways
Number of genes in 
reference list

Number of genes in target 
list Expected

Over/under representation 
(+ /-) Fold enrichment Raw P-value FDR

Cecal tonsils at 24 h post-infection

ISG15 antiviral mechanism 
(R-GGA-1169408) 25 6 0.11  +  55.39 3.57E−09 5.58E−06

Antiviral mechanism by 
IFN-stimulated genes 
(R-GGA-1169410)

27 6 0.12  +  51.28 5.34E−09 4.17E−06

Interferon Signaling 
(R-GGA-913531) 49 6 0.21  +  28.26 1.30E−07 6.75E−05

Ileum at 24 h post-infection

ISG15 antiviral mechanism 
(R-GGA-1169408) 25 5 0.1  +  51.51 9.88E−08 1.54E−04

Antiviral mechanism by 
IFN-stimulated genes 
(R-GGA-1169410)

27 5 0.1  +  47.69 1.39E−07 1.08E−04

Interferon Signaling 
(R-GGA-913531) 49 5 0.19  +  26.28 2.04E−06 1.06E−03
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Figure 3.   Dot plots of functional annotation analysis of gene ontology (GO) using PANTHER. 
Overrepresentation Test was performed on PANTHER among upregulated genes. Analysis was performed on 
gene list of each tissue at each time point by filtering for genes with a fold change of + /- 1.5 and False Discovery 
Rate (FDR) of < 5%. The top 10 GO terms of each tissue at each time point are plotted. The size of the dots 
represents the number of genes in the significant differentially expressed genes list associated with the GO 
term, and the colour of the dots represents the FDR values. (A) Biological Process. (B) Molecular function. (C) 
Cellular Components.
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processes were negative regulation of inclusion body assembly, negative regulation of transcription from RNA 
polymerase II promoter in response to stress and protein refolding. Figure 3B presents the top 10 enriched 
molecular functions, including C3HC4-type RING (Really Interesting New Gene) finger domain binding, protein 
folding chaperone, misfolded protein binding, chaperone binding and HSP binding. The cellular component 
(cytosol) was the only enriched GO term in ileum at 72 hpi (Fig. 3C).

Discussion
Immunity against AIV is the result of an orchestrated effort between innate and adaptive immune responses to 
this virus. Transcriptomic studies have been carried out in the GIT of chickens during infection with various sub-
types of influenza A viruses. Infection with H5N1 or H5N2 in chickens results in differential expression of genes 
associated with innate immune responses in ileum8. Also, transcriptome analysis of ileum from birds infected 
with high (H5N1) and low (H5N2) pathogenic influenza viruses has revealed very different IFITM responses in 
ducks and chickens31. Yet, there is no comprehensive understanding of the mechanisms of immune response to 
LPAIV, such as H9N2, in the GIT. The present study was designed to evaluate the global gene expression changes 
in cecal tonsils and ileum of chickens after infection with H9N2 AIV. The induced expression patterns of differ-
ent genes in ileum and cecal tonsils of AIV-infected chickens were revealed with some important observations.

Comparing the gene expression profiles of cecal tonsils and ileum, we observed some shared and unique 
responses to AIV infection. At 24 and 72 hpi, the comparison of differentially expressed genes showed that there 
were no genes displaying an opposite expression pattern between the two tissues and between the time points 
post-infection (Supplementary Fig. 2A-D). None of the sets resulted in any pathway with FDR <  = 5%, except 
the upregulated genes in ileum at 24 hpi. The most enriched pathways were the regulation of gene expression 
by hypoxia-inducible factor (HIF) pathway (R-GGA-1234158) and the TRAF6-mediated interferon regulatory 
factor (IRF7) activation pathway (R-GGA-933541). The mechanism of viral activation of the HIF-1 pathway is 
that influenza A virus infection causes impaired proteasome function, resulting in HIF-1α accumulation, and 
decreases expression of factor inhibiting HIF-1, further boosting HIF-1 activity41. Nuclear translocation of 
HIF-1α induced by influenza A infection is crucial to pro-inflammatory cytokines production, and deficiency 
of HIF-1α in lung epithelial cells enhances autophagy, facilitating influenza A virus replication42,43. Activation 
of IRF7 is triggered by TLR7 recognition of RNA released from the influenza virus, which is followed by the 
production of type I IFNs. Moreover, TRAF6-mediated IRF7 activation establishes innate immune responses 
and the absence of TRAF6 ensues enhanced viral replication and a significant reduction in IL-6 and type I IFNs 
production after infection with RNA virus44.

In the present study, RNF213 was upregulated gene in ileum at 12 and 24 hpi and cecal tonsils at 24 hpi. The 
Rnf213 gene was identified as highly expressed among a cluster of ISGs with known antiviral activity in a mouse 
model45. The model revealed that the heterogeneity of influenza replication from cell to cell is not derived by 
cell type. Also, the cells with no or low viral replication have high induction of the Rnf213 gene45. Additionally, 
a low abundance of virus transcripts is associated with the host innate response (response to type I IFN) gene 
cluster, including the RNF213 gene, which is significantly highly expressed in response to influenza infection46. 
Further, a transcriptomic analysis has revealed new genes and networks in response to H5N1 infection in ducks; 
among them, the RNF213 gene is expressed differentially in the brain post-infection47.

Here, we report that a novel gene called early endosome antigen 1-like and identified as a lncRNA had sig-
nificant upregulation in cecal tonsils and ileum at 24 hpi. Although little is known about lncRNAs, a lncRNA 
is upregulated due to viral delivery and is required to induce antiviral effects by promoting an increase in IFN 
production48. Furthermore, an evolutionarily conserved role for lncRNAs has been suggested, as conserved 
sequences are found to define virus-specific effector and memory CD8+ T cells49. Early endosome antigen 1 
(EEA1), a protein-coding gene, is involved in vesicular trafficking and is affected by bacterial infections50,51. Intra-
cellular pathogens target molecular factors, including EEA1, and inhibit its recruitment, triggering phagosomal 
maturation arrest50,52. Influenza A viruses benefit from EEA1 to infect human cells; following internalization 
of virus particles in dendritic cells, the influenza virus traffic through EEA1+ early endosomes to gain access 
to the cytoplasm53. Chicken EEA1 is a coding orthologue of human EEA1. It is hypothesized that lncRNA is 
involved in competing for endogenous RNA (ceRNA), which could regulate a protein-coding gene by sponging 
up microRNA54. The infected cells may increase early endosome antigen 1-like expression to limit viral entry 
to cells in the current study.

DExD/H-box helicases, such as DDX3, have been involved as sensors in innate antiviral immunity55–58. DDX60 
is involved in RIG-I-dependent and independent antiviral responses59. Several DEAD/DEAH-box RNA helicases 
are hijacked by RNA viruses in infected cells to facilitate their replication60–64. Chicken DDX60 and DHX58 
have orthologues in humans. In the present study, two IFN-inducible cytoplasmic helicases were upregulated 
in chicken GIT post-infection: DDX60 (DExD/H-box helicase 60) and DHX58 (DExH-box helicase 58, also 
known as LGP2 (laboratory of genetics and physiology 2)). Our observations supported the role of DExD/H-box 
helicases in innate antiviral immunity and their manipulation by viruses. DDX60 upregulation started at 12 hpi 
in ileum but not in cecal tonsils, which then reached significant upregulation at 24 hpi in both tissues, and then 
subsided at 72 hpi. This gene expression may imply a broader function of chicken DExD/H-box helicases and 
provide a deeper understanding of immune mechanisms and pathogenesis of AIV in chicken GIT.

Heat shock proteins shared across Archea, bacteria and eukaryotes, are associated with cellular injury. Expres-
sion of HSPs is elevated to protect cells under stress and is involved in protein folding, the immune system and 
antiviral response. However, viruses lack HSPs and depend on host HSPs for their protein folding65. Therefore, 
viruses can hijack HSPs, including hsp40, hsp70 and hsp90, to increase viral replication66. Exogenous admin-
istration of HSPs can enhance immune responses in cancer and infectious diseases by activation of protective 
T cell responses67,68. HSPs can also interact with various viral proteins; for example, HSPA8 can interact with 
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influenza virus protein M1. This interaction inhibits the nuclear export of matrix protein 1 and nucleoprotein 
and subsequently inhibits viral assembly69. Upregulation of HSPs has been reported in the chicken respiratory 
tract27. In the present study, we found that HSPs were upregulated significantly at 24 and 72 hpi in ileum and 
cecal tonsils of AIV-infected chickens. Targeting HSPs could provide a platform for prophylactic or therapeutic 
strategies to manipulate immune responses against AIV in poultry.

Viruses also exploit cytoskeleton proteins during early viral replication70,71. TCP1 is a chaperonin and a 
cytosolic HSP60 family protein72. The gamma subunit of TCP1 plays a vital role in the folding and assembling 
of cytoskeleton proteins73,74. Chicken TCP1 has a human orthologue—section of the gene that codes for the 
gamma-like subunit. T-complex protein 1 subunit gamma-like, a novel gene in the chicken genome, is a paral-
ogue of chicken TCP1. In the present study, we found the most upregulation of the T-complex protein 1 subunit 
gamma-like gene in cecal tonsils at 24 hpi. This unique gene upregulation in cecal tonsils may signal this gene’s 
employment by H9N2 AIV in the current study for its purposes in protein folding and assembly.

We found that MX1 gene was upregulated in ileum and cecal tonsils. This may draw a link to an anti-viral 
response in chicken cecal tonsils to AIV infection. MX1 protein inhibits the import of nuclear material into viral 
nucleocapsids, which is known to have a disruptive effect on influenza A viruses by disrupting lipid rafts of the 
virus. Other transcriptomic studies in poultry have also shown upregulation of this gene in repertory tract and 
ileum8,24,27.

IFITM is a family of genes known to have a role in limiting influenza infection75. Transcriptomic analysis 
shows that chickens mount a weak IFITM response in ileum post-infection with LPAIV H5N231. However, the 
findings of our study showed upregulation of IFITM5 in cecal tonsils and ileum at 24 hpi. This discrepancy of 
IFITM response may be because of the different subtypes used.

The results of the functional analyses of the DE genes were related to the immune responses to influenza 
infection. GO terms and Reactome pathways results were almost exclusively associated with response to viral 
infection. In cecal tonsils and ileum at 24 hpi, one of the highest enriched pathways was the ISG15 antiviral 
mechanism (Supplementary Fig. 1). IFN-induced ISG15 targets the non-structural 1 (NS1A) protein of the influ-
enza A virus, causing a loss of function of the NS1A protein and the inhibition of influenza A virus replication 
in virus-infected cells76. Additionally, ISG15 plays various roles in the defence against viral infections and the 
activation of immune system cells such as lymphocytes, monocytes, and natural killer cells77. Interestingly, the 
NS1A protein of influenza A viruses is responsible for inhibiting host immune responses by limiting production 
of IFNs and, therefore, antiviral effects of IFN-induced proteins78.

In conclusion, our study illustrated the differential expression of several innate immune system genes follow-
ing AIV infection in ileum and cecal tonsils. The results of the present study revealed that there is some degree 
of similarity between immune responses in GIT and those induced in the respiratory tract, although further 
research is required to determine whether there are spatial and temporal differences in gene expression between 
the gastrointestinal and respiratory tracts. Our study highlighted some of the DE genes that are known to be 
exploited by the influenza virus to support viral replication. Some of the DE genes have been consistently identi-
fied in chicken LPAIV studies, hinting that they may be the best candidates for future research. One important 
finding was the enriched antiviral pathway of ISG15. ISG15 plays a critical role in innate responses, and future 
research studying this mechanism might provide a platform for strategies against AIV in poultry.

Materials and methods
Experimental design.  This study included two main factors: treatment (challenged versus nonchallenged) 
and time (three time points post-infection), resulting in six groups. Each group contained six biological repli-
cates. A total of 36 one-day-old specific pathogen-free White Leghorn layers were purchased from the Canadian 
Food Inspection Agency (Ottawa, Canada) and housed in the isolation facility at the Ontario Veterinary College 
at the University of Guelph. All experimental procedures were approved by the University of Guelph Animal 
Care Committee and conducted according to specifications of the Canadian Council on Animal Care. Experi-
ments in the manuscript followed the recommendations in the ARRIVE guidelines.

Twenty-one days after hatching, 18 chickens in the challenged group were inoculated via oculo-nasal and oral 
routes with 250 μL of 3.1 × 107 TCID50/mL of LPAIV H9N2. Eighteen chickens in the nonchallenged group were 
inoculated via the same route with 200 μL of phosphate-buffered saline. The ileal samples at proximal ileocecal 
transition and cecal tonsils were collected from six chickens per time point at 12, 24, and 72 h post-infection 
(hpi) per treatment. The collected samples were transferred into tubes containing 1 mL of RNAlater solution 
(Invitrogen, Burlington, ON, CAN) for RNA stabilization and storage for later processing. The above time points 
were chosen that coincides with induction of innate responses to the virus.

Virus strain and virus propagation.  A/TK/IT/13VIR1864-45/2013 (H9N2) from the Istituto Zoopro-
filattico Sperimentale delle Venezie (IZSVe), Italy, was used in this study. The virus was propagated in 10-day-old 
embryonated specific pathogen-free chicken eggs. After 72 h of incubation at 37 °C, eggs were refrigerated at 
4 °C overnight. Allantoic fluid was collected and purified by centrifuging at 400 × g for 5 min at 4 °C and then 
stored at -80 °C until further use. The propagated virus titer was determined with 50% tissue culture infectious 
dose (TCID50) on Madin-Darby canine kidney (MDCK) cells.

Extraction, library preparation and RNA sequencing.  Total RNA was extracted using the RNeasy 
Mini kit (Qiagen, Toronto, ON, CAN) according to the manufacturer’s instructions. Library construction, qual-
ity control testing and sequencing were performed by Novogene (Sacramento, USA). Briefly, quantification and 
quality control testing were performed on 1% agarose gels, the NanoPhotometer spectrophotometer (IMPLEN, 
CA, USA) and the RNA Nano 6000 Assay Kit in a Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A 
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total amount of 1 μg of RNA per sample was used for library preparation using a NEBNext Ultra RNA Library 
Prep Kit for Illumina (New England Biolabs, USA). Library quality was assessed on the Agilent Bioanalyzer 2100 
system. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using 
a PE Cluster Kit cBot-HS (Illumina). cDNA libraries were sequenced on an Illumina HiSeq-4000 platform, and 
150 base pair paired-end reads were generated.

RNAseq data analysis interpretation.  RNA-seq analysis was performed on the Trimmomatic-STAR-
RSEM-DESeq2 pipeline previously established79. Raw reads were processed for quality control. Clean data were 
obtained based on Phred score (a quality measure to assess the accuracy of a sequencing) by trimming adapters 
and nucleotides with a Phred score of less than 30 at the beginning and end of the reads and discarding nucleo-
tides with a Phred score of less than 20 in the window of five nucleotides using Trimmomatic80. The minimum 
length of surviving reads was set at 36 nucleotides. All downstream analyses were based on clean data with high 
quality.

Reads were mapped to a Gallus gallus reference genome (GRCg6a, release 98) using Spliced Transcripts 
Alignment to a Reference (STAR) (version 2.7.0a)81. The number of reads per gene was quantified by RNA-Seq 
by Expectation–Maximization (RSEM)82. RSEM output files were used in DESeq2 (version 1.24.0) to calculate 
differentially expressed (DE) genes by comparing challenge group versus control group for each tissue per time 
point83. Genes with an absolute fold-change (FC) of more than a 1.5 (|FC|> 1.5; |log2FC|> 0.584) and with a 
significant p-value when False Discovery Rate (FDR) was controlled at 5% were considered DE. VennDiagram 
package in R was used to compare DE genes between cecal tonsils and ileum at 24 and 72 h time points84.

Functional annotation analysis of DE genes.  Overrepresentation analysis was performed on PAN-
THER (version 15) (http://​www.​panth​erdb.​org/) using the PANTHER Overrepresentation Test (Released 
20,200,728) on DE genes of each tissue at each time point. Gene ontology (GO) database https://​doi.​org/​10.​
5281/​zenodo.​39540​44 Released 2020–07-16 (http://​www.​geneo​ntolo​gy.​org) was used to analyze the overrep-
resentation of GO terms in all gene lists. Reactome pathways (from Reactome database version 65, Released 
2019–12-22) was used to analyze the overrepresentation of pathways among genes in all gene lists (https://​react​
ome.​org/). Both tests were performed using Fisher’s exact test with FDR correction.

Data availability
The datasets generated and analyzed during the current study are available in SRA database, BioProject ID 
PRJNA735215.
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